

Artin groups and associated spaces Part I

Luis Paris

Université de Bourgogne Dijon, France

August 30th, 2021

Definition. Let *S* be a finite set. A *Coxeter matrix* over *S* is a square symmetric matrix $M = (m_{s,t})_{s,t \in S}$ indexed by the elements of *S* with entries in $\mathbb{N} \cup \{\infty\}$ such that $m_{s,s} = 1$ for all $s \in S$ and $m_{s,t} = m_{t,s} \ge 2$ for all $s, t \in S, s \neq t$. We represent *M* with a labeled graph Γ called *Coxeter graph*, defined as follows.

- The set of vertices of Γ is S.
- Two vertices s, t ∈ S are connected by an edge if m_{s,t} ≥ 3, and this edge is labeled with m_{s,t} if m_{s,t} ≥ 4.

Example. The following is a Coxeter matrix:

$$M = \left(\begin{array}{rrr} 1 & 4 & 2 \\ 4 & 1 & 3 \\ 2 & 3 & 1 \end{array} \right)$$

Its Coxeter graph is:

Definition. Let Γ be a Coxeter graph and let $M = (m_{s,t})_{s,t \in S}$ be its Coxeter matrix. For $s, t \in S$ and $m \in \mathbb{N}$, $m \ge 2$, we denote by $\operatorname{Prod}(s, t, m)$ the word $sts \cdots$ of length m. So, $\operatorname{Prod}(s, t, 2) = st$, $\operatorname{Prod}(s, t, 3) = sts$, and $\operatorname{Prod}(s, t, 4) = stst$. The *Artin group* of Γ is the group $A[\Gamma]$ defined by the presentation:

$$\mathsf{A}[\Gamma] = \langle S \mid \operatorname{Prod}(s, t, m_{s,t}) = \operatorname{Prod}(t, s, m_{s,t}) \text{ for } s, t \in S,$$
$$s \neq t, \ m_{s,t} \neq \infty \rangle.$$

The *Coxeter group* of Γ , denoted $W[\Gamma]$, is the quotient of $A[\Gamma]$ by the relations $s^2 = 1, s \in S$.

Example. Let Γ be:

Then:

$$\boldsymbol{A}[\boldsymbol{\Gamma}] = \langle \boldsymbol{s}, \boldsymbol{t}, \boldsymbol{r} \mid \boldsymbol{s}\boldsymbol{t}\boldsymbol{s}\boldsymbol{t} = \boldsymbol{t}\boldsymbol{s}\boldsymbol{t}\boldsymbol{s}\,, \,\, \boldsymbol{s}\boldsymbol{r} = \boldsymbol{r}\boldsymbol{s}\,, \,\, \boldsymbol{t}\boldsymbol{r}\boldsymbol{t} = \boldsymbol{r}\boldsymbol{t}\boldsymbol{r}\rangle\,,$$

$$W[\Gamma] = \langle s, t, r \mid s^2 = t^2 = r^2 = 1, \ stst = tsts, \ sr = rs, \ trt = rtr \rangle.$$

Exercise

Let Γ be a Coxeter graph and let $M = (m_{s,t})_{s,t \in S}$ be its Coxeter matrix. Show that $W[\Gamma]$ has the following presentation:

$$\begin{aligned} & \mathcal{W}[\Gamma] = \langle \mathcal{S} \mid s^2 = 1 \text{ for } s \in \mathcal{S} \,, \; (st)^{m_{s,t}} = 1 \text{ for } s, t \in \mathcal{S} \,, \\ & s \neq t \,, \; m_{s,t} \neq \infty \rangle \,. \end{aligned}$$

Example. Let Γ be:

Then:

$$W[\Gamma] = \langle s, t, r \mid s^2 = t^2 = r^2 = 1, \ (st)^4 = (sr)^2 = (tr)^3 = 1 \rangle.$$

Definition. Let Γ be a Coxeter graph and let $M = (m_{s,t})_{s,t\in S}$ be its Coxeter matrix. Take an abstract set $\Pi = \{\alpha_s \mid s \in S\}$ in one-to-one correspondence with *S* and set $V = \bigoplus_{s \in S} \mathbb{R} \alpha_s$ the real vector space having Π as a basis. The elements of Π are called *simple roots*. Let $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ be the symmetric bilinear form defined by:

$$\langle \alpha_{s}, \alpha_{t} \rangle = \begin{cases} -\cos(\pi/m_{s,t}) & \text{if } m_{s,t} \neq \infty, \\ -1 & \text{if } m_{s,t} = \infty. \end{cases}$$

For each $s \in S$ we define the linear map $\rho_s : V \to V$ by:

$$\rho_{s}(v) = v - 2 \langle v, \alpha_{s} \rangle \alpha_{s}.$$

Lemma

Let $s \in S$. Then $\rho_s : V \to V$ is a linear reflection.

Luis Paris (IMB)

Proof. First, note that:

$$\langle \alpha_{s}, \alpha_{s} \rangle = -\cos(\pi/1) = 1$$
.

Let $v \in V$. Then:

$$\rho_{s}^{2}(\mathbf{v}) = \rho_{s}(\mathbf{v} - 2 \langle \mathbf{v}, \alpha_{s} \rangle \alpha_{s}) = \rho_{s}(\mathbf{v}) - 2 \langle \mathbf{v}, \alpha_{s} \rangle \rho(\alpha_{s}) = \mathbf{v} - 2 \langle \mathbf{v}, \alpha_{s} \rangle \alpha_{s} - 2 \langle \mathbf{v}, \alpha_{s} \rangle \alpha_{s} + 4 \langle \mathbf{v}, \alpha_{s} \rangle \langle \alpha_{s}, \alpha_{s} \rangle \alpha_{s} = \mathbf{v}.$$

Thus, $\rho_s^2 = id$. It remains to show that $Ker(\rho_s - id)$ is a hyperplane. Let $\varphi: V \to \mathbb{R}$ be the linear form defined by:

$$\varphi(\mathbf{v}) = -2 \langle \mathbf{v}, \alpha_{\mathbf{s}} \rangle.$$

We have $\varphi \neq 0$ since $\varphi(\alpha_s) = -2 \langle \alpha_s, \alpha_s \rangle = -2 \neq 0$. Moreover, for each $v \in V$,

$$(
ho_{s}-\mathrm{id})(v)=v-2\langle v,lpha_{s}
angle lpha_{s}-v=arphi(v)lpha_{s},$$

hence $\operatorname{Ker}(\rho_{s} - \operatorname{id}) = \operatorname{Ker}(\varphi)$ is a hyperplane.

Exercise

Show that the map $S \to GL(V)$, $s \mapsto \rho_s$, induces a linear representation $\rho : W[\Gamma] \to GL(V)$.

Definition. The linear representation $\rho : W[\Gamma] \to GL(V)$ of the above exercise is called the *canonical representation* of $W[\Gamma]$.

Theorem (Tits-Bourbaki [1968])

Let Γ be a Coxeter graph. Then the canonical representation $\rho: W[\Gamma] \to GL(V)$ is faithful.

Example. Let $V = \mathbb{R}^3$ endowed with the standard scalar product, $\langle \cdot, \cdot \rangle$. Let $\{e_1, e_2, e_3\}$ be the canonical basis of *V*.

Let $C = [-1, 1]^3 \subset V$ be the standard cube:

We denote by *W* the group of isometries of *V* that preserve *C*. Then *W* is a finite group generated by three orthogonal reflections: the orthogonal reflection r_1 with respect to the plane $H_1 = \{x_3 = 0\}$, the orthogonal reflection r_2 with respect to the plane $H_2 = \{x_2 + x_3 = 0\}$, and the orthogonal reflection r_3 with respect to the plane $H_3 = \{x_1 - x_2 = 0\}$.

Set:

$$\alpha_1 = e_3, \ \alpha_2 = \frac{1}{\sqrt{2}}(-e_1 - e_3), \ \alpha_3 = \frac{1}{\sqrt{2}}(e_1 - e_2).$$

Note that α_i is orthogonal to H_i for all $i \in \{1, 2, 3\}$. Also, $\Pi = \{\alpha_1, \alpha_2, \alpha_3\}$ is a basis of *V* and the matrix of $\langle \cdot, \cdot \rangle$ in this basis is:

$$\left(\begin{array}{ccc} 1 & \frac{-1}{\sqrt{2}} & 0\\ \frac{-1}{\sqrt{2}} & 1 & \frac{-1}{2}\\ 0 & \frac{-1}{2} & 1 \end{array}\right) \ .$$

Note that:

$$\frac{-1}{\sqrt{2}} = -\cos(\pi/4), \ \frac{-1}{2} = -\cos(\pi/3), \ 0 = -\cos(\pi/2).$$

Actually we have:

Exercise

The above group W has the following presentation:

$$w = \langle r_1, r_2, r_3 \mid r_1^2 = r_2^2 = r_3^2 = 1, \ (r_1r_2)^4 = (r_1r_3)^2 = (r_2r_3)^3 = 1 \rangle.$$

In other words, W is the Coxeter group of the Coxeter graph:

Recall that a *convex cone* in V is a subset $I \subset V$ such that:

• for each $u \in I$ and each $\lambda > 0$, we have $\lambda u \in I$;

• for each $u, v \in I$ and each $t \in [0, 1]$, we have $tu + (1 - t)v \in I$. On the other hand, we set $R = \{wsw^{-1} \mid s \in S, w \in W[\Gamma]\}$. Let $r \in R$. Then the linear transformation $\rho(r)$ is a reflection whose fixed hyperplane is denoted by H_r .

Theorem (Tits-Bourbaki [1968])

Let Γ be a Coxeter graph. There exists a non-empty open cone $I \subset V$ stable under the action of $W[\Gamma]$ such that:

- *W*[Γ] acts properly discontinuously on *I*;
- $W[\Gamma]$ acts freely and properly discontinuously on $I \setminus (\cup_{r \in R} H_r)$.

Definition. The cone *I* of the above theorem is called the *Tits cone*.

Example. Suppose again that Γ is :

Then $I = V = \mathbb{R}^3$ and the reflecting hyperplanes are:

$$\{x_1 = 0\}, \{x_2 = 0\}, \{x_3 = 0\}, \{x_1 - x_2 = 0\}, \{x_1 - x_3 = 0\}, \{x_2 - x_3 = 0\}, \{x_1 + x_2 = 0\}, \{x_1 + x_3 = 0\}, \{x_2 + x_3 = 0\}.$$

K(pi, 1) conjecture

Definition. Let Γ be a Coxeter graph. Set:

$$M[\Gamma] = (I \times I) \setminus \left(\bigcup_{r \in R} (H_r \times H_r) \right)$$

Note that $M[\Gamma]$ is a 2|S| dimensional manifold and $W[\Gamma]$ acts freely and properly discontinuously on $M[\Gamma]$. Then we set:

$$N[\Gamma] = M[\Gamma]/W[\Gamma].$$

Theorem (Van der Lek [1983])

Let Γ be a Coxeter graph. Then $\pi_1(N[\Gamma]) = A[\Gamma]$.

Definition. Let *G* be a group and let *X* be a connected CW-complex (topological space). We say that *X* is a *classifying space* for *G* if $\pi_1(X) = G$ and the universal covering of *X* is contractible.

Theorem

Let G be a (discrete) group.

- (1) Let *X* and *Y* be two classifying spaces for *G*. Then *X* and *Y* are homotopically equivalent.
- (2) Let X be a classifying space for G. Then $H_*(G, \mathbb{Z}) = H_*(X, \mathbb{Z})$.

Conjecture ($K(\pi, 1)$ conjecture)

Let Γ be a Coxeter graph. Then $N(\Gamma)$ is a classifying space for $A[\Gamma]$.

Definition. Let Γ be a Coxeter graph and let $M = (m_{s,t})_{s,t \in S}$ be its Coxeter matrix. For $X \subset S$ we set $M_X = (m_{s,t})_{s,t \in X}$ and we denote by Γ_X the Coxeter graph of M_X . Note that Γ_X is the full subgraph of Γ spanned by X. We know by Bourbaki [1968] that the inclusion map $X \hookrightarrow S$ induces an injective homomorphism $W[\Gamma_X] \hookrightarrow W[\Gamma]$. So, we can assume that $W[\Gamma_X]$ is the subgroup of $W[\Gamma]$ generated by X. On the other hand, we denote by $\lg : W[\Gamma] \to \mathbb{N}$ the word length with respect to S. We say that $w \in W[\Gamma]$ is X-minimal if it is of minimal length in the coset $wW[\Gamma_X]$.

Proposition (Bourbaki [1968])

Let Γ be a Coxeter graph, let *X* be a subset of *S*, and let $w \in W[\Gamma]$. Then there exists a unique *X*-minimal element lying in $wW[\Gamma_X]$.

Example. Let Γ be:

Recall:

$$W[\Gamma] = \langle s, t, r \mid s^2 = t^2 = r^2 = 1, \ (st)^4 = (sr)^2 = (tr)^3 = 1 \rangle.$$

Let $X = \{s, t\}$. Then Γ_X is:

and:

$$\langle X \rangle = W[\Gamma_X] = \langle s, t \mid s^2 = t^2 = 1, (st)^4 = 1 \rangle.$$

We have:

$$|W[\Gamma]| = 48$$
, $|W[\Gamma_X]| = 8$,

hence $W[\Gamma_X]$ has 48/8 = 6 left cosets. The *X*-minimal elements of $W[\Gamma]$ are:

$$1, r, tr, str, tstr, rtstr$$
.

Definition. We say that a Coxeter graph Γ is of *spherical type* if $W[\Gamma]$ is finite. If Γ is a Coxeter graph, then we denote by S_{sph} the set of subsets $X \subset S$ such that Γ_X is of spherical type.

Lemma

Let Γ be a Coxeter graph. Let \leq be the relation on $W[\Gamma] \times S_{sph}$ defined by:

$$(u, X) \preceq (v, Y) \iff [X \subset Y, v^{-1}u \in W[\Gamma_Y] \text{ and } v^{-1}u \text{ is } X\text{-minimal}]$$

Then \leq is an order relation.

Thank you for your attention!