Artin groups and associated spaces Part II

Luis Paris

Université de Bourgogne
Dijon, France

August 31st, 2021

Lemma

Let Γ be a Coxeter graph. Let \preceq be the relation on $W[\Gamma] \times \mathcal{S}_{\text {sph }}$ defined by:

$$
\begin{aligned}
& (u, X) \preceq(v, Y) \Longleftrightarrow\left[X \subset Y, v^{-1} u \in W[\Gamma Y] \text { and } v^{-1} u\right. \text { is } \\
& X \text {-minimal }]
\end{aligned}
$$

Then \preceq is an order relation.

Definition. A simplicial complex is a pair $\Upsilon=(S, A)$, where S is a set, called the set of vertices of Υ, and A is a set of subsets of S, called the set of simplices of Υ, satisfying the following properties:
(a) \emptyset is not a simplex and every simplex is finite;
(b) each singleton is a simplex;
(c) a non-empty subset of a simplex is a simplex.

Definition. Let $\Upsilon=(S, A)$ be a simplicial complex. Let $B=\left\{e_{S} \mid s \in S\right\}$ be a set in one-to-one correspondence with S and let V be the real vector space having B as a basis. For each simplex $\Delta=\left\{s_{0}, s_{1}, \ldots, s_{p}\right\}$ in A we set:

$$
|\Delta|=\left\{\sum_{i=0}^{p} t_{i} e_{s_{i}} \mid 0 \leq t_{0}, t_{1}, \ldots, t_{p} \leq 1 \text { and } \sum_{i=1}^{p} t_{i}=1\right\}
$$

Note that $|\Delta|$ is a geometric simplex of dimension p.

The geometric realization of Υ is the following subset of V :

$$
|\Upsilon|=\bigcup_{\Delta \in A}|\Delta|
$$

which we endow with the so-called "weak topology".
Example. Let $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and let:

$$
\begin{aligned}
A=\left\{\left\{v_{1}\right\},\left\{v_{2}\right\},\right. & \left\{v_{3}\right\},\left\{v_{4}\right\},\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\}, \\
& \left.\left\{v_{3} v_{4}\right\},\left\{v_{1}, v_{2}, v_{3}\right\}\right\}
\end{aligned}
$$

Then $\Upsilon=(S, A)$ is a simplicial complex whose geometric realization is:

Definition. If (E, \leq) is an ordered set, then the set of non-empty chains of (E, \leq) forms a simplicial complex, called the derived complex of (E, \leq), denoted by E^{\prime} or by $(E, \leq)^{\prime}$.

Definition. Let Γ be a Coxeter graph. The Salvetti complex of Γ, denoted $\mathrm{Sal}[\Gamma]$, is the geometric realization of the derived complex of $\left(W[\Gamma] \times \mathcal{S}_{\text {sph }}, \preceq\right)$. Note that the action of $W[\Gamma]$ on $\left(W[\Gamma], \mathcal{S}_{\text {sph }}\right)$ defined by $w \cdot(u, X)=(w u, X)$ preserves the order, hence it induces an action of $W[\Gamma]$ on $\mathrm{Sal}[\Gamma]$.
Attention: the quotient Sal[Г]/W[Г] is not a simplicial complex. It is a CW-complex or, more precisely, a " Δ-complex".

Theorem (Salvetti [1994], Charney-Davis [1995])

Let Γ be a Coxeter graph. There exists a homotopy equivalence $\mathrm{Sal}[\Gamma] \rightarrow M[\Gamma]$ which is equivariant under the action of $W[\Gamma]$ and which induces a homotopy equivalence $\mathrm{Sal}[\Gamma] / W[\Gamma] \rightarrow M[\Gamma] / W[\Gamma]=N[\Gamma]$.

Definition. Let Γ be a Coxeter graph. For each $(u, X) \in W[\Gamma] \times \mathcal{S}_{\text {sph }}$ we set:

$$
C(u, X)=\left\{(v, Y) \in W[\Gamma] \times \mathcal{S}_{\text {sph }} \mid(v, Y) \preceq(u, X)\right\}
$$

and we denote by $\mathbb{B}(u, X)$ the geometric realization of $C(u, X)$, that is, the simplicial subcomplex of $\operatorname{Sal}[\Gamma]$ spanned by $C(u, X)$.

Proposition

Let Γ be a Coxeter graph. Let $(u, X) \in W[\Gamma] \times \mathcal{S}_{\text {sph }}$. Then $\mathbb{B}(u, X)$ is homeomorphic to a ball of dimension $|X|$.

Corollary

Let Γ be a Coxeter graph. Then $\mathrm{Sal}[\Gamma]$ has a cellular decomposition described as follows. For each $w \in W$ we have a vertex $x(w)$ corresponding to $\mathbb{B}(w, \emptyset)$. The 0 -skeleton of $\operatorname{Sal}[\Gamma]$ is
$\{x(w) \mid w \in W[\Gamma]\}$. More generally, for $p \in \mathbb{N}$, the set of p-cells of $\operatorname{Sal}[\Gamma]$ is $\left\{\mathbb{B}(u, X)\left|u \in W[\Gamma], X \in \mathcal{S}_{\text {sph }},|X|=p\right\}\right.$, and the p-skeleton is the union of these cells.

We set $\overline{\operatorname{Sal}}[\Gamma]=\operatorname{Sal}[\Gamma] / W[\Gamma]$. For $w \in W[\Gamma]$ and $(u, X) \in W[\Gamma] \times \mathcal{S}_{\text {sph }}$ we have $w \cdot \mathbb{B}(u, X)=\mathbb{B}(w u, X)$. Hence, the the action of $W[\Gamma]$ on $\mathrm{Sal}[\Gamma]$ is combinatorial, and therefore the cellular decomposition of
 orbit of $\mathbb{B}(1, X)$ under the action of $W[\Gamma]$ is $\{\mathbb{B}(u, X) \mid u \in W[\Gamma]\}$. With this orbit we associate a cell $\overline{\mathbb{B}}(X)$ of $\overline{S a l}[\Gamma]$, and every cell of $\overline{S a l}[\Gamma]$ is of this form. In particular, for $p \in \mathbb{N}$, the set of cells of $\overline{S a l}[\Gamma]$ of dimension p is $\left\{\overline{\mathbb{B}}(X)\left|X \in \mathcal{S}_{\text {sph }},|X|=p\right\}\right.$.

Example. Let Γ be:

Recall that:

$$
A[\Gamma]=\langle s, t, r \mid s t s t=t s t s, s r=r s, t r t=r t r\rangle .
$$

The 0-skeleton of $\overline{\operatorname{Sal}}[\Gamma]$ is a single point, x_{0}. The 1 -skeleton of $\overline{\operatorname{Sal}}[\Gamma]$ is formed by three (oriented) edges, b_{s}, b_{t} and b_{r}.

The 2-skeleton of $\overline{S a l}[\Gamma]$ is formed by three cells, $\overline{\mathbb{B}}(s, t), \overline{\mathbb{B}}(s, r)$ and $\overline{\mathbb{B}}(t, r)$, whose boundary are:

$B(s, t)$

B(s,r)

$B(t, r)$

The 3-skeleton is formed by a unique cell whose boundary is:

Note that a straightforward consequence of this description is:

$$
\pi_{1}(\overline{\mathrm{Sal}}[\ulcorner])=\langle s, t, r \mid s t s t=t s t s, s r=r s, t r t=r t r\rangle=A[\Gamma] .
$$

Since $\overline{\operatorname{Sal}}[\Gamma] \simeq_{h} N[\Gamma]$, we deduce that $\pi_{1}(N[\Gamma])=A[\Gamma]$.

More generally, the p-skeleton of $\operatorname{Sal}[\Gamma]$ and $\overline{\operatorname{Sal}}[\Gamma]$ for $p=0,1,2$ are described as follows.

0 -skeleton: The 0-skeleton of $\operatorname{Sal}[\Gamma]$ is a set $\{x(w) \mid w \in W[\Gamma]\}$ in one-to-one correspondence with $W[\Gamma]$. The 0 -skeleton of $\overline{\mathrm{Sal}}[\Gamma]$ is reduced to a single point denoted by x_{0}.

1-skeleton: With each pair $(w, s) \in W[\Gamma] \times S$ we associate an edge $\mathbb{B}(u,\{s\})$ of $\mathrm{Sal}[\Gamma]$ whose extremities are $x(u)$ and $x(u s)$. We denote this edge by $a(u, s)$ and we assume it is oriented from $x(u)$ towards $x(u s)$. So, for $u, v \in W[\Gamma]$, if v is of the form $v=u s$, then there is an edge $a(u, s)$ going from $x(u)$ to $x(v)$ and there is an edge $a(v, s)$ going from $x(v)$ to $x(u)$.

On the other hand, there is no edge between $x(u)$ and $x(v)$ if v is not of the form $v=u s$ with $s \in S$. With each $s \in S$ we associate an edge $b(s)=\overline{\mathbb{B}}(\{s\})$ of $\overline{S a l}[\Gamma]$ whose both extremities are x_{0}.

Observe that the action of $W[\Gamma]$ on $\{a(u, s) \mid u \in W[\Gamma]\}$ preserves the orientation, hence it induces an orientation on $b(s)$. Thus, we can suppose that $b(s)$ is endowed with this orientation.

2-skeleton: Let $s, t \in S, s \neq t$. Note that $\{s, t\} \in \mathcal{S}_{\text {sph }}$ if and only if $m_{s, t} \neq \infty$. Assume that $m_{s, t} \neq \infty$. With each $u \in W[\Gamma]$ we associate a 2-cell $\mathbb{B}(u,\{s, t\})$ of $\operatorname{Sal}[\Gamma]$ whose boundary is:

$$
(a(u, s) a(u s, t) a(u s t, s) \cdots)(a(u, t) a(u t, s) a(u t s, t) \cdots)^{-1}
$$

The W-orbit $\{\mathbb{B}(u,\{s, t\}) \mid u \in W[\Gamma]\}$ determines a 2-cell $\overline{\mathbb{B}}(\{s, t\})$ of $\overline{\text { Sal }[r] ~ w h o s e ~ b o u n d a r y ~ i s: ~}$

$$
\begin{gathered}
(b(s) b(t) b(s) \cdots)(b(t) b(s) b(t) \cdots)^{-1}= \\
\operatorname{Prod}\left(b(s), b(t), m_{s, t}\right) \operatorname{Prod}\left(b(t), b(s), m_{s, t}\right)^{-1}
\end{gathered}
$$

$\overline{\boldsymbol{B}}(\{s, t\})$

A straightforward consequence of this description is the following.

Theorem (Van der Lek [1983])

Let Γ be a Coxeter graph. Then $\pi_{1}(N[\Gamma])=\pi_{1}(\overline{\operatorname{Sal}}[\Gamma])=A[\Gamma]$.

Let Γ be a Coxeter graph and let $M=\left(m_{s, t}\right)_{s, t \in S}$ be its Coxeter matrix. Let $X \subset S$. Recall that $M_{X}=\left(m_{s, t}\right)_{s, t \in X}$, that Γ_{X} is the Coxeter graph of M_{X}, and that $W\left[\Gamma_{X}\right]$ is the subgroup of $W[\Gamma]$ generated by X. We denote by $\mathcal{S}_{\text {sph }}(X)$ the set of subsets $Y \subset X$ such that Γ_{Y} is of spherical type. The inclusion map $\left(W\left[\Gamma_{X}\right] \times \mathcal{S}_{\text {sph }}(X)\right) \hookrightarrow\left(W[\Gamma] \times \mathcal{S}_{\text {sph }}\right)$ preserves \preceq, hence it induces an embedding $\iota_{X}: \operatorname{Sal}\left[\Gamma_{X}\right] \hookrightarrow \operatorname{Sal}[\Gamma]$.

Theorem (Godelle-Paris [2012])

Let Γ be a Coxeter graph, let S be its set of vertices, and let X be a subset of S. Then the embedding $\iota_{X}: \operatorname{Sal}\left[\Gamma_{x}\right] \rightarrow \operatorname{Sal}[\Gamma]$ admits a retraction $\pi_{X}: \operatorname{Sal}[\Gamma] \rightarrow \operatorname{Sal}\left[\Gamma_{X}\right]$.

Note on the proof. The map $\pi_{X}: \operatorname{Sal}[\Gamma] \rightarrow \operatorname{Sal}\left[\Gamma_{X}\right]$ is constructed combinatorially in the sense that we define a map $\hat{\pi}_{X}:\left(W[\Gamma] \times \mathcal{S}_{\text {sph }}\right) \rightarrow\left(W\left[\Gamma_{X}\right] \times \mathcal{S}_{\text {sph }}(X)\right)$ and we show that this map preserves the order \preceq. Hence it induces a continuous map $\pi_{X}: \operatorname{Sal}[\Gamma] \rightarrow \operatorname{Sal}\left[\Gamma_{X}\right]$.

Let $(u, Y) \in W[\Gamma] \times \mathcal{S}_{\text {sph }}$. We know that the coset $W\left[\Gamma_{X}\right] u$ has a unique element of minimal length, u_{1}. Let:

$$
u_{0}=u u_{1}^{-1} \in W_{X}, \quad Y_{0}=X \cap\left(u_{1} Y u_{1}^{-1}\right) \in \mathcal{S}_{\mathrm{sph}}(X)
$$

Then:

$$
\hat{\pi}_{X}(u, Y)=\left(u_{0}, Y_{0}\right)
$$

Example. We return to the example where Γ is:

We have $S=\{s, t, r\}$. We set $X=\{s, t\}$. The elements $u_{1} \in W[\Gamma]$ that are of minimal length in their cosets $W\left[\Gamma_{X}\right] u_{1}$ are:
$1, r, r t, r t s, r t s t, r t s t r$.
Take one of these elements, say $u_{1}=r t s$. We choose any element $u_{0} \in W\left[\Gamma_{X}\right]$, say $u_{0}=s t$, and we set $u=u_{0} u_{1}=$ strts. We have:

$$
u_{1} s u_{1}^{-1}=r \operatorname{tstr} \notin S, u_{1} t u_{1}^{-1}=s t r t s \notin S, u_{1} r u_{1}^{-1}=t
$$

So:

$$
\begin{gathered}
\hat{\pi}_{X}(s t r t s, \emptyset)=\hat{\pi}_{X}(s t r t s,\{s\})= \\
\hat{\pi}_{X}(s t r t s,\{t\})=\hat{\pi}_{X}(s t r t s,\{s, t\})=(s t, \emptyset), \\
\hat{\pi}_{X}(s t r t s,\{r\})=\hat{\pi}_{X}(s t r t s,\{s, r\})= \\
\hat{\pi}_{X}(s t r t s,\{t, r\})=\hat{\pi}_{X}(s t r t s, S)=(s t,\{t\}) .
\end{gathered}
$$

We can use ι_{X} and π_{X} to prove the following results.

Theorem (Van der Lek [1983])

Let Γ be a Coxeter graph, let S be its set of vertices, and let X be a subset of S. Then the homomorphism $A\left[\Gamma_{X}\right] \rightarrow A[\Gamma]$ induced by the inclusion map $X \hookrightarrow S$ is injective.

Theorem

Let Γ be a Coxeter graph, let S be its set of vertices, and let X be a subset of S. If $A[\Gamma]$ satisfies the $K(\pi, 1)$ conjecture, then $A[\Gamma x]$ satisfies the $K(\pi, 1)$ conjecture.

Theorem (Godelle-Paris [2012])

Let Γ be a Coxeter graph, let S be its set of vertices, and let X be a subset of S. Suppose that $A[\Gamma]$ has a solution to the word problem.

There is an algorithm which, for a given $g \in A[\Gamma]$, decides whether g lies in $A\left[\Gamma_{X}\right]$ or not.

Let Γ be a Coxeter graph and let S be its set of vertices. We denote by $\lg : A[\Gamma] \rightarrow \mathbb{N}$ the word length with respect to S. A word $w=s_{1}^{\varepsilon_{1}} \ldots s_{\ell}^{\varepsilon_{\ell}}$ on $S \cup S^{-1}$ is reduced (or geodesic) if $\ell=\lg (g)$, where g is the element of $A[\Gamma]$ represented by w.

Theorem (Charney-Paris [2014])

Let Γ be a Coxeter graph, let S be its set of vertices, and let X be a subset of S. Let $g \in A[\Gamma]$ and let $w=s_{1}^{\varepsilon_{1}} \ldots S_{\ell}^{\varepsilon_{\ell}}$ be a reduced word which represents g. If $g \in A\left[\Gamma_{X}\right]$, then $s_{i} \in X$ for all $i \in\{1, \ldots, \ell\}$.

The End

Thank you for your attention!

