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Towards the Salvetti complex

Lemma
Let Γ be a Coxeter graph. Let � be the relation on W [Γ]× Ssph defined
by:

(u,X ) � (v ,Y )⇐⇒ [X ⊂ Y , v−1u ∈W [ΓY ] and v−1u is
X -minimal]

Then � is an order relation.

Definition. A simplicial complex is a pair Υ = (S,A), where S is a set,
called the set of vertices of Υ, and A is a set of subsets of S, called the
set of simplices of Υ, satisfying the following properties:
(a) ∅ is not a simplex and every simplex is finite;
(b) each singleton is a simplex;
(c) a non-empty subset of a simplex is a simplex.
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Towards the Salvetti complex

Definition. Let Υ = (S,A) be a simplicial complex. Let
B = {eS | s ∈ S} be a set in one-to-one correspondence with S and let
V be the real vector space having B as a basis. For each simplex
∆ = {s0, s1, . . . , sp} in A we set:

|∆| =

{ p∑
i=0

tiesi | 0 ≤ t0, t1, . . . , tp ≤ 1 and
p∑

i=1

ti = 1

}
.

Note that |∆| is a geometric simplex of dimension p.

e0

e1
Δ1

e0

e1

e2

Δ2
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Towards the Salvetti complex

The geometric realization of Υ is the following subset of V :

|Υ| =
⋃

∆∈A

|∆| ,

which we endow with the so-called “weak topology”.

Example. Let S = {v1, v2, v3, v4} and let:

A = {{v1} , {v2} , {v3} , {v4} , {v1, v2} , {v1, v3} , {v2, v3} ,
{v3v4} , {v1, v2, v3}} .

Then Υ = (S,A) is a simplicial complex whose geometric realization is:
v1

v2

v3 v4
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Salvetti complex

Definition. If (E ,≤) is an ordered set, then the set of non-empty
chains of (E ,≤) forms a simplicial complex, called the derived complex
of (E ,≤), denoted by E ′ or by (E ,≤)′.

Definition. Let Γ be a Coxeter graph. The Salvetti complex of Γ,
denoted Sal[Γ], is the geometric realization of the derived complex of
(W [Γ]× Ssph,�). Note that the action of W [Γ] on (W [Γ],Ssph) defined
by w · (u,X ) = (wu,X ) preserves the order, hence it induces an action
of W [Γ] on Sal[Γ].
Attention: the quotient Sal[Γ]/W [Γ] is not a simplicial complex. It is a
CW-complex or, more precisely, a “∆-complex”.

Theorem (Salvetti [1994], Charney–Davis [1995])
Let Γ be a Coxeter graph. There exists a homotopy equivalence
Sal[Γ]→ M[Γ] which is equivariant under the action of W [Γ] and which
induces a homotopy equivalence Sal[Γ]/W [Γ]→ M[Γ]/W [Γ] = N[Γ].
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Cellularization of the Salvetti complex

Definition. Let Γ be a Coxeter graph. For each (u,X ) ∈W [Γ]× Ssph
we set:

C(u,X ) = {(v ,Y ) ∈W [Γ]× Ssph | (v ,Y ) � (u,X )} ,

and we denote by B(u,X ) the geometric realization of C(u,X ), that is,
the simplicial subcomplex of Sal[Γ] spanned by C(u,X ).

Proposition
Let Γ be a Coxeter graph. Let (u,X ) ∈W [Γ]× Ssph. Then B(u,X ) is
homeomorphic to a ball of dimension |X |.

Corollary
Let Γ be a Coxeter graph. Then Sal[Γ] has a cellular decomposition
described as follows. For each w ∈W we have a vertex x(w)
corresponding to B(w , ∅). The 0-skeleton of Sal[Γ] is
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Cellularization of the Salvetti complex

{x(w) | w ∈W [Γ]}. More generally, for p ∈ N, the set of p-cells of
Sal[Γ] is {B(u,X ) | u ∈W [Γ] , X ∈ Ssph , |X | = p}, and the p-skeleton is
the union of these cells.

We set Sal[Γ] = Sal[Γ]/W [Γ]. For w ∈W [Γ] and (u,X ) ∈W [Γ]× Ssph
we have w · B(u,X ) = B(wu,X ). Hence, the the action of W [Γ] on
Sal[Γ] is combinatorial, and therefore the cellular decomposition of
Sal[Γ] induces a cellular decomposition of Sal[Γ]. For each X ∈ Ssph, the
orbit of B(1,X ) under the action of W [Γ] is {B(u,X ) | u ∈W [Γ]}. With
this orbit we associate a cell B(X ) of Sal[Γ], and every cell of Sal[Γ] is of
this form. In particular, for p ∈ N, the set of cells of Sal[Γ] of dimension
p is {B(X ) | X ∈ Ssph , |X | = p}.

Example. Let Γ be:

4
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Cellularization of the Salvetti complex

Recall that:

A[Γ] = 〈s, t , r | stst = tsts , sr = rs , trt = rtr〉 .

The 0-skeleton of Sal[Γ] is a single point, x0. The 1-skeleton of Sal[Γ] is
formed by three (oriented) edges, bs, bt and br .

x0

bsbt

br
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Cellularization of the Salvetti complex

The 2-skeleton of Sal[Γ] is formed by three cells, B(s, t), B(s, r) and
B(t , r), whose boundary are:

bs

btbs

bs

bs

bt

bt

bt

B(s,t)

bsbr

bs br

B(s,r)

bt

br

bt

bt

br br

B(t,r)
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Cellularization of the Salvetti complex

The 3-skeleton is formed by a unique cell whose boundary is:

B(s,t) B(s,r)

B(t,r)

B(s,t)

B(s,t)

B(s,r)

B(s,r)

B(s,r)

B(s,r)

B(t,r)

B(t,r)

Note that a straightforward consequence of this description is:

π1(Sal[Γ]) = 〈s, t , r | stst = tsts , sr = rs , trt = rtr〉 = A[Γ] .

Since Sal[Γ] 'h N[Γ], we deduce that π1(N[Γ]) = A[Γ].
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Cellularization of the Salvetti complex

More generally, the p-skeleton of Sal[Γ] and Sal[Γ] for p = 0,1,2 are
described as follows.

0-skeleton: The 0-skeleton of Sal[Γ] is a set {x(w) | w ∈W [Γ]} in
one-to-one correspondence with W [Γ]. The 0-skeleton of Sal[Γ] is
reduced to a single point denoted by x0.

1-skeleton: With each pair (w , s) ∈W [Γ]× S we associate an edge
B(u, {s}) of Sal[Γ] whose extremities are x(u) and x(us). We denote
this edge by a(u, s) and we assume it is oriented from x(u) towards
x(us). So, for u, v ∈W [Γ], if v is of the form v = us, then there is an
edge a(u, s) going from x(u) to x(v) and there is an edge a(v , s) going
from x(v) to x(u).

x(u) x(us)

a(u,s)

a(us,s)
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Cellularization of the Salvetti complex

On the other hand, there is no edge between x(u) and x(v) if v is not
of the form v = us with s ∈ S. With each s ∈ S we associate an edge
b(s) = B({s}) of Sal[Γ] whose both extremities are x0.

x0

b(s)

Observe that the action of W [Γ] on {a(u, s) | u ∈W [Γ]} preserves the
orientation, hence it induces an orientation on b(s). Thus, we can
suppose that b(s) is endowed with this orientation.
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Cellularization of the Salvetti complex

2-skeleton: Let s, t ∈ S, s 6= t . Note that {s, t} ∈ Ssph if and only if
ms,t 6=∞. Assume that ms,t 6=∞. With each u ∈W [Γ] we associate a
2-cell B(u, {s, t}) of Sal[Γ] whose boundary is:

(a(u, s) a(us, t) a(ust , s) · · · )(a(u, t) a(ut , s) a(uts, t) · · · )−1

a(u,s)

a(us,t)

a(ust,s)

a(ut,s)

a(uts,t) a(u,t)

B(u,{s,t})

x(u)x(usts)
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Cellularization of the Salvetti complex

The W -orbit {B(u, {s, t}) | u ∈W [Γ]} determines a 2-cell B({s, t}) of
Sal[Γ] whose boundary is:

(b(s) b(t) b(s) · · · )(b(t) b(s) b(t) · · · )−1 =

Prod(b(s),b(t),ms,t ) Prod(b(t),b(s),ms,t )
−1

b(s)

b(t)

b(s)

b(s)

b(t) b(t)

B({s,t})

x0

x0x0

x0

x0 x0

A straightforward consequence of this description is the following.
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Applications

Theorem (Van der Lek [1983])

Let Γ be a Coxeter graph. Then π1(N[Γ]) = π1(Sal[Γ]) = A[Γ].

Let Γ be a Coxeter graph and let M = (ms,t )s,t∈S be its Coxeter matrix.
Let X ⊂ S. Recall that MX = (ms,t )s,t∈X , that ΓX is the Coxeter graph
of MX , and that W [ΓX ] is the subgroup of W [Γ] generated by X . We
denote by Ssph(X ) the set of subsets Y ⊂ X such that ΓY is of spherical
type. The inclusion map (W [ΓX ]× Ssph(X )) ↪→ (W [Γ]× Ssph) preserves
�, hence it induces an embedding ιX : Sal[ΓX ] ↪→ Sal[Γ].

Theorem (Godelle–Paris [2012])
Let Γ be a Coxeter graph, let S be its set of vertices, and let X be a
subset of S. Then the embedding ιX : Sal[ΓX ]→ Sal[Γ] admits a
retraction πX : Sal[Γ]→ Sal[ΓX ].
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Applications

Note on the proof. The map πX : Sal[Γ]→ Sal[ΓX ] is constructed
combinatorially in the sense that we define a map
π̂X : (W [Γ]× Ssph)→ (W [ΓX ]× Ssph(X )) and we show that this map
preserves the order �. Hence it induces a continuous map
πX : Sal[Γ]→ Sal[ΓX ].

Let (u,Y ) ∈W [Γ]× Ssph. We know that the coset W [ΓX ]u has a unique
element of minimal length, u1. Let:

u0 = uu−1
1 ∈WX , Y0 = X ∩ (u1Yu−1

1 ) ∈ Ssph(X ) .

Then:
π̂X (u,Y ) = (u0,Y0) .

Example. We return to the example where Γ is:

4
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Applications

We have S = {s, t , r}. We set X = {s, t}. The elements u1 ∈W [Γ] that
are of minimal length in their cosets W [ΓX ]u1 are:

1 , r , rt , rts , rtst , rtstr .

Take one of these elements, say u1 = rts. We choose any element
u0 ∈W [ΓX ], say u0 = st , and we set u = u0u1 = strts. We have:

u1su−1
1 = rtstr 6∈ S , u1tu−1

1 = strts 6∈ S , u1ru−1
1 = t .

So:

π̂X (strts, ∅) = π̂X (strts, {s}) =

π̂X (strts, {t}) = π̂X (strts, {s, t}) = (st , ∅) ,
π̂X (strts, {r}) = π̂X (strts, {s, r}) =

π̂X (strts, {t , r}) = π̂X (strts,S) = (st , {t}) .

We can use ιX and πX to prove the following results.
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Applications

Theorem (Van der Lek [1983])
Let Γ be a Coxeter graph, let S be its set of vertices, and let X be a
subset of S. Then the homomorphism A[ΓX ]→ A[Γ] induced by the
inclusion map X ↪→ S is injective.

Theorem
Let Γ be a Coxeter graph, let S be its set of vertices, and let X be a
subset of S. If A[Γ] satisfies the K (π,1) conjecture, then A[ΓX ] satisfies
the K (π,1) conjecture.

Theorem (Godelle–Paris [2012])
Let Γ be a Coxeter graph, let S be its set of vertices, and let X be a
subset of S. Suppose that A[Γ] has a solution to the word problem.
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Applications

There is an algorithm which, for a given g ∈ A[Γ], decides whether g
lies in A[ΓX ] or not.

Let Γ be a Coxeter graph and let S be its set of vertices. We denote by
lg : A[Γ]→ N the word length with respect to S. A word w = sε1

1 . . . sε`
`

on S ∪ S−1 is reduced (or geodesic) if ` = lg(g), where g is the
element of A[Γ] represented by w .

Theorem (Charney–Paris [2014])
Let Γ be a Coxeter graph, let S be its set of vertices, and let X be a
subset of S. Let g ∈ A[Γ] and let w = sε1

1 . . . sε`
` be a reduced word

which represents g. If g ∈ A[ΓX ], then si ∈ X for all i ∈ {1, . . . , `}.
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The End

Thank you for your attention!
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