# The dual approach to the $K(\pi, 1)$ conjecture

Giovanni Paolini (Caltech)

> Berlin August 31, 2021

### Artin groups and generalized configuration spaces

Let W be a Coxeter group and  $G_W$  the associated Artin group:

$$G_W = \langle S \mid \underbrace{sts\cdots}_{m_{s,t} \text{ factors}} = \underbrace{tst\cdots}_{m_{s,t} \text{ factors}} \forall s \neq t \rangle.$$

 $G_W$  is the fundamental group of a (generalized) configuration space  $Y_W$ . If W is finite or affine,  $Y_W$  is given by:

$$Y_W = \left( \mathbb{C}^n \setminus \bigcup_{H \in \mathcal{A}_W} H_\mathbb{C} \right) / W.$$



### Example: the braid group on 3 strands

Let W be the symmetric group  $\mathfrak{S}_3 = \langle a, b \mid a^2 = b^2 = 1, aba = bab \rangle$ . Its configuration space is  $Y_W = \{(x_1, x_2, x_3) \in \mathbb{C}^3 \mid x_i \neq x_j\}/\mathfrak{S}_3$ .



The (real) arrangement



Loops in Y<sub>W</sub> are "braids"

### The Salvetti complex

The configuration space  $Y_W$  has the homotopy type of a CW complex  $X_W$  with cells indexed by the standard parabolic subgroups of W.



The Salvetti complex for  $W = \mathfrak{S}_3$ 

The Artin group presentation can be read off the 2-skeleton of the Salvetti complex:

$$G_W = \langle a, b \mid aba = bab \rangle.$$

## $K(\pi, 1)$ conjecture (Brieskorn, Arnol'd, Pham, Thom '60s)

The configuration space  $Y_W$  is a classifying space for  $G_W$ :

 $\pi_1(Y_W) = G_W$  and the higher homotopy groups are trivial (equivalently, the universal cover of  $Y_W$  is contractible).

 $K(\pi, 1)$  conjecture (Brieskorn, Arnol'd, Pham, Thom '60s) The configuration space  $Y_W$  is a classifying space for  $G_W$ :  $\pi_1(Y_W) = G_W$  and the higher homotopy groups are trivial (equivalently, the universal cover of  $Y_W$  is contractible).

Until recently, this conjecture was proved in the following cases:

- Spherical Artin groups (Brieskorn 1971, Deligne 1972)
- The affine Artin groups of type  $\tilde{A}_n$ ,  $\tilde{C}_n$  (Okonek 1979), and  $\tilde{B}_n$  (Callegaro-Moroni-Salvetti 2010)
- Large-type Artin groups (Hendriks 1985)
- Artin groups of FC type (Charney-Davis 1995)
- 2-dimensional Artin groups (Charney-Davis 1995) (includes the affine Artin group G
  <sub>2</sub>)

#### Theorem (P.-Salvetti 2021)

The  $K(\pi, 1)$  conjecture holds for all affine Artin groups.

### Interval groups and Garside groups

G group, R generating set with  $R = R^{-1}$ ,  $g \in G$ .

Let  $[1,g]^G$  be the interval between 1 and g in the (right) Cayley graph of G (it is a poset, whose cover relations are labeled by some subset  $R_0 \subseteq R$ ).

### Definition

The *interval group*  $G_g$  is the group generated by  $R_0$ , with the relations visible in  $[1, g]^G$ . If  $[1, g]^G$  is a balanced lattice, then  $G_g$  is a *Garside group*.

#### Example

If G = W (a finite Coxeter group), R = S, and  $g = \delta$  (the longest element), then  $G_g$  is the spherical Artin group  $G_W$ .



### Interval groups and Garside groups

G group, R generating set with  $R = R^{-1}$ ,  $g \in G$ .

Let  $[1,g]^G$  be the interval between 1 and g in the (right) Cayley graph of G (it is a poset, whose cover relations are labeled by some subset  $R_0 \subseteq R$ ).

#### Definition

The *interval group*  $G_g$  is the group generated by  $R_0$ , with the relations visible in  $[1, g]^G$ . If  $[1, g]^G$  is a balanced lattice, then  $G_g$  is a *Garside group*.

#### Example

If G = W (a finite Coxeter group), R = S, and  $g = \delta$  (the longest element), then  $G_g$  is the spherical Artin group  $G_W$ .



## Classifying space of Garside groups

Theorem (Brady-Watt 2002, Charney-Meier-Whittlesey 2004) If  $G_g$  is a Garside group, then the complex  $K_G = \Delta([1,g]^G)/\text{labeling}$  is a classifying space for  $G_g$ .

We call  $K_G$  the interval complex associated with  $[1,g]^G$ .



The balanced lattice  $[1, \delta]^W$ 



The interval complex K<sub>W</sub>

### Spherical Artin groups as Garside groups

Our favorite example:  $W = \mathfrak{S}_3 = \langle a, b \mid a^2 = b^2 = 1, aba = bab \rangle$ .

Standard Garside structure (Garside, Brieskorn-Saito, ...)

 $R = S = \{a, b\} \text{ (simple system)}$   $g = \delta = aba \text{ (longest element)}$  $W_{\delta} = \langle a, b \mid aba = bab \rangle = G_{W}$ 



(weak Bruhat order)

Dual Garside structure (Birman-Ko-Lee, Bessis, ...)

 $R = \{all reflections\} = \{a, b, c\}$  g = w = ab (Coxeter element) $W_w = \langle a, b, c \mid ab = bc = ca \rangle \cong G_W$ 



(noncrossing partition lattice)

Example: the dual classifying space  $K_W$  for  $W = \mathfrak{S}_3$ 





The balanced lattice  $[1, w]^W$ 

The interval complex K<sub>W</sub>

Simplices of  $K_W$ : [], [a], [b], [c], [w], [a|b], [b|c], [c|a].

## The interval $[1, w]^W$ in affine Coxeter groups

Example ( $\tilde{A}_2$ ) w = abc is a glide reflection w.rt. the dashed line (axis)

A<sub>2</sub> root system:





The minimal factorizations of w can use any reflection that fixes a point on the axis (vertical). Among the remaining reflections (horizontal), only the ones closest to the axis (b and b').

## The interval $[1, w]^W$ in affine Coxeter groups

Example ( $\tilde{A}_2$ ) w = abc is a glide reflection w.rt. the dashed line (axis)

A<sub>2</sub> root system:





The length 2 elements of [1, w] are:

- Rotations around colored vertices, e.g.  $bc_0 = c_0a_{-1} = a_{-1}b$ ;
- The two translations  $a_1a_{-1}$  and  $c_2c_0$ .

## The interval $[1, w]^W$ in affine Coxeter groups

#### Theorem (P.-Salvetti 2021)

Any element  $u \in [1, w]^W$  is a Coxeter element of the Coxeter subgroup generated by the elements  $\leq u$ .

## Failure of the lattice property

#### Theorem (McCammond 2015)

Let W be an irreducible affine Coxeter group. The interval  $[1, w]^W$  is a lattice if and only if the horizontal root system is irreducible.

| Туре                  | Horizontal root system                             |
|-----------------------|----------------------------------------------------|
| Ãn                    | $\Phi_{A_{p-1}}\sqcup \Phi_{A_{q-1}}$              |
| <i>C</i> <sub>n</sub> | $\Phi_{A_{n-1}}$                                   |
| <i>B</i> <sub>n</sub> | $\Phi_{A_1}\sqcup \Phi_{A_{n-2}}$                  |
| <i>D</i> <sub>n</sub> | $\Phi_{A_1}\sqcup \Phi_{A_1}\sqcup \Phi_{A_{n-3}}$ |
| Ĝ2                    | $\Phi_{A_1}$                                       |
| $\widetilde{F}_4$     | $\Phi_{A_1}\sqcup \Phi_{A_2}$                      |
| ₽ <sub>6</sub>        | $\Phi_{A_1}\sqcup \Phi_{A_2}\sqcup \Phi_{A_2}$     |
| Ē <sub>7</sub>        | $\Phi_{A_1}\sqcup \Phi_{A_2}\sqcup \Phi_{A_3}$     |
| ₽<br><br><br><br><br> | $\Phi_{A_1} \sqcup \Phi_{A_2} \sqcup \Phi_{A_4}$   |

### A new hope

#### Theorem (McCammond-Sulway 2017)

Let W be an irreducible affine Coxeter group.

- Any dual Artin group  $W_w$  is isomorphic to the Artin group  $G_W$ .
- W<sub>w</sub> can be embedded into a Garside group C<sub>w</sub>.
   Idea: extend W to C by adding suitable translations so that [1, w]<sup>C</sup> is a lattice.

1. The complex  $K_W$  is a classifying space, even when  $[1, w]^W$  is not a lattice.

- 1. The complex  $K_W$  is a classifying space, even when  $[1, w]^W$  is not a lattice.
- 2. We construct a "dual" model  $X'_W \subseteq K_W$  for the configuration space  $Y_W$ :

$$X'_W := \bigcup_{W_T \subseteq W \text{ finite}} K_{W_T} \simeq Y_W.$$

(done for an arbitrary Coxeter group W)

- 1. The complex  $K_W$  is a classifying space, even when  $[1, w]^W$  is not a lattice.
- 2. We construct a "dual" model  $X'_W \subseteq K_W$  for the configuration space  $Y_W$ :

$$X'_W := \bigcup_{W_T \subseteq W \text{ finite}} K_{W_T} \simeq Y_W.$$

(done for an arbitrary Coxeter group W)

- 3. We construct a deformation retraction  $K_W \searrow X'_W$ , using discrete Morse theory.
  - The set of reflections R<sub>0</sub> can be totally ordered to make [1, w]<sup>W</sup> EL-shellable.

- 1. The complex  $K_W$  is a classifying space, even when  $[1, w]^W$  is not a lattice.
- 2. We construct a "dual" model  $X'_W \subseteq K_W$  for the configuration space  $Y_W$ :

$$X'_W := \bigcup_{W_T \subseteq W \text{ finite}} K_{W_T} \simeq Y_W.$$

(done for an arbitrary Coxeter group W)

- 3. We construct a deformation retraction  $K_W \searrow X'_W$ , using discrete Morse theory.
  - The set of reflections R<sub>0</sub> can be totally ordered to make [1, w]<sup>W</sup> EL-shellable.

#### Theorem (P.-Salvetti 2021)

Let W be an affine Coxeter group.

- The configuration space  $Y_W$  is a classifying space for  $G_W$ .
- Any dual Artin group  $W_w$  is isomorphic to the Artin group  $G_W$ .

## The dual approach to the $K(\pi, 1)$ conjecture

Let *W* be a Coxeter group with a fixed Coxeter element *w*. Can we prove the following?

- K<sub>W</sub> is a classifying space
  - ▶ Optionally because [1, w]<sup>W</sup> is a lattice (when?)
- $K_W$  deformation retracts onto  $X'_W$ 
  - ▶ Optionally using an EL-labeling of [1, w]<sup>W</sup> (always?)

These imply the  $K(\pi, 1)$  conjecture for  $G_W$  and the natural isomorphism  $W_w \cong G_W$ .

### Next directions

### Theorem (Delucchi-P.-Salvetti 2021+)

Let W be a Coxeter group of rank 3.

- ▶ [1, w] is an EL-shellable lattice.
- $Y_W$  is  $K(\pi, 1)$ .
- $\blacktriangleright W_w \cong G_W.$
- ► The word problem for *G*<sub>W</sub> is solvable.



### Step 1: New groups (McCammond-Sulway 2017)

- *R*<sub>hor</sub> = {horizontal reflections}
- $\triangleright R_{ver} = \{vertical reflections\}$
- $\blacktriangleright T_F = \{ \text{factored translations} \}$



We introduce the interval complex  $K_G$  for G = H, D, F, W, C (even though only  $F_w$  and  $C_w$  are Garside groups).



We introduce the interval complex  $K_G$  for G = H, D, F, W, C (even though only  $F_w$  and  $C_w$  are Garside groups).



if three are classifying spaces, then the fourth also is (Mayer-Vietoris exact sequence)

We introduce the interval complex  $K_G$  for G = H, D, F, W, C (even though only  $F_w$  and  $C_w$  are Garside groups).



if three are classifying spaces, then the fourth also is (Mayer-Vietoris exact sequence)

We introduce the interval complex  $K_G$  for G = H, D, F, W, C (even though only  $F_w$  and  $C_w$  are Garside groups).



$$K_H = K_{m_1} imes \cdots imes K_{m_k}$$
,  
where  $\Phi = \Phi_{A_{m_1}} \sqcup \cdots \sqcup \Phi_{A_m}$ 

if three are classifying spaces, then the fourth also is (Mayer-Vietoris exact sequence)

## Example: $\tilde{D}_4$



$$a = \text{reflection w.r.t. } \{x_1 + x_2 + x_3 + x_4 = 1\}$$
  

$$b = \text{reflection w.r.t. } \{x_1 = 0\}$$
  

$$c = \text{reflection w.r.t. } \{x_2 = 0\}$$
  

$$d = \text{reflection w.r.t. } \{x_3 = 0\}$$
  

$$e = \text{reflection w.r.t. } \{x_4 = 0\}$$

Coxeter element: w = abcde with axis (1, 1, 1, 1).

Jon says that the horizontal root system is  $\Phi = \Phi_{A_1} \sqcup \Phi_{A_1} \sqcup \Phi_{A_1}$ .

$$w = abcde = bc \cdot a^{bc} \cdot de = de \cdot a^{de} \cdot ab$$
  

$$a^{bc} = \text{reflection w.r.t.} \{x_1 + x_2 - x_3 - x_4 = -1\} =: r$$
  

$$a^{de} = \text{reflection w.r.t.} \{x_1 + x_2 - x_3 - x_4 = 1\} =: r'$$

The horizontal directions are: (1, 1, -1, -1), (1, -1, 1, -1), (1, -1, -1, 1).

## Example: $\tilde{D}_4$

We have  $[1, w]^W \cap \langle r, r' \rangle = \{1, r, r'\}$ , so  $K_H$  is the product of three copies of  $S^1 \vee S^1$ :



The 6 horizontal reflections enclose a prism [

The Coxeter element w acts on this prism by central symmetry on the cube and translation along the  $\mathbb{R}$  direction.

 $\times \mathbb{R}.$ 

Therefore  $K_D = K_H \times [0, 1] / \sim$ , where  $\sim$  identifies  $K_H \times \{0\}$  and  $K_H \times \{1\}$  by swapping the two S<sup>1</sup>'s in each of the three components.



$$K_H = K_{m_1} \times \cdots \times K_{m_k},$$
  
where  $\Phi = \Phi_{A_{m_1}} \sqcup \cdots \sqcup \Phi_{A_n}$ 

if three are classifying spaces, then the fourth also is (Mayer-Vietoris exact sequence)

Each  $K_m$  is (a variation of) the "dual" model  $X'_{\tilde{A}_m}$ !

So the  $K(\pi, 1)$  conjecture for the case  $\tilde{A}_m$  implies that  $K_H$  is a classifying space, so  $K_D$  and  $K_W$  also are classifying spaces.



$$K_H = K_{m_1} \times \cdots \times K_{m_k},$$
  
where  $\Phi = \Phi_{A_{m_1}} \sqcup \cdots \sqcup \Phi_{A_n}$ 

if three are classifying spaces, then the fourth also is (Mayer-Vietoris exact sequence)

Without using the  $K(\pi, 1)$  conjecture for  $\tilde{A}_m$ :

- If k = 1, then [1, w]<sup>W</sup> is a lattice. Therefore K<sub>W</sub>, K<sub>D</sub>, and K<sub>H</sub> = K<sub>m₁</sub> are classifying spaces.
- For every  $m \ge 1$ , the complex  $K_m$  only depends on m and can appear alone (e.g. if W is of type  $\tilde{C}_{m+1}$ ).
- ► Therefore, for any irreducible affine Coxeter group W,  $K_H = K_{m_1} \times \cdots \times K_{m_k}$  is a classifying space, so  $K_D$  is, and  $K_W$  also is.

### Step 2: A "dual" model for the configuration space $Y_W$

The Salvetti complex X<sub>W</sub> has cells indexed by

 $\Delta_{W} = \{T \subseteq S \mid \text{the standard parabolic subgroup } W_{T} \text{ is finite} \}.$ 

It is natural: 
$$X_W = \bigcup_{T \in \Delta_W} X_{W_T}.$$

Both  $X_{W_T}$  and  $K_{W_T}$  are classifying spaces for the Artin group  $G_{W_T}$ , so  $X_{W_T} \simeq K_{W_T}$ .



The Salvetti complex  $X_W$ for  $W = \mathfrak{S}_3$ 

## Step 2: A "dual" model for the configuration space $Y_W$

The Salvetti complex X<sub>W</sub> has cells indexed by

 $\Delta_W = \{ T \subseteq S \mid \text{the standard parabolic subgroup } W_T \text{ is finite} \}.$ 

It is natural: 
$$X_W = \bigcup_{T \in \Delta_W} X_{W_T}$$
.

Both  $X_{W_T}$  and  $K_{W_T}$  are classifying spaces for the Artin group  $G_{W_T}$ , so  $X_{W_T} \simeq K_{W_T}$ .

#### Definition (dual model)

$$X'_W = \bigcup_{T \in \Delta_W} K_{W_T}.$$

Theorem  $X'_W \simeq X_W \simeq Y_W.$ 



The Salvetti complex  $X_W$ for  $W = \mathfrak{S}_3$ 





 $X'_W$  is the union of three different copies of  $K_{A_2}$  sitting inside  $K_W$ :

- $\blacktriangleright [], [a_1], [b], [c_2], [a_1b], [a_1|b], [b|c_2], [c_2|a_1]$
- $\blacktriangleright [], [a_1], [c_0], [b'], [a_1c_0], [a_1|c_0], [c_0|b'], [b'|a_1]$
- $\blacktriangleright [], [b], [c_0], [a_{-1}], [bc_0], [b|c_0], [c_0|a_{-1}], [a_{-1}|b]$

## Step 3: Deformation retraction $K_W \searrow X'_W$



## Step 3: Deformation retraction $K_W \searrow X'_W$

We order the set of reflections  $R_0$  so that:

- 1. each element  $u \in [1, w]$  has a unique minimal factorization  $u = r_1 r_2 \cdots r_k$  with  $r_1 \prec r_2 \prec \cdots \prec r_k$ ;
- 2. the increasing factorization is the lexicographically smallest and co-lexicographically largest.

(this makes  $[1, w]^W$  EL-shellable)

### Why? (How do we use this ordering?)

The remaining cells are collapsed following increasing factorizations greedily:

• 
$$[w] \rightarrow [a_1|bc_0]$$
 because  $a_1 \prec b \prec c_0$ ;

• 
$$[a_1b|c_0] \rightarrow [a_1|b|c_0]$$
 because  $a_1 \prec b$ ;

▶ ..

### Step 3: Axial ordering of $R_0$

We order  $R_0$  following the axis of w:

$$a_1 \prec c_2 \prec a_3 \prec \cdots \prec b \prec b' \prec \cdots \prec c_{-2} \prec a_{-1} \prec c_0.$$



## Thanks!

paolini@caltech.edu