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Artin groups and generalized configuration spaces
Let W be a Coxeter group and GW the associated Artin group:

GW = 〈 S | sts · · ·︸ ︷︷ ︸
ms,t factors

= tst · · ·︸ ︷︷ ︸
ms,t factors

∀ s 6= t 〉.

GW is the fundamental group of a (generalized) configuration space YW .
If W is finite or affine, YW is given by:

YW =

Cn \
⋃

H∈AW

HC

 /W.



Example: the braid group on 3 strands

Let W be the symmetric groupS3 = 〈a, b | a2 = b2 = 1, aba = bab〉.

Its configuration space is YW = {(x1, x2, x3) ∈ C3 | xi 6= xj}/S3.

x1 = x3

x2 = x3x1 = x2

The (real) arrangement

C

C

t = 0

t = 1

Loops in YW are “braids”



The Salvetti complex
The configuration space YW has the homotopy type of a CW complex XW
with cells indexed by the standard parabolic subgroups of W.

a

ba

b

a b

The Salvetti complex for W = S3

The Artin group presentation can be read off the 2-skeleton of the
Salvetti complex:

GW = 〈a, b | aba = bab〉.



K(π, 1) conjecture (Brieskorn, Arnol’d, Pham, Thom ’60s)
The configuration space YW is a classifying space for GW :
π1(YW) = GW and the higher homotopy groups are trivial (equivalently, the universal
cover of YW is contractible).

Until recently, this conjecture was proved in the following cases:
I Spherical Artin groups (Brieskorn 1971, Deligne 1972)
I The affine Artin groups of type Ãn, C̃n (Okonek 1979), and B̃n

(Callegaro-Moroni-Salvetti 2010)
I Large-type Artin groups (Hendriks 1985)
I Artin groups of FC type (Charney-Davis 1995)
I 2-dimensional Artin groups (Charney-Davis 1995)

(includes the affine Artin group G̃2)
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Theorem (P.-Salvetti 2021)
The K(π, 1) conjecture holds for all affine Artin groups.



Interval groups and Garside groups
G group, R generating set with R = R−1, g ∈ G.
Let [1, g]G be the interval between 1 and g in the (right) Cayley graph of G
(it is a poset, whose cover relations are labeled by some subset R0 ⊆ R).

Definition
The interval group Gg is the group generated by R0, with the relations
visible in [1, g]G. If [1, g]G is a balanced lattice, then Gg is a Garside group.

Example
If G = W (a finite Coxeter group), R = S, and g = δ (the longest
element), then Gg is the spherical Artin group GW .
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W = 〈a, b | a2 = b2 = 1, aba = bab〉
δ = aba = bab

Wδ = 〈a, b | aba = bab〉
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Classifying space of Garside groups

Theorem (Brady-Watt 2002, Charney-Meier-Whittlesey 2004)
If Gg is a Garside group, then the complex KG = ∆([1, g]G)/labeling is a
classifying space for Gg.

We call KG the interval complex associated with [1, g]G.
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The balanced lattice [1, δ]W
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The interval complex KW



Spherical Artin groups as Garside groups

Our favorite example: W = S3 = 〈a, b | a2 = b2 = 1, aba = bab〉.

Standard Garside structure
(Garside, Brieskorn-Saito, ...)

R = S = {a, b} (simple system)
g = δ = aba (longest element)
Wδ = 〈a, b | aba = bab〉 = GW

ba
δ

ab

a

1
b

ba

b a

ba

(weak Bruhat order)

Dual Garside structure
(Birman-Ko-Lee, Bessis, ...)

R = {all reflections} = {a, b, c}
g = w = ab (Coxeter element)
Ww = 〈a, b, c | ab = bc = ca〉 ∼= GW

1

a b c

w

a b c

b c a

(noncrossing partition lattice)



Example: the dual classifying space KW for W = S3

1

a b c

w

a b c

b c a

The balanced lattice [1,w]W

b

w

a c

a

b

c

The interval complex KW

Simplices of KW : [ ], [a], [b], [c], [w], [a|b], [b|c], [c|a].



The interval [1,w]W in affine Coxeter groups

Example (Ã2)
w = abc is a glide
reflection w.r.t. the
dashed line (axis)

A2 root system: a

c

a1

c0

a3

c2

a5

c4

a−1

c−2
a−3

b

b′

The minimal factorizations of w can use any reflection that fixes a point
on the axis (vertical). Among the remaining reflections (horizontal), only
the ones closest to the axis (b and b′).



The interval [1,w]W in affine Coxeter groups

Example (Ã2)
w = abc is a glide
reflection w.r.t. the
dashed line (axis)

A2 root system:

a

c

a1

c0

a3

c2

a5

c4

a−1

c−2
a−3

b

b′

The length 2 elements of [1,w] are:
I Rotations around colored vertices, e.g. bc0 = c0a−1 = a−1b;
I The two translations a1a−1 and c2c0.



The interval [1,w]W in affine Coxeter groups

Theorem (P.-Salvetti 2021)
Any element u ∈ [1,w]W is a Coxeter element of the Coxeter subgroup
generated by the elements≤ u.



Failure of the lattice property

Theorem (McCammond 2015)
Let W be an irreducible affine Coxeter group. The interval [1,w]W is a
lattice if and only if the horizontal root system is irreducible.

Type Horizontal root system
Ãn ΦAp−1 t ΦAq−1

C̃n ΦAn−1

B̃n ΦA1 t ΦAn−2

D̃n ΦA1 t ΦA1 t ΦAn−3

G̃2 ΦA1

F̃4 ΦA1 t ΦA2

Ẽ6 ΦA1 t ΦA2 t ΦA2

Ẽ7 ΦA1 t ΦA2 t ΦA3

Ẽ8 ΦA1 t ΦA2 t ΦA4



A new hope

Theorem (McCammond-Sulway 2017)
Let W be an irreducible affine Coxeter group.
I Any dual Artin group Ww is isomorphic to the Artin group GW .
I Ww can be embedded into a Garside group Cw.

Idea: extend W to C by adding suitable translations so that [1,w]C is
a lattice.



Proof of the K(π, 1) conjecture for affine Artin groups
1. The complex KW is a classifying space, even when [1,w]W is not a

lattice.

2. We construct a “dual” model X′W ⊆ KW for the configuration space YW :

X′W :=
⋃

WT⊆W finite

KWT ' YW.

(done for an arbitrary Coxeter group W)
3. We construct a deformation retraction KW ↘ X′

W , using discrete Morse
theory.
I The set of reflections R0 can be totally ordered to make [1,w]W

EL-shellable.
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I The configuration space YW is a classifying space for GW .
I Any dual Artin group Ww is isomorphic to the Artin group GW .
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The dual approach to the K(π, 1) conjecture

Let W be a Coxeter group with a fixed Coxeter element w. Can we prove
the following?
I KW is a classifying space

I Optionally because [1,w]W is a lattice (when?)
I KW deformation retracts onto X′W

I Optionally using an EL-labeling of [1,w]W (always?)

These imply the K(π, 1) conjecture for GW and the natural isomorphism
Ww ∼= GW .



Next directions

Theorem (Delucchi-P.-Salvetti 2021+)
Let W be a Coxeter group of rank 3.
I [1,w] is an EL-shellable lattice.
I YW is K(π, 1).
I Ww ∼= GW .
I The word problem for GW is solvable.



Step 1: New groups (McCammond-Sulway 2017)

I Rhor = {horizontal reflections}
I Rver = {vertical reflections}
I TF = {factored translations}

Dw Fw

Ww ∼= GW Cw

Horizontal group
H = 〈Rhor〉

Diagonal group
D = 〈Rhor,w〉

Factorable group
F = 〈Rhor, TF ,w〉

Coxeter group
W = 〈Rhor, Rver〉

Crystallographic group
C = 〈Rhor, Rver, TF〉



Step 1: Looking for classifying spaces

We introduce the interval complex KG for G = H,D, F,W, C (even
though only Fw and Cw are Garside groups).

KH KD KF

KW KC
X

X

if three are classifying spaces,
then the fourth also is
(Mayer-Vietoris exact sequence)

KH × R
covering map

'

KH = Km1 × · · · × Kmk ,
where Φ = ΦAm1

t · · · t ΦAmk
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Example: D̃4

a

b

cd

e
a = reflection w.r.t. {x1 + x2 + x3 + x4 = 1}
b = reflection w.r.t. {x1 = 0}
c = reflection w.r.t. {x2 = 0}
d = reflection w.r.t. {x3 = 0}
e = reflection w.r.t. {x4 = 0}

Coxeter element: w = abcde with axis 〈1, 1, 1, 1〉.

Jon says that the horizontal root system is Φ = ΦA1 t ΦA1 t ΦA1 .

w = abcde = bc · abc · de = de · ade · ab
abc = reflection w.r.t. {x1 + x2 − x3 − x4 = −1} =: r
ade = reflection w.r.t. {x1 + x2 − x3 − x4 = 1} =: r′

The horizontal directions are: 〈1, 1,−1,−1〉, 〈1,−1, 1,−1〉, 〈1,−1,−1, 1〉.



Example: D̃4

We have [1,w]W ∩ 〈r, r′〉 = {1, r, r′}, so KH is the product of three copies
of S1 ∨ S1:

KH =

[r′]

[r]

× ×

The 6 horizontal reflections enclose a prism × R.

The Coxeter element w acts on this prism by central symmetry on the
cube and translation along theR direction.
Therefore KD = KH × [0, 1]/∼, where∼ identifies KH × {0} and
KH × {1} by swapping the two S1’s in each of the three components.



Step 1: Looking for classifying spaces

KH KD KF

KW KC
X

X

if three are classifying spaces,
then the fourth also is
(Mayer-Vietoris exact sequence)

KH × R
covering map

'

KH = Km1 × · · · × Kmk ,
where Φ = ΦAm1

t · · · t ΦAmk

Each Km is (a variation of) the “dual” model X′Ãm
!

So the K(π, 1) conjecture for the case Ãm implies that KH is a classifying
space, so KD and KW also are classifying spaces.



Step 1: Looking for classifying spaces

KH KD KF

KW KC
X

X

if three are classifying spaces,
then the fourth also is
(Mayer-Vietoris exact sequence)

KH × R
covering map

'

KH = Km1 × · · · × Kmk ,
where Φ = ΦAm1

t · · · t ΦAmk

Without using the K(π, 1) conjecture for Ãm:
I If k = 1, then [1,w]W is a lattice. Therefore KW , KD, and KH = Km1 are

classifying spaces.
I For every m ≥ 1, the complex Km only depends on m and can appear

alone (e.g. if W is of type C̃m+1).
I Therefore, for any irreducible affine Coxeter group W,

KH = Km1 × · · · × Kmk is a classifying space, so KD is, and KW also is.



Step 2: A “dual” model for the configuration space YW

The Salvetti complex XW has cells indexed by

∆W = {T ⊆ S | the standard parabolic subgroup WT is finite}.

It is natural: XW =
⋃

T∈∆W

XWT .

Both XWT and KWT are classifying spaces
for the Artin group GWT , so XWT ' KWT .

Definition (dual model)
X′W =

⋃
T∈∆W

KWT .

Theorem
X′W ' XW ' YW .
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The Salvetti complex XW
for W = S3
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Example: Ã2

a1

c0

c2

a−1

b

b′

X′W is the union of three different copies of KA2 sitting inside KW :
I [ ], [a1], [b], [c2], [a1b], [a1|b], [b|c2], [c2|a1]

I [ ], [a1], [c0], [b′], [a1c0], [a1|c0], [c0|b′], [b′|a1]

I [ ], [b], [c0], [a−1], [bc0], [b|c0], [c0|a−1], [a−1|b]



Step 3: Deformation retraction KW ↘ X′W
[w]

[ ]

[c2c0|b′]

[b′]

[b′|a1a−1]

[a1a−1]

[a1a−1|b]

[c2c0]

[b|c2c0]

[b]

[a1|bc0]

[bc0][a1]

[a1b|c0]

[c0][a1b]

[a1c0|a−1]

[a−1][a1c0]

[c2|a1c0]

[c2]

[a1|b|c0]

[b|c0][a1|b]

[a1|c0|a−1]

[c0|a−1][a1|c0]

[c2|a1|c0]

[c2|a1]

[c2|c0|b′]

[c0|b′][c2|c0]

[b|c2|c0]

[b|c2]

[a1|a−1|b]

[a−1|b][a1|a−1]

[b′|a1|a−1]

[b′|a1]



Step 3: Deformation retraction KW ↘ X′W

We order the set of reflections R0 so that:
1. each element u ∈ [1,w] has a unique minimal factorization

u = r1r2 · · · rk with r1 ≺ r2 ≺ · · · ≺ rk;
2. the increasing factorization is the lexicographically smallest and

co-lexicographically largest.
(this makes [1,w]W EL-shellable)

Why? (How do we use this ordering?)
The remaining cells are collapsed following increasing factorizations
greedily:
I [w]→ [a1|bc0] because a1 ≺ b ≺ c0;
I [a1b|c0]→ [a1|b|c0] because a1 ≺ b;
I . . .



Step 3: Axial ordering of R0
We order R0 following the axis of w:

a1 ≺ c2 ≺ a3 ≺ · · · ≺ b ≺ b′ ≺ · · · ≺ c−2 ≺ a−1 ≺ c0.

a1

c0

a3

c2

a5

c4

a−1

c−2
a−3

b

b′



Thanks!

paolini@caltech.edu


