Artin groups and associated spaces Part I

Luis Paris

Université de Bourgogne
Dijon, France
August 30th, 2021

Definition. Let S be a finite set. A Coxeter matrix over S is a square symmetric matrix $M=\left(m_{s, t}\right)_{s, t \in S}$ indexed by the elements of S with entries in $\mathbb{N} \cup\{\infty\}$ such that $m_{s, s}=1$ for all $s \in S$ and $m_{s, t}=m_{t, s} \geq 2$ for all $s, t \in S, s \neq t$. We represent M with a labeled graph Γ called Coxeter graph, defined as follows.

- The set of vertices of Γ is S.
- Two vertices $s, t \in S$ are connected by an edge if $m_{s, t} \geq 3$, and this edge is labeled with $m_{s, t}$ if $m_{s, t} \geq 4$.

Example. The following is a Coxeter matrix:

$$
M=\left(\begin{array}{lll}
1 & 4 & 2 \\
4 & 1 & 3 \\
2 & 3 & 1
\end{array}\right)
$$

Its Coxeter graph is:

Definition. Let Γ be a Coxeter graph and let $M=\left(m_{s, t}\right)_{s, t \in S}$ be its Coxeter matrix. For $s, t \in S$ and $m \in \mathbb{N}, m \geq 2$, we denote by $\operatorname{Prod}(s, t, m)$ the word $s t s \cdots$ of length m. So, $\operatorname{Prod}(s, t, 2)=s t$, $\operatorname{Prod}(s, t, 3)=s t s$, and $\operatorname{Prod}(s, t, 4)=s t s t$. The Artin group of Γ is the group $A[\Gamma]$ defined by the presentation:

$$
\begin{gathered}
A[\Gamma]=\langle S| \operatorname{Prod}\left(s, t, m_{s, t}\right)=\operatorname{Prod}\left(t, s, m_{s, t}\right) \text { for } s, t \in S, \\
\left.s \neq t, m_{s, t} \neq \infty\right\rangle
\end{gathered}
$$

The Coxeter group of Γ, denoted $W[\Gamma]$, is the quotient of $A[\Gamma]$ by the relations $s^{2}=1, s \in S$.

Example. Let Γ be:

Then:

$$
A[\Gamma]=\langle s, t, r \mid s t s t=t s t s, s r=r s, t r t=r t r\rangle
$$

$$
W[\Gamma]=\left\langle s, t, r \mid s^{2}=t^{2}=r^{2}=1, s t s t=t s t s, s r=r s, t r t=r t r\right\rangle
$$

Exercise

Let Γ be a Coxeter graph and let $M=\left(m_{s, t}\right)_{s, t \in S}$ be its Coxeter matrix. Show that $W[\Gamma]$ has the following presentation:

$$
\begin{aligned}
W[\Gamma]=\langle S| s^{2}= & 1 \text { for } s \in S,(s t)^{m_{s, t}}=1 \text { for } s, t \in S, \\
& \left.s \neq t, m_{s, t} \neq \infty\right\rangle
\end{aligned}
$$

Example. Let Γ be:

Then:

$$
W[\Gamma]=\left\langle s, t, r \mid s^{2}=t^{2}=r^{2}=1,(s t)^{4}=(s r)^{2}=(t r)^{3}=1\right\rangle .
$$

Definition. Let Γ be a Coxeter graph and let $M=\left(m_{s, t}\right)_{s, t \in S}$ be its Coxeter matrix. Take an abstract set $\Pi=\left\{\alpha_{s} \mid s \in S\right\}$ in one-to-one correspondence with S and set $V=\oplus_{s \in S} \mathbb{R} \alpha_{s}$ the real vector space having Π as a basis. The elements of Π are called simple roots. Let $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ be the symmetric bilinear form defined by:

$$
\left\langle\alpha_{s}, \alpha_{t}\right\rangle= \begin{cases}-\cos \left(\pi / m_{s, t}\right) & \text { if } m_{s, t} \neq \infty \\ -1 & \text { if } m_{s, t}=\infty\end{cases}
$$

For each $s \in S$ we define the linear map $\rho_{s}: V \rightarrow V$ by:

$$
\rho_{s}(v)=v-2\left\langle v, \alpha_{s}\right\rangle \alpha_{s} .
$$

Lemma

Let $s \in S$. Then $\rho_{s}: V \rightarrow V$ is a linear reflection.

Proof. First, note that:

$$
\left\langle\alpha_{s}, \alpha_{s}\right\rangle=-\cos (\pi / 1)=1
$$

Let $v \in V$. Then:

$$
\begin{aligned}
& \rho_{s}^{2}(v)=\rho_{s}\left(v-2\left\langle v, \alpha_{s}\right\rangle \alpha_{s}\right)=\rho_{s}(v)-2\left\langle v, \alpha_{s}\right\rangle \rho\left(\alpha_{s}\right)= \\
& v-2\left\langle v, \alpha_{s}\right\rangle \alpha_{s}-2\left\langle v, \alpha_{s}\right\rangle \alpha_{s}+4\left\langle v, \alpha_{s}\right\rangle\left\langle\alpha_{s}, \alpha_{s}\right\rangle \alpha_{s}=v .
\end{aligned}
$$

Thus, $\rho_{s}^{2}=\mathrm{id}$. It remains to show that $\operatorname{Ker}\left(\rho_{s}-\mathrm{id}\right)$ is a hyperplane. Let $\varphi: V \rightarrow \mathbb{R}$ be the linear form defined by:

$$
\varphi(v)=-2\left\langle v, \alpha_{s}\right\rangle .
$$

We have $\varphi \neq 0$ since $\varphi\left(\alpha_{s}\right)=-2\left\langle\alpha_{s}, \alpha_{s}\right\rangle=-2 \neq 0$. Moreover, for each $v \in V$,

$$
\left(\rho_{s}-\mathrm{id}\right)(v)=v-2\left\langle v, \alpha_{s}\right\rangle \alpha_{s}-v=\varphi(v) \alpha_{s}
$$

hence $\operatorname{Ker}\left(\rho_{s}-\mathrm{id}\right)=\operatorname{Ker}(\varphi)$ is a hyperplane.

Exercise

Show that the map $S \rightarrow \operatorname{GL}(V), s \mapsto \rho_{s}$, induces a linear representation $\rho: W[\Gamma] \rightarrow \mathrm{GL}(V)$.

Definition. The linear representation $\rho: W[\Gamma] \rightarrow \mathrm{GL}(V)$ of the above exercise is called the canonical representation of $W[\Gamma]$.

Theorem (Tits-Bourbaki [1968])

Let Γ be a Coxeter graph. Then the canonical representation $\rho: W[\Gamma] \rightarrow \mathrm{GL}(V)$ is faithful.

Example. Let $V=\mathbb{R}^{3}$ endowed with the standard scalar product, $\langle\cdot, \cdot\rangle$. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be the canonical basis of V.

Let $C=[-1,1]^{3} \subset V$ be the standard cube:

We denote by W the group of isometries of V that preserve C. Then W is a finite group generated by three orthogonal reflections: the orthogonal reflection r_{1} with respect to the plane $H_{1}=\left\{x_{3}=0\right\}$, the orthogonal reflection r_{2} with respect to the plane $H_{2}=\left\{x_{2}+x_{3}=0\right\}$, and the orthogonal reflection r_{3} with respect to the plane $H_{3}=\left\{x_{1}-x_{2}=0\right\}$.

Set:

$$
\alpha_{1}=e_{3}, \alpha_{2}=\frac{1}{\sqrt{2}}\left(-e_{1}-e_{3}\right), \alpha_{3}=\frac{1}{\sqrt{2}}\left(e_{1}-e_{2}\right) .
$$

Note that α_{i} is orthogonal to H_{i} for all $i \in\{1,2,3\}$. Also, $\Pi=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ is a basis of V and the matrix of $\langle\cdot, \cdot\rangle$ in this basis is:

$$
\left(\begin{array}{ccc}
1 & \frac{-1}{\sqrt{2}} & 0 \\
\frac{-1}{\sqrt{2}} & 1 & \frac{-1}{2} \\
0 & \frac{-1}{2} & 1
\end{array}\right)
$$

Note that:

$$
\frac{-1}{\sqrt{2}}=-\cos (\pi / 4), \frac{-1}{2}=-\cos (\pi / 3), 0=-\cos (\pi / 2)
$$

Actually we have:

Exercise

The above group W has the following presentation:

$$
w=\left\langle r_{1}, r_{2}, r_{3} \mid r_{1}^{2}=r_{2}^{2}=r_{3}^{2}=1,\left(r_{1} r_{2}\right)^{4}=\left(r_{1} r_{3}\right)^{2}=\left(r_{2} r_{3}\right)^{3}=1\right\rangle
$$

In other words, W is the Coxeter group of the Coxeter graph:

Recall that a convex cone in V is a subset $I \subset V$ such that:

- for each $u \in I$ and each $\lambda>0$, we have $\lambda u \in I$;
- for each $u, v \in I$ and each $t \in[0,1]$, we have $t u+(1-t) v \in I$.

On the other hand, we set $R=\left\{w s w^{-1} \mid s \in S, w \in W[\Gamma]\right\}$. Let $r \in R$. Then the linear transformation $\rho(r)$ is a reflection whose fixed hyperplane is denoted by H_{r}.

Theorem (Tits-Bourbaki [1968])

Let Γ be a Coxeter graph. There exists a non-empty open cone $I \subset V$ stable under the action of $W[\Gamma]$ such that:

- $W[\Gamma]$ acts properly discontinuously on I;
- $W[\Gamma]$ acts freely and properly discontinuously on $I \backslash\left(\cup_{r \in R} H_{r}\right)$.

Definition. The cone I of the above theorem is called the Tits cone.
Example. Suppose again that Γ is :

Then $I=V=\mathbb{R}^{3}$ and the reflecting hyperplanes are:

$$
\begin{aligned}
& \left\{x_{1}=0\right\},\left\{x_{2}=0\right\},\left\{x_{3}=0\right\}, \quad\left\{x_{1}-x_{2}=0\right\},\left\{x_{1}-x_{3}=0\right\} \\
& \left\{x_{2}-x_{3}=0\right\},\left\{x_{1}+x_{2}=0\right\},\left\{x_{1}+x_{3}=0\right\},\left\{x_{2}+x_{3}=0\right\}
\end{aligned}
$$

Definition. Let Γ be a Coxeter graph. Set:

$$
M[r]=(I \times I) \backslash\left(\bigcup_{r \in R}\left(H_{r} \times H_{r}\right)\right)
$$

Note that $M[\Gamma]$ is a $2|S|$ dimensional manifold and $W[\Gamma]$ acts freely and properly discontinuously on $M[\Gamma]$. Then we set:

$$
N[\Gamma]=M[\Gamma] / W[\Gamma] .
$$

Theorem (Van der Lek [1983])

Let Γ be a Coxeter graph. Then $\pi_{1}(N[\Gamma])=A[\Gamma]$.

Definition. Let G be a group and let X be a connected CW-complex (topological space). We say that X is a classifying space for G if $\pi_{1}(X)=G$ and the universal covering of X is contractible.

Theorem

Let G be a (discrete) group.
(1) Let X and Y be two classifying spaces for G. Then X and Y are homotopically equivalent.
(2) Let X be a classifying space for G. Then $H_{*}(G, \mathbb{Z})=H_{*}(X, \mathbb{Z})$.

Conjecture ($K(\pi, 1)$ conjecture)

Let Γ be a Coxeter graph. Then $N(\Gamma)$ is a classifying space for $A[\Gamma]$.

Definition. Let Γ be a Coxeter graph and let $M=\left(m_{s, t}\right)_{s, t \in S}$ be its Coxeter matrix. For $X \subset S$ we set $M_{X}=\left(m_{s, t}\right)_{s, t \in X}$ and we denote by Γ_{X} the Coxeter graph of M_{X}. Note that Γ_{X} is the full subgraph of Γ spanned by X. We know by Bourbaki [1968] that the inclusion map $X \hookrightarrow S$ induces an injective homomorphism $W\left[\Gamma_{x}\right] \hookrightarrow W[\Gamma]$. So, we can assume that $W\left[\Gamma_{x}\right]$ is the subgroup of $W[\Gamma]$ generated by X. On the other hand, we denote by $\lg : W[\Gamma] \rightarrow \mathbb{N}$ the word length with respect to S. We say that $w \in W[\Gamma]$ is X-minimal if it is of minimal length in the coset $w W\left[\Gamma_{x}\right]$.

Proposition (Bourbaki [1968])

Let Γ be a Coxeter graph, let X be a subset of S, and let $w \in W[\Gamma]$. Then there exists a unique X-minimal element lying in $w W\left[\Gamma_{X}\right]$.

Example. Let Γ be:

Recall:

$$
W[\Gamma]=\left\langle s, t, r \mid s^{2}=t^{2}=r^{2}=1,(s t)^{4}=(s r)^{2}=(t r)^{3}=1\right\rangle .
$$

Let $X=\{s, t\}$. Then Γ_{X} is:

and:

$$
\langle X\rangle=W\left[\Gamma_{x}\right]=\left\langle s, t \mid s^{2}=t^{2}=1,(s t)^{4}=1\right\rangle
$$

We have:

$$
|W[\Gamma]|=48,\left|W\left[\Gamma_{x}\right]\right|=8
$$

hence $W\left[\Gamma_{x}\right]$ has $48 / 8=6$ left cosets. The X-minimal elements of $W[\Gamma]$ are:

$$
1, r, t r, s t r, t s t r, r t s t r
$$

Definition. We say that a Coxeter graph Γ is of spherical type if $W[\Gamma]$ is finite. If Γ is a Coxeter graph, then we denote by $\mathcal{S}_{\text {sph }}$ the set of subsets $X \subset S$ such that Γ_{X} is of spherical type.

Lemma

Let Γ be a Coxeter graph. Let \preceq be the relation on $W[\Gamma] \times \mathcal{S}_{\text {sph }}$ defined by:

$$
\begin{aligned}
& (u, X) \preceq(v, Y) \Longleftrightarrow\left[X \subset Y, v^{-1} u \in W[\Gamma Y] \text { and } v^{-1} u\right. \text { is } \\
& X \text {-minimal }]
\end{aligned}
$$

Then \preceq is an order relation.

The End

Thank you for your attention!

