The dual approach to the $K(\pi, 1)$ conjecture

Giovanni Paolini
(Caltech)

Berlin

August 31, 2021

Artin groups and generalized configuration spaces

Let W be a Coxeter group and G_{W} the associated Artin group:

$$
G_{W}=\langle S \mid \underbrace{s t s \cdots}_{m_{s, t} \text { factors }}=\underbrace{t s t \cdots}_{m_{s, t} \text { factors }} \forall s \neq t\rangle .
$$

G_{W} is the fundamental group of a (generalized) configuration space Y_{W}.
If W is finite or affine, Y_{W} is given by:

$$
Y_{W}=\left(\mathbb{C}^{n} \backslash \bigcup_{H \in \mathcal{A}_{W}} H_{\mathbb{C}}\right) / W .
$$

Example: the braid group on 3 strands

Let W be the symmetric group $\mathfrak{S}_{3}=\left\langle a, b \mid a^{2}=b^{2}=1, a b a=b a b\right\rangle$. Its configuration space is $Y_{W}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{C}^{3} \mid x_{i} \neq x_{j}\right\} / \mathfrak{S}_{3}$.

The (real) arrangement

Loops in Y_{W} are "braids"

The Salvetti complex

The configuration space Y_{W} has the homotopy type of a CW complex X_{W} with cells indexed by the standard parabolic subgroups of W.

The Salvetti complex for $\mathrm{W}=\mathfrak{S}_{3}$

The Artin group presentation can be read off the 2-skeleton of the Salvetti complex:

$$
G_{W}=\langle a, b \mid a b a=b a b\rangle
$$

$K(\pi, 1)$ conjecture (Brieskorn, Arnol'd, Pham, Thom '60s)
The configuration space Y_{W} is a classifying space for G_{W} :
$\pi_{1}\left(Y_{W}\right)=G_{W}$ and the higher homotopy groups are trivial (equivalently, the universal cover of Y_{W} is contractible).
$K(\pi, 1)$ conjecture (Brieskorn, Arnol'd, Pham, Thom '60s)
The configuration space Y_{W} is a classifying space for G_{W} :
$\pi_{1}\left(Y_{W}\right)=G_{W}$ and the higher homotopy groups are trivial (equivalently, the universal cover of Y_{W} is contractible).

Until recently, this conjecture was proved in the following cases:

- Spherical Artin groups (Brieskorn 1971, Deligne 1972)
- The affine Artin groups of type $\tilde{A}_{n}, \tilde{C}_{n}$ (Okonek 1979), and \tilde{B}_{n} (Callegaro-Moroni-Salvetti 2010)
- Large-type Artin groups (Hendriks 1985)
- Artin groups of FC type (Charney-Davis 1995)
- 2-dimensional Artin groups (Charney-Davis 1995) (includes the affine Artin group $\tilde{\mathrm{C}}_{2}$)

Theorem (P.-Salvetti 2021)
The $K(\pi, 1)$ conjecture holds for all affine Artin groups.

Interval groups and Garside groups

G group, R generating set with $R=R^{-1}, g \in G$.
Let $[1, g]^{C}$ be the interval between 1 and g in the (right) Cayley graph of C (it is a poset, whose cover relations are labeled by some subset $R_{0} \subseteq R$).

Definition

The interval group G_{g} is the group generated by R_{0}, with the relations visible in $[1, g]^{C}$. If $[1, g]^{C}$ is a balanced lattice, then G_{g} is a Garside group.

Example

If $G=W$ (a finite Coxeter group), $R=S$, and $g=\delta$ (the longest element), then G_{g} is the spherical Artin group G_{W}.

$$
\begin{aligned}
& W=\left\langle a, b \mid a^{2}=b^{2}=1, a b a=b a b\right\rangle \\
& \delta=a b a=b a b
\end{aligned}
$$

Interval groups and Garside groups

G group, R generating set with $R=R^{-1}, g \in G$.
Let $[1, g]^{C}$ be the interval between 1 and g in the (right) Cayley graph of G (it is a poset, whose cover relations are labeled by some subset $R_{0} \subseteq R$).

Definition

The interval group G_{g} is the group generated by R_{0}, with the relations visible in $[1, g]^{C}$. If $[1, g]^{C}$ is a balanced lattice, then G_{g} is a Garside group.

Example

If $G=W$ (a finite Coxeter group), $R=S$, and $g=\delta$ (the longest element), then G_{g} is the spherical Artin group G_{W}.

$$
\begin{aligned}
& W=\left\langle a, b \mid a^{2}=b^{2}=1, a b a=b a b\right\rangle \\
& \delta=a b a=b a b \\
& W_{\delta}=\langle a, b \mid a b a=b a b\rangle
\end{aligned}
$$

Classifying space of Garside groups

Theorem (Brady-Watt 2002, Charney-Meier-Whittlesey 2004)
If G_{g} is a Carside group, then the complex $K_{C}=\Delta\left([1, g]^{C}\right) /$ labeling is a classifying space for G_{g}.

We call K_{C} the interval complex associated with $[1, g]^{G}$.

The balanced lattice $[1, \delta]^{W}$

The interval complex K_{W}

Spherical Artin groups as Garside groups

Our favorite example: $W=\mathfrak{S}_{3}=\left\langle a, b \mid a^{2}=b^{2}=1, a b a=b a b\right\rangle$.

Standard Garside structure
(Garside, Brieskorn-Saito, ...)

$$
\begin{aligned}
& R=S=\{a, b\} \text { (simple system) } \\
& g=\delta=a b a \text { (longest element) } \\
& W_{\delta}=\langle a, b \mid a b a=b a b\rangle=C_{W}
\end{aligned}
$$

(weak Bruhat order)

Dual Garside structure

(Birman-Ko-Lee, Bessis, ...)
$R=\{$ all reflections $\}=\{a, b, c\}$
$g=w=a b$ (Coxeter element)
$W_{w}=\langle a, b, c \mid a b=b c=c a\rangle \cong G_{W}$

(noncrossing partition lattice)

Example: the dual classifying space K_{W} for $W=\mathfrak{S}_{3}$

The balanced lattice $[1, w]^{W}$

The interval complex K_{W}

Simplices of $K_{w}:[],[a],[b],[c],[w],[a \mid b],[b \mid c],[c \mid a]$.

The interval $[1, w]^{W}$ in affine Coxeter groups

Example (\tilde{A}_{2})
$w=a b c$ is a glide reflection w.r.t. the dashed line (axis)
A_{2} root system:

The minimal factorizations of w can use any reflection that fixes a point on the axis (vertical). Among the remaining reflections (horizontal), only the ones closest to the axis (b and b^{\prime}).

The interval $[1, w]^{W}$ in affine Coxeter groups

Example (\tilde{A}_{2})
$w=a b c$ is a glide reflection w.r.t. the dashed line (axis)
A_{2} root system:

The length 2 elements of $[1, w]$ are:

- Rotations around colored vertices, e.g. $b c_{0}=c_{0} a_{-1}=a_{-1} b$;
- The two translations $a_{1} a_{-1}$ and $c_{2} c_{0}$.

The interval $[1, w]^{W}$ in affine Coxeter groups

Theorem (P.-Salvetti 2021)
Any element $u \in[1, w]^{W}$ is a Coxeter element of the Coxeter subgroup generated by the elements $\leq u$.

Failure of the lattice property

Theorem (McCammond 2015)
Let W be an irreducible affine Coxeter group. The interval $[1, w]^{W}$ is a lattice if and only if the horizontal root system is irreducible.

Type	Horizontal root system
\tilde{A}_{n}	$\Phi_{A_{p-1}} \sqcup \Phi_{A_{q-1}}$
\tilde{C}_{n}	$\Phi_{A_{n-1}}$
\tilde{B}_{n}	$\Phi_{A_{1}} \sqcup \Phi_{A_{n-2}}$
\tilde{D}_{n}	$\Phi_{A_{1}} \sqcup \Phi_{A_{1}} \sqcup \Phi_{A_{n-3}}$
\tilde{C}_{2}	$\Phi_{A_{1}}$
\tilde{F}_{4}	$\Phi_{A_{1}} \sqcup \Phi_{A_{2}}$
\tilde{E}_{6}	$\Phi_{A_{1}} \sqcup \Phi_{A_{2}} \sqcup \Phi_{A_{2}}$
\tilde{E}_{7}	$\Phi_{A_{1}} \sqcup \Phi_{A_{2}} \sqcup \Phi_{A_{3}}$
\tilde{E}_{8}	$\Phi_{A_{1}} \sqcup \Phi_{A_{2}} \sqcup \Phi_{A_{4}}$

A new hope

Theorem (McCammond-Sulway 2017)
Let W be an irreducible affine Coxeter group.

- Any dual Artin group W_{w} is isomorphic to the Artin group G_{W}.
- W_{w} can be embedded into a Garside group C_{w}.

Idea: extend W to C by adding suitable translations so that $[1, w]^{C}$ is a lattice.

Proof of the $K(\pi, 1)$ conjecture for affine Artin groups

1. The complex K_{W} is a classifying space, even when $[1, w]^{W}$ is not a lattice.

Proof of the $K(\pi, 1)$ conjecture for affine Artin groups

1. The complex K_{W} is a classifying space, even when $[1, w]^{W}$ is not a lattice.
2. We construct a "dual" model $X_{W}^{\prime} \subseteq K_{W}$ for the configuration space Y_{W} :

$$
X_{W}^{\prime}:=\bigcup_{W_{T} \subseteq W \text { finite }} K_{W_{T}} \simeq Y_{W} .
$$

(done for an arbitrary Coxeter group W)

Proof of the $K(\pi, 1)$ conjecture for affine Artin groups

1. The complex K_{W} is a classifying space, even when $[1, w]^{W}$ is not a lattice.
2. We construct a "dual" model $X_{W}^{\prime} \subseteq K_{W}$ for the configuration space Y_{W} :

$$
X_{W}^{\prime}:=\bigcup_{W_{T} \subseteq W \text { finite }} K_{W_{T}} \simeq Y_{W} .
$$

(done for an arbitrary Coxeter group W)
3. We construct a deformation retraction $K_{W} \searrow X_{w}^{\prime}$, using discrete Morse theory.

- The set of reflections R_{0} can be totally ordered to make $[1, w]^{W}$ EL-shellable.

Proof of the $K(\pi, 1)$ conjecture for affine Artin groups

1. The complex K_{W} is a classifying space, even when $[1, w]^{W}$ is not a lattice.
2. We construct a "dual" model $X_{W}^{\prime} \subseteq K_{W}$ for the configuration space Y_{W} :

$$
X_{W}^{\prime}:=\bigcup_{W_{T} \subseteq W \text { finite }} K_{W_{T}} \simeq Y_{W} .
$$

(done for an arbitrary Coxeter group W)
3. We construct a deformation retraction $K_{W} \searrow X_{W}^{\prime}$, using discrete Morse theory.

- The set of reflections R_{0} can be totally ordered to make $[1, w]^{W}$ EL-shellable.

Theorem (P.-Salvetti 2021)
Let W be an affine Coxeter group.

- The configuration space Y_{W} is a classifying space for G_{W}.
- Any dual Artin group W_{w} is isomorphic to the Artin group G_{W}.

The dual approach to the $K(\pi, 1)$ conjecture

Let W be a Coxeter group with a fixed Coxeter element w. Can we prove the following?

- K_{W} is a classifying space
- Optionally because $[1, w]^{W}$ is a lattice (when?)
- K_{W} deformation retracts onto X_{W}^{\prime}
- Optionally using an EL-labeling of $[1, w]^{W}$ (always?)

These imply the $K(\pi, 1)$ conjecture for G_{W} and the natural isomorphism $W_{w} \cong G_{W}$.

Next directions

Theorem (Delucchi-P.-Salvetti 2021+)
Let W be a Coxeter group of rank 3 .

- $[1, w]$ is an EL-shellable lattice.
- Y_{W} is $K(\pi, 1)$.
- $W_{w} \cong G_{W}$.
- The word problem for G_{W} is solvable.

Step 1: New groups (McCammond-Sulway 2017)

- $R_{\text {hor }}=\{$ horizontal reflections $\}$
- $R_{\text {ver }}=\{$ vertical reflections $\}$
- $T_{F}=\{$ factored translations $\}$

Step 1: Looking for classifying spaces

We introduce the interval complex K_{G} for $G=H, D, F, W, C$ (even though only F_{w} and C_{w} are Garside groups).

Step 1: Looking for classifying spaces

We introduce the interval complex K_{C} for $G=H, D, F, W, C$ (even though only F_{w} and C_{w} are Garside groups).

if three are classifying spaces, then the fourth also is
(Mayer-Vietoris exact sequence)

Step 1: Looking for classifying spaces

We introduce the interval complex K_{G} for $G=H, D, F, W, C$ (even though only F_{w} and C_{w} are Carside groups).

if three are classifying spaces, then the fourth also is
(Mayer-Vietoris exact sequence)

Step 1: Looking for classifying spaces

We introduce the interval complex K_{G} for $G=H, D, F, W, C$ (even though only F_{w} and C_{w} are Garside groups).

$K_{H}=K_{m_{1}} \times \cdots \times K_{m_{k}}$,
where $\Phi=\Phi_{A_{m_{1}}} \sqcup \cdots \sqcup \Phi_{A_{m_{k}}}$
if three are classifying spaces, then the fourth also is
(Mayer-Vietoris exact sequence)

Example: \tilde{D}_{4}

$$
\begin{aligned}
& a=\text { reflection w.r.t. }\left\{x_{1}+x_{2}+x_{3}+x_{4}=1\right\} \\
& b=\text { reflection w.r.t. }\left\{x_{1}=0\right\} \\
& c=\text { reflection w.r.t. }\left\{x_{2}=0\right\} \\
& d=\text { reflection w.r.t. }\left\{x_{3}=0\right\} \\
& e=\text { reflection w.r.t. }\left\{x_{4}=0\right\}
\end{aligned}
$$

Coxeter element: $w=$ abcde with axis $\langle 1,1,1,1\rangle$.
Jon says that the horizontal root system is $\Phi=\Phi_{A_{1}} \sqcup \Phi_{A_{1}} \sqcup \Phi_{A_{1}}$.

$$
\begin{aligned}
w & =a b c d e=b c \cdot a^{b c} \cdot d e=d e \cdot a^{d e} \cdot a b \\
a^{b c} & =\text { reflection w.r.t. }\left\{x_{1}+x_{2}-x_{3}-x_{4}=-1\right\}=: r \\
a^{d e} & =\text { reflection w.r.t. }\left\{x_{1}+x_{2}-x_{3}-x_{4}=1\right\}=: r^{\prime}
\end{aligned}
$$

The horizontal directions are: $\langle 1,1,-1,-1\rangle,\langle 1,-1,1,-1\rangle,\langle 1,-1,-1,1\rangle$.

Example: \tilde{D}_{4}

We have $[1, w]^{\mathrm{W}} \cap\left\langle r, r^{\prime}\right\rangle=\left\{1, r, r^{\prime}\right\}$, so K_{H} is the product of three copies of $S^{1} \vee S^{1}$:

The 6 horizontal reflections enclose a prism $\square \times \mathbb{R}$.
The Coxeter element w acts on this prism by central symmetry on the cube and translation along the \mathbb{R} direction.
Therefore $K_{D}=K_{H} \times[0,1] / \sim$, where \sim identifies $K_{H} \times\{0\}$ and $K_{H} \times\{1\}$ by swapping the two S^{1} 's in each of the three components.

Step 1: Looking for classifying spaces

Each K_{m} is (a variation of) the "dual" model $X_{\tilde{A}_{m}}^{\prime}$!
So the $K(\pi, 1)$ conjecture for the case \tilde{A}_{m} implies that K_{H} is a classifying space, so K_{D} and K_{W} also are classifying spaces.

Step 1: Looking for classifying spaces

Without using the $K(\pi, 1)$ conjecture for \tilde{A}_{m} :

- If $k=1$, then $[1, w]^{W}$ is a lattice. Therefore K_{W}, K_{D}, and $K_{H}=K_{m_{1}}$ are classifying spaces.
- For every $m \geq 1$, the complex K_{m} only depends on m and can appear alone (e.g. if W is of type \tilde{C}_{m+1}).
- Therefore, for any irreducible affine Coxeter group W, $K_{H}=K_{m_{1}} \times \cdots \times K_{m_{k}}$ is a classifying space, so K_{D} is, and K_{W} also is.

Step 2: A "dual" model for the configuration space Y_{W}

The Salvetti complex X_{W} has cells indexed by

$$
\Delta_{W}=\left\{T \subseteq S \mid \text { the standard parabolic subgroup } W_{T} \text { is finite }\right\} .
$$

It is natural: $X_{W}=\bigcup_{T \in \Delta_{W}} X_{W_{T}}$.
Both $X_{W_{T}}$ and $K_{W_{T}}$ are classifying spaces for the Artin group $G_{W_{T}}$, so $X_{W_{T}} \simeq K_{W_{T}}$.

The Salvetti complex X_{W}

$$
\text { for } W=\mathfrak{S}_{3}
$$

Step 2: A "dual" model for the configuration space Y_{W}

The Salvetti complex X_{W} has cells indexed by

$$
\Delta_{W}=\left\{T \subseteq S \mid \text { the standard parabolic subgroup } W_{T} \text { is finite }\right\} .
$$

It is natural: $X_{W}=\bigcup_{T \in \Delta_{W}} X_{W_{T}}$.
Both $X_{W_{T}}$ and $K_{W_{T}}$ are classifying spaces for the Artin group $G_{W_{T}}$, so $X_{W_{T}} \simeq K_{W_{T}}$.

Definition (dual model)

$X_{W}^{\prime}=\bigcup_{T \in \Delta_{W}} K_{W_{T}}$.
Theorem
$X_{W}^{\prime} \simeq X_{W} \simeq Y_{W}$.

The Salvetti complex X_{W} for $W=\mathfrak{S}_{3}$

Example: \tilde{A}_{2}

X_{W}^{\prime} is the union of three different copies of $K_{A_{2}}$ sitting inside K_{W} :

- [], $\left[a_{1}\right],[b],\left[c_{2}\right],\left[a_{1} b\right],\left[a_{1} \mid b\right],\left[b \mid c_{2}\right],\left[c_{2} \mid a_{1}\right]$
- [], [a $],\left[c_{0}\right],\left[b^{\prime}\right],\left[a_{1} c_{0}\right],\left[a_{1} \mid c_{0}\right],\left[c_{0} \mid b^{\prime}\right],\left[b^{\prime} \mid a_{1}\right]$
- [], $[b],\left[c_{0}\right],\left[a_{-1}\right],\left[b c_{0}\right],\left[b \mid c_{0}\right],\left[c_{0} \mid a_{-1}\right],\left[a_{-1} \mid b\right]$

Step 3: Deformation retraction $K_{W} \searrow X_{W}^{\prime}$

$$
\left[b^{\prime}\left|a_{1}\right| a_{-1}\right] \quad\left[a_{1}\left|a_{-1}\right| b\right]
$$

Step 3: Deformation retraction $K_{W} \searrow X_{W}^{\prime}$

We order the set of reflections R_{0} so that:

1. each element $u \in[1, w]$ has a unique minimal factorization $u=r_{1} r_{2} \cdots r_{k}$ with $r_{1} \prec r_{2} \prec \cdots \prec r_{k}$;
2. the increasing factorization is the lexicographically smallest and co-lexicographically largest.
(this makes $[1, w]^{W}$ EL-shellable)

Why? (How do we use this ordering?)
The remaining cells are collapsed following increasing factorizations greedily:

- $[w] \rightarrow\left[a_{1} \mid b c_{0}\right]$ because $a_{1} \prec b \prec c_{0}$;
- $\left[a_{1} b \mid c_{0}\right] \rightarrow\left[a_{1}|b| c_{0}\right]$ because $a_{1} \prec b$;

Step 3: Axial ordering of R_{0}

We order R_{0} following the axis of w :

$$
a_{1} \prec c_{2} \prec a_{3} \prec \cdots \prec b \prec b^{\prime} \prec \cdots \prec c_{-2} \prec a_{-1} \prec c_{0} .
$$

Thanks!

paolini@caltech.edu

