Garside groups and the Yang-Baxter equation
Fabienne Chouraqui

Garside groups and the Yang-Baxter equation Summer school: The dual approach to Coxeter and Artin groups, Garside theory and applications, Berlin 2021.

Fabienne Chouraqui

University of Haifa, Campus Oranim

Definition of a Garside monoid [P. Dehornoy, L. Paris 1999]

Garside

A monoid M is Garside if

- 1 is the unique invertible element.

Definition of a Garside monoid [P. Dehornoy, L. Paris 1999]

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability of groups

A monoid M is Garside if

- 1 is the unique invertible element.
- M is left and right cancellative.

Definition of a Garside monoid [P. Dehornoy, L. Paris 1999]

 groupsA class of Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability of groups

A monoid M is Garside if

- 1 is the unique invertible element.
- M is left and right cancellative.
- Any 2 elements in M have a right and left lcm.

Definition of a Garside monoid [P. Dehornoy, L. Paris 1999]

A monoid M is Garside if

- 1 is the unique invertible element.
- M is left and right cancellative.
- Any 2 elements in M have a right and left lcm.
- Any 2 elements in M have a right and left gcd.

Definition of a Garside monoid [P. Dehornoy, L. Paris 1999]

A monoid M is Garside if
■ 1 is the unique invertible element.

- M is left and right cancellative.
- Any 2 elements in M have a right and left lcm.
- Any 2 elements in M have a right and left gcd.

■ M has a Garside element.

Definition of a Garside monoid [P. Dehornoy, L. Paris 1999]

A monoid M is Garside if
■ 1 is the unique invertible element.
■ M is left and right cancellative.

- Any 2 elements in M have a right and left lcm.
- Any 2 elements in M have a right and left gcd.
- M has a Garside element.

Δ in M is a Garside element if

- Δ is balanced,

Definition of a Garside monoid [P. Dehornoy, L. Paris 1999]

A monoid M is Garside if

■ 1 is the unique invertible element.

- M is left and right cancellative.
- Any 2 elements in M have a right and left lcm.
- Any 2 elements in M have a right and left gcd.

■ M has a Garside element.

Δ in M is a Garside element if

■ Δ is balanced, i.e. the set of left divisors of $\Delta=$ the set of its right divisors $=\operatorname{Div}(\Delta)$

Definition of a Garside monoid [P. Dehornoy, L. Paris 1999]

Fabienne
Chouraqui

Garside groups

A class of Garside groups the QYBE groups

A monoid M is Garside if

- 1 is the unique invertible element.
- M is left and right cancellative.
- Any 2 elements in M have a right and left lcm.
- Any 2 elements in M have a right and left gcd.

■ M has a Garside element.

Δ in M is a Garside element if

- Δ is balanced, i.e. the set of left divisors of $\Delta=$ the set of its right divisors $=\operatorname{Div}(\Delta)$
- $\operatorname{Div}(\Delta)$ is a finite generating set of M.

Definition of a Garside monoid [P. Dehornoy, L. Paris 1999]

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of
Garside groups the QYBE groups

A monoid M is Garside if

- 1 is the unique invertible element.
- M is left and right cancellative.
- Any 2 elements in M have a right and left lcm.
- Any 2 elements in M have a right and left gcd.

■ M has a Garside element.
Δ in M is a Garside element if

- Δ is balanced, i.e. the set of left divisors of $\Delta=$ the set of its right divisors $=\operatorname{Div}(\Delta)$
- $\operatorname{Div}(\Delta)$ is a finite generating set of M.

A Garside group is the group of fractions of a Garside monoid.

What are the advantages of being a Garside group?

Garside
groups and the
Yang-Baxter
equation
Fabienne
Chouraqui

Garside

 groupsA class of
Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability
of groups
Remarks and

What are the advantages of being a Garside group?

Garside
groups and the Yang-Baxter equation
Fabienne
Chouraqui
\section*{Garside} groups
A class of

If the group G is Garside, then
■ G is torsion-free [P.Dehornoy 1998]

What are the advantages of being a Garside group?

Garside groups and the Yang-Baxter equation
Fabienne
Chouraqui
\section*{Garside} groups

If the group G is Garside, then
■ G is torsion-free [P.Dehornoy 1998]

- G is bi-automatic [P.Dehornoy 2002]

What are the advantages of being a Garside group?

Garside

Fabienne
Chouraqui

Garside

 groupsA class of Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability of groups

If the group G is Garside, then
■ G is torsion-free [P.Dehornoy 1998]

- G is bi-automatic [P.Dehornoy 2002]
- G has word and conjugacy problem solvable

What are the advantages of being a Garside group?

Garside

Fabienne
Chouraqui

Garside groups

A class of
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability of groups

If the group G is Garside, then
■ G is torsion-free [P.Dehornoy 1998]

- G is bi-automatic [P.Dehornoy 2002]
- G has word and conjugacy problem solvable
- G has finite homological dimension [P.Dehornoy and Y.Lafont 2003][R.Charney, J. Meier and K. Whittlesey 2004]

What are the advantages of being a Garside group?

Garside groups and the Yang-Baxter
equation
Fabienne
Chouraqui

Garside groups

A class of
Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability of groups

If the group G is Garside, then

■ G is torsion-free [P.Dehornoy 1998]

- G is bi-automatic [P.Dehornoy 2002]
- G has word and conjugacy problem solvable
- G has finite homological dimension [P.Dehornoy and Y.Lafont 2003][R.Charney, J. Meier and K. Whittlesey 2004]

Examples of Garside groups

- Braid groups [Garside]
- Artin groups of finite type [Deligne, Brieskorn-Saito]
- Torus link groups [Picantin]

Some questions about the Garside gps

Garside
groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside

 groupsA class of
Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability
of groups
Remarks and questions to conclude

Do Garside groups admit a finite quotient that plays the same role S_{n} plays for B_{n} or the Coxeter groups for finite-type Artin groups?
question raised by D.Bessis.

Some questions about the Garside gps

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of
Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like

gps

Orderability
of groups
Remarks and questions to conclude

Do Garside groups admit a finite quotient that plays the same role S_{n} plays for B_{n} or the Coxeter groups for finite-type Artin groups?
question raised by D.Bessis.
Are all the Garside groups left-orderable?
question raised in book Ordering braids by P.Dehornoy, I.Dynnikov, D.Rolfsen, B.Wiest.

Right reversing method

Garside
groups and the
Yang-Baxter
equation
Fabienne

lcm of x_{1}^{2} and x_{4}^{2}

Right reversing method

Garside
groups and the Yang-Baxter
equation
Fabienne
Chouraqui
Garside groups
A class of
Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
\section*{gps}
Orderability
of groups
Remarks and questions to conclude

Right reversing method

Garside groups and the
Yang-Baxter equation
Fabienne
Chouraqui
Garside
groups
A class of
Garside
groups
the QYbe groups
- pure Garside Coxeter-like gps Orderability of groups Remarks and questions to conclude

Right reversing method

Garside groups and the Yang-Baxter
equation
Fabienne
Chouraqui
Garside groups
A class of
Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability
of groups

Icm of x_{1}^{2} and x_{4}^{2}

Right reversing method

Garside groups and the Yang-Baxter
equation
Fabienne
Chouraqui
Garside groups
A class of
Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability
of groups

Icm of x_{1}^{2} and x_{4}^{2}

In M

$$
\begin{aligned}
& x_{1} x_{3}=x_{4} x_{2} \\
& x_{2} x_{1}=x_{4} x_{3} \\
& x_{1} x_{2}=x_{3} x_{4} \\
& x_{1} x_{3}=x_{4} x_{2}
\end{aligned}
$$

Right reversing method

Garside groups and the Yang-Baxter equation
Fabienne

Icm of x_{1}^{2} and x_{4}^{2}

$$
\begin{aligned}
& \ln M \\
& x_{1} x_{3}=x_{4} x_{2} \text { The Icm is: } \\
& x_{2} x_{1}=x_{4} x_{3} \quad x_{1}^{2} x_{2}^{2}=x_{1}^{4}= \\
& x_{1} x_{2}=x_{3} x_{4} \quad x_{4}^{2} x_{3}^{2}=x_{4}^{4}=. . \\
& x_{1} x_{3}=x_{4} x_{2}
\end{aligned}
$$

The quantum Yang-Baxter equation - QYBE

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of Garside
groups
the QYBE groups
Δ-pure

Garside

Coxeter-like
gps
Orderability of groups

Let $R: V \otimes V \rightarrow V \otimes V$ be a linear operator, where V is a vector space.
The QYBE is the equality $R^{12} R^{13} R^{23}=R^{23} R^{13} R^{12}$ of linear transformations on $V \otimes V \otimes V$, where $R^{i j}$ means R acting on the i-th and j-th components.

The quantum Yang-Baxter equation - QYBE

Fabienne
Chouraqui

Let $R: V \otimes V \rightarrow V \otimes V$ be a linear operator, where V is a vector space.
The QYBE is the equality $R^{12} R^{13} R^{23}=R^{23} R^{13} R^{12}$ of linear transformations on $V \otimes V \otimes V$, where $R^{i j}$ means R acting on the i-th and j-th components.

A set-theoretical solution (X, S) of this equation [Drinfeld]

The quantum Yang-Baxter equation - QYBE

Fabienne
Chouraqui

Let $R: V \otimes V \rightarrow V \otimes V$ be a linear operator, where V is a vector space.
The QYBE is the equality $R^{12} R^{13} R^{23}=R^{23} R^{13} R^{12}$ of linear transformations on $V \otimes V \otimes V$, where $R^{i j}$ means R acting on the i-th and j-th components.

A set-theoretical solution (X, S) of this equation [Drinfeld]

■ V is a vector space spanned by a set X.

The quantum Yang-Baxter equation - QYBE

Fabienne
Chouraqui

Garside groups

A class of Garside groups the QYBE groups
\triangle-pure Garside

Coxeter-like gps

Orderability of groups

Let $R: V \otimes V \rightarrow V \otimes V$ be a linear operator, where V is a vector space.
The QYBE is the equality $R^{12} R^{13} R^{23}=R^{23} R^{13} R^{12}$ of linear transformations on $V \otimes V \otimes V$, where $R^{i j}$ means R acting on the i-th and j-th components.

A set-theoretical solution (X, S) of this equation [Drinfeld]

- V is a vector space spanned by a set X.
- R is the linear operator induced by a mapping $S: X \times X \rightarrow X \times X$, that satisfies $S^{12} S^{23} S^{12}=S^{23} S^{12} S^{23}$.

Properties of a solution (X, S)

Garside groups and the Yang-Baxter equation

Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and let S be defined in the following way: $S(i, j)=\left(g_{i}(j), f_{j}(i)\right)$, where $f_{i}, g_{i}: X \rightarrow X$.

Properties of a solution (X, S)

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability of groups

Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and let S be defined in the following way: $S(i, j)=\left(g_{i}(j), f_{j}(i)\right)$, where $f_{i}, g_{i}: X \rightarrow X$.

Proposition [Etingof, Schedler, Soloviev - 1999]

$■(X, S)$ is non-degenerate $\Leftrightarrow f_{i}$ and g_{i} are bijective, $1 \leq i \leq n$.

Properties of a solution (X, S)

Fabienne
Chouraqui

Garside

 groupsA class of Garside groups the QYBE groups

Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and let S be defined in the following way: $S(i, j)=\left(g_{i}(j), f_{j}(i)\right)$, where $f_{i}, g_{i}: X \rightarrow X$.

Proposition [P.Etingof, T.Schedler, A.Soloviev - 1999]

■ (X, S) is non-degenerate $\Leftrightarrow f_{i}$ and g_{i} are bijective, $1 \leq i \leq n$.
■ (X, S) is involutive $\Leftrightarrow S^{2}=I d_{X \times X}$.

Properties of a solution (X, S)

Fabienne
Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and let S be defined in the following way: $S(i, j)=\left(g_{i}(j), f_{j}(i)\right)$, where $f_{i}, g_{i}: X \rightarrow X$.

Proposition [P.Etingof, T.Schedler, A.Soloviev - 1999]

■ (X, S) is non-degenerate $\Leftrightarrow f_{i}$ and g_{i} are bijective, $1 \leq i \leq n$.
■ (X, S) is involutive $\Leftrightarrow S^{2}=I d_{X \times X}$.
■ (X, S) is braided $\Leftrightarrow S^{12} S^{23} S^{12}=S^{23} S^{12} S^{23}$

Properties of a solution (X, S)

Fabienne

Garside

 groupsA class of Garside groups the QYBE groups

Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and let S be defined in the following way: $S(i, j)=\left(g_{i}(j), f_{j}(i)\right)$, where $f_{i}, g_{i}: X \rightarrow X$.

Proposition [P.Etingof, T.Schedler, A.Soloviev - 1999]

■ (X, S) is non-degenerate $\Leftrightarrow f_{i}$ and g_{i} are bijective, $1 \leq i \leq n$.
$\square(X, S)$ is involutive $\Leftrightarrow g_{g_{i}(j)} f_{j}(i)=i$ and $f_{f_{j}(i)} g_{i}(j)=j$, $1 \leq i, j \leq n$.
$\square(X, S)$ is braided $\Leftrightarrow g_{i} g_{j}=g_{g_{i}(j)} g_{f_{j}(i)}$ and $f_{j} f_{i}=f_{f_{j}(i)} f_{g_{i}(j)}$ and $f_{g_{f_{j}(i)}(k)} g_{i}(j)=g_{g_{g_{j}(k)}(i)} f_{k}(j), 1 \leq i, j, k \leq n$.

The QYBE group: the structure group of (X, S)

Garside groups and the Yang-Baxter equation
Fabienne
Chouraqui

Assumption: The pair (X, S) is a non-degenerate, involutive and braided. We call it a non-degenerate, involutive set-solution.

Garside

 groupsA class of Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability
of groups
Remarks and questions to conclude

The QYBE group: the structure group of (X, S)

Garside groups and the Yang-Baxter equation
Fabienne
Chouraqui

Assumption: The pair (X, S) is a non-degenerate, involutive and braided. We call it a non-degenerate, involutive set-solution.

Garside

 groupsA class of Garside groups the QYBE groups

The structure group G of (X, S) [Etingof, Schedler, Soloviev]

- The generators: $X=\left\{x_{1}, x_{2}, . ., x_{n}\right\}$.

The QYBE group: the structure group of (X, S)

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of Garside groups the QYBE groups \triangle-pure Garside

Coxeter-like gps

Orderability of groups conclude

Assumption: The pair (X, S) is a non-degenerate, involutive and braided. We call it a non-degenerate, involutive set-solution.

The structure group G of (X, S) [Etingof, Schedler, Soloviev]

- The generators: $X=\left\{x_{1}, x_{2}, . ., x_{n}\right\}$.
- The defining relations: $x_{i} x_{j}=x_{k} x_{l}$ whenever $S(i, j)=(k, l)$

The QYBE group: the structure group of (X, S)

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of Garside groups the QYBE groups
\triangle-pure Garside

Coxeter-like
gps
Orderability of groups conclude

Assumption: The pair (X, S) is a non-degenerate, involutive and braided. We call it a non-degenerate, involutive set-solution.

The structure group G of (X, S) [Etingof, Schedler, Soloviev]

- The generators: $X=\left\{x_{1}, x_{2}, . ., x_{n}\right\}$.
- The defining relations: $x_{i} x_{j}=x_{k} x_{l}$ whenever $S(i, j)=(k, l)$

There are exactly $\frac{n(n-1)}{2}$ defining relations.

Example 1

Garside
groups and the
Yang-Baxter
equation
Fabienne
Chouraqui
Garside groups
A class of Garside groups
the QYBE groups
Δ-pure Garside
Coxeter-like
gps
Orderability of groups

$$
\text { Let } X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} .
$$

The functions that define S
Let $f_{1}=g_{1}=(1,2,3,4)(5)$
$f_{2}=g_{2}=(1,4,3,2)(5)$
$f_{3}=g_{3}=(1,2,3,4)(5)$
$f_{4}=g_{4}=(1,4,3,2)(5)$
$f_{5}=g_{5}=(1)(2)(3)(4)(5)$
(X, S) is a non-degenerate, involutive set-solution.

Example 1

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of
Garside
groups
the QYBE groups
Δ-pure Garside

Coxeter-like

gps

Orderability of groups

Remarks and questions to conclude

$$
\text { Let } X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} .
$$

The functions that define S
Let $f_{1}=g_{1}=(1,2,3,4)(5)$
$f_{2}=g_{2}=(1,4,3,2)(5)$
$f_{3}=g_{3}=(1,2,3,4)(5)$
$f_{4}=g_{4}=(1,4,3,2)(5)$
$f_{5}=g_{5}=(1)(2)(3)(4)(5)$
(X, S) is a non-degenerate, involutive set-solution.
The defining relations in G and in M (the monoid with the same pres.)

$$
\begin{array}{lllll}
x_{1}^{2}=x_{2}^{2} & x_{1} x_{2}=x_{3} x_{4} & x_{1} x_{3}=x_{4} x_{2} & x_{1} x_{5}=x_{5} x_{1} & x_{4} x_{5}=x_{5} x_{4} \\
x_{3}^{2}=x_{4}^{2} & x_{2} x_{1}=x_{4} x_{3} & x_{2} x_{4}=x_{3} x_{1} & x_{2} x_{5}=x_{5} x_{2} & x_{3} x_{5}=x_{5} x_{3}
\end{array}
$$

The correspondence between QYBE groups and Garside groups

Garside groups and the Yang-Baxter equation
Fabienne
Chouraqui

Theorem (F.C. 2009)

Let (X, S) be a non-degenerate, involutive set-solution with structure group G. Then G is Garside.

The correspondence between QYBE groups and Garside groups

Fabienne
Chouraqui

Theorem (F.C. 2009)

Let (X, S) be a non-degenerate, involutive set-solution with structure group G. Then G is Garside.

Assume that $\operatorname{Mon}\langle X \mid R\rangle$ is a Garside monoid such that:

- the cardinality of R is $n(n-1) / 2$
- each side of a relation in R has length 2.
- if the word $x_{i} x_{j}$ appears in R, then it appears only once.

The correspondence between QYBE groups and Garside groups

Fabienne
Chouraqui

Theorem (F.C. 2009)

Let (X, S) be a non-degenerate, involutive set-solution with structure group G. Then G is Garside.

Assume that $\operatorname{Mon}\langle X \mid R\rangle$ is a Garside monoid such that:

- the cardinality of R is $n(n-1) / 2$
- each side of a relation in R has length 2.
- if the word $x_{i} x_{j}$ appears in R, then it appears only once.

Then $G=G p\langle X \mid R\rangle$ is the structure group of a non-degenerate, involutive set-solution (X, S), with $|X|=n$.

Correspondence between the right complement and the functions defining the solution

Garside groups and the Yang-Baxter equation
Fabienne
Chouraqui

Garside groups

right complement \Leftrightarrow functions

Expressing $x_{i} \backslash x_{j}$ in terms of the functions g_{i} :
Let x_{i}, x_{j} be different elements in X.
Then $x_{i} \backslash x_{j}=g_{i}^{-1}(j)$.

Correspondence between the right complement and the functions defining the solution

Garside groups and the Yang-Baxter equation
Fabienne
Chouraqui

Garside groups

A class of Garside groups the QYBE groups

right complement \Leftrightarrow functions

Expressing $x_{i} \backslash x_{j}$ in terms of the functions g_{i} :
Let x_{i}, x_{j} be different elements in X.
Then $x_{i} \backslash x_{j}=g_{i}^{-1}(j)$.

x_{j}

Correspondence between the right complement and the functions defining the solution

Garside groups and the Yang-Baxter equation
Fabienne
Chouraqui

Garside groups

A class of Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like

right complement \Leftrightarrow functions

Expressing $x_{i} \backslash x_{j}$ in terms of the functions g_{i} :
Let x_{i}, x_{j} be different elements in X.
Then $x_{i} \backslash x_{j}=g_{i}^{-1}(j)$.

Some special properties of the structure monoids

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups
Δ-pure
Garside
Coxeter-like gps

Orderability of groups conclude

Theorem (F.C. 2009)
Let (X, S) be a non-degenerate, involutive set-solution of the quantum Yang-Baxter equation with structure group G. Assume the cardinality of X is n. Then

Some special properties of the structure monoids

 groups and the Yang-Baxter equationFabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability of groups conclude

Theorem (F.C. 2009)
Let (X, S) be a non-degenerate, involutive set-solution of the quantum Yang-Baxter equation with structure group G. Assume the cardinality of X is n. Then

- The right Icm of the generators is a Garside element Δ.

Some special properties of the structure monoids

Garside

 groups and the Yang-Baxter equationFabienne
Chouraqui

Garside groups

A class of
Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability of groups

Theorem (F.C. 2009)
Let (X, S) be a non-degenerate, involutive set-solution of the quantum Yang-Baxter equation with structure group G. Assume the cardinality of X is n. Then

- The right Icm of the generators is a Garside element Δ.
- The Garside element Δ has length n.

Some special properties of the structure monoids

Garside

Fabienne
Chouraqui

Garside groups

A class of Garside groups the QYBE groups

Theorem (F.C. 2009)
Let (X, S) be a non-degenerate, involutive set-solution of the quantum Yang-Baxter equation with structure group G. Assume the cardinality of X is n. Then

- The right lcm of the generators is a Garside element Δ.
- The Garside element Δ has length n.
- The (co)homological dimension of the structure group G is n. [P.Dehornoy, Y.Laffont 2003] [R.Charney, J.Meier, K.Whittlesey 2004] [J. McCammond]

Characterization of the simples

Garside
groups and the
Yang-Baxter
equation
Fabienne
Chouraqui
Garside
groups
A class of
Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability
of groups
Remarks and

Characterization of the simples

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside

 groupsA class of Garside
groups
the QYBE groups
\triangle-pure
Garside
Coxeter-like
gps
Orderability
of groups
Remarks and questions to conclude

Who are the simples?

- A simple element s is the right Icm of some subset of generators X_{I}.

Characterization of the simples

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of Garside
groups
the QYBE groups
\triangle-pure
Garside
Coxeter-like
gps
Orderability of groups

Who are the simples?

- A simple element s is the right Icm of some subset of generators X_{I}.
- A simple element s is the left Icm of some subset of generators X_{r}.

Characterization of the simples

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of Garside
groups
the QYBE groups
Δ-pure

Garside

Coxeter-like
gps
Orderability of groups

Who are the simples?

- A simple element s is the right Icm of some subset of generators X_{I}.
- A simple element s is the left Icm of some subset of generators X_{r}.

What is the length of a simple?

Characterization of the simples

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of Garside
groups
the QYBE groups
\triangle-pure

Garside

Coxeter-like
gps
Orderability of groups conclude

Who are the simples?

- A simple element s is the right Icm of some subset of generators X_{l}.
- A simple element s is the left Icm of some subset of generators X_{r}.

What is the length of a simple?

- The length of s is equal to $\left|X_{l}\right|=\left|X_{r}\right|$.

Characterization of the simples

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of Garside
groups
the QYBE groups
\triangle-pure
Garside
Coxeter-like
gps
Orderability of groups conclude

Who are the simples?

- A simple element s is the right Icm of some subset of generators X_{l}.
- A simple element s is the left Icm of some subset of generators X_{r}.

What is the length of a simple?

- The length of s is equal to $\left|X_{l}\right|=\left|X_{r}\right|$.
- The length of Δ is equal to $|X|$.

Characterization of the simples

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of
Garside
groups
the QYBE groups
\triangle-pure
Garside
Coxeter-like
gps
Orderability
of groups
Remarks and questions to conclude

Who are the simples?

- A simple element s is the right Icm of some subset of generators X_{l}.
- A simple element s is the left Icm of some subset of generators X_{r}.

What is the length of a simple?

- The length of s is equal to $\left|X_{I}\right|=\left|X_{r}\right|$.
- The length of Δ is equal to $|X|$.

The set of simples is equal to $\bar{X}^{\vee} \cup\{1\}$

Decomposability of a solution (X, S)

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of Garside groups the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability of groups

Let (X, S) be a non-degenerate, involutive set-solution.

Definition

(X, S) is decomposable if it is the union of two nonempty disjoint non-degenerate invariant subsets. Otherwise, (X, S) is indecomposable.

Decomposability of a solution (X, S)

Fabienne
Chouraqui

Garside groups

A class of
Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability of groups

Let (X, S) be a non-degenerate, involutive set-solution.

Definition

(X, S) is decomposable if it is the union of two nonempty disjoint non-degenerate invariant subsets. Otherwise, (X, S) is indecomposable.

Theorem (Etingof,Schedler,Soloviev)
(X, S) is indecomposable if and only if G acts transitively on X, where $x_{i} \rightarrow g_{i}^{-1}$ is a right action of G on X.

Example 1

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability of groups

Remarks and questions to conclude

Let $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ and S as before.

(X, S) is a decomposable solution

■ $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cup\left\{x_{5}\right\}$.

- $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $\left\{x_{5}\right\}$ are invariant subsets.

Example 1

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of Garside groups
the QYBE groups

Let $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ and S as before.
(X, S) is a decomposable solution
■ $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cup\left\{x_{5}\right\}$.

- $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $\left\{x_{5}\right\}$ are invariant subsets.

The defining relations in G and in M

$$
\begin{aligned}
x_{1}^{2} & =x_{2}^{2} & x_{3}^{2} & =x_{4}^{2} \\
x_{1} x_{2} & =x_{3} x_{4} & & x_{1} x_{5}=x_{5} x_{1} \\
x_{1} x_{3} & =x_{4} x_{2} & & \left.x_{2} x_{5}=x_{5}=x_{5} x_{5}\right) \\
x_{2} x_{4} & =x_{3} x_{1} & & x_{3} x_{5}=x_{5} x_{3} \\
x_{2} x_{1} & =x_{4} x_{3} & & x_{4} x_{5}=x_{5} x_{4}
\end{aligned}
$$

Example 2

Garside
groups and the Yang-Baxter equation
Fabienne Chouraqui
Garside groups
A class of Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability
of groups
Remarks and
questions to
conclude

$$
\text { Let } X=\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\} .
$$

$$
\begin{array}{ll}
g_{0}=(0)(1)(2,3) & g_{1}=(1,2,0,3) \\
g_{2}=(2)(3)(0,1) & g_{3}=(1,3,0,2) \tag{1}
\end{array}
$$

Example 2

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of Garside groups the QYBE groups

$$
\text { Let } X=\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\} .
$$

$$
\begin{equation*}
g_{0}=(0)(1)(2,3) \quad g_{1}=(1,2,0,3) \tag{1}
\end{equation*}
$$

$$
g_{2}=(2)(3)(0,1) \quad g_{3}=(1,3,0,2)
$$

The solution is indecomposable with defining relations:

$$
\begin{array}{ll}
x_{1} x_{1}=x_{2} x_{0} & x_{1} x_{0}=x_{3} x_{2} \\
x_{0} x_{3}=x_{2} x_{1} & x_{1} x_{2}=x_{0} x_{1} \tag{2}\\
x_{2} x_{3}=x_{3} x_{0} & x_{3}^{2}=x_{0} x_{2}
\end{array}
$$

Δ-pure Garside monoids [Picantin 2001]

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability of groups

Remarks and questions to conclude

Definition of a Δ-pure Garside monoid

Let M be a Garside monoid. Then M is Δ-pure if for every x, y in X, it holds that $\Delta_{x}=\Delta_{y}$,
where $\Delta_{x}=\vee(M \backslash x)=\vee\{w \backslash x ; w \in M\}$.

Δ-pure Garside monoids [Picantin 2001]

Fabienne
Chouraqui

Garside groups

A class of
Garside
groups
the QYBE groups
Δ-pure Garside

Coxeter-like
gps
Orderability
of groups
Remarks and questions to conclude

Definition of a Δ-pure Garside monoid

Let M be a Garside monoid. Then M is Δ-pure if for every x, y in X, it holds that $\Delta_{x}=\Delta_{y}$, where $\Delta_{x}=\vee(M \backslash x)=\vee\{w \backslash x ; w \in M\}$.

Theorem (Picantin 2001)

If M is a Δ-pure Garside monoid, Δ is its Garside element and G its group of fractions. Then the center of M (resp. of G) is the infinite cyclic submonoid (resp. subgroup) generated by Δ^{e}, where e is a natural number (the order of the conjugation automorphism by Δ).

Which structure monoids are Δ-pure Garside ?

Garside groups and the Yang-Baxter
equation
Fabienne
Chouraqui

Garside groups

A class of Garside
groups
the QYBE groups
Δ-pure Garside

Coxeter-like
gps
Orderability of groups

Theorem (F.C. 2009)

Let (X, S) be a non-degenerate, involutive set-solution of the quantum Yang-Baxter equation with structure group G. Then (X, S) is indecomposable if and only if G is Δ-pure Garside.

Which structure monoids are Δ-pure Garside ?

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of Garside groups the QYBE groups
Δ-pure Garside

Coxeter-like
gps
Orderability of groups conclude

Theorem (F.C. 2009)

Let (X, S) be a non-degenerate, involutive set-solution of the quantum Yang-Baxter equation with structure group G. Then (X, S) is indecomposable if and only if G is Δ-pure Garside.

A consequence

If (X, S) is indecomposable then the center of G is cyclic, generated by some exponent of Δ.

Example 2

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside

 groupsA class of Garside groups the QYBE groups
Δ-pure
Garside
Coxeter-like gps

Orderability of groups

$$
\text { Let } X=\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\} .
$$

$$
\begin{array}{ll}
g_{0}=(0)(1)(2,3) & g_{1}=(1,2,0,3) \\
g_{2}=(2)(3)(0,1) & g_{3}=(1,3,0,2) \tag{3}
\end{array}
$$

The solution is indecomposable with defining relations:

$$
\begin{array}{ll}
x_{1} x_{1}=x_{2} x_{0} & x_{1} x_{0}=x_{3} x_{2} \\
x_{0} x_{3}=x_{2} x_{1} & x_{1} x_{2}=x_{0} x_{1} \tag{4}\\
x_{2} x_{3}=x_{3} x_{0} & x_{3}^{2}=x_{0} x_{2}
\end{array}
$$

Example 2

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of Garside groups the QYBE groups Δ-pure Garside

Coxeter-like

gps

Orderability of groups

Remarks and questions to conclude

$$
\text { Let } X=\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\} .
$$

$$
\begin{array}{ll}
g_{0}=(0)(1)(2,3) & g_{1}=(1,2,0,3) \\
g_{2}=(2)(3)(0,1) & g_{3}=(1,3,0,2) \tag{3}
\end{array}
$$

The solution is indecomposable with defining relations:

$$
\begin{array}{ll}
x_{1} x_{1}=x_{2} x_{0} & x_{1} x_{0}=x_{3} x_{2} \\
x_{0} x_{3}=x_{2} x_{1} & x_{1} x_{2}=x_{0} x_{1} \tag{4}\\
x_{2} x_{3}=x_{3} x_{0} & x_{3}^{2}=x_{0} x_{2}
\end{array}
$$

The center of G is generated by $\Delta=\left(x_{0} x_{1}\right)^{2}=\left(x_{2} x_{3}\right)^{2}, e=1$.

The BRAID group B_{n}

The BRAID group B_{n}

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside

 groupsA class of Garside groups the QYBE groups Δ-pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

The BRAID

group?

The BRAID group
$B_{3}=\left\langle\sigma_{1}, \sigma_{2} \mid \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}\right\rangle$

The original Coxeter group construction

Garside groups and the
Yang-Baxter
equation
Fabienne
Chouraqui

Garside groups

A class of Garside
groups
the QYBE groups
Δ-pure

Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

$$
\begin{aligned}
& \exists \text { epimorphism } B_{3} \rightarrow S_{3}: \\
& \sigma_{1} \mapsto(1,2) ; \sigma_{2} \mapsto(2,3)
\end{aligned}
$$

The original Coxeter group construction

Garside groups and the Yang-Baxter
equation
Fabienne
Chouraqui

Garside groups

A class of Garside groups the QYBE groups Δ-pure

Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Fabienne Chouraqui
Garside groups and the Yang-Baxter equation

The original Coxeter group construction

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of Garside groups the QYBE groups Δ-pure

Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

$\ln B_{3}: \Delta=\sigma_{1} \sigma_{2} \sigma_{1}$
$\operatorname{Div}(\Delta)=$
$\left\{\sigma_{1}, \sigma_{2}, \sigma_{1} \sigma_{2}, \sigma_{2} \sigma_{1}, \sigma_{1} \sigma_{2} \sigma_{1}\right\}$

The original Coxeter group construction

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of Garside groups the QYBE groups Δ-pure

Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

$\ln B_{3}: \Delta=\sigma_{1} \sigma_{2} \sigma_{1}$
$\operatorname{Div}(\Delta)=$
$\left\{\sigma_{1}, \sigma_{2}, \sigma_{1} \sigma_{2}, \sigma_{2} \sigma_{1}, \sigma_{1} \sigma_{2} \sigma_{1}\right\}$
$S_{3} \leftrightarrow \operatorname{Div}(\Delta)$

The original Coxeter group construction

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of

Garside

groups
the QYBE groups
Δ-pure

Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

$$
\begin{aligned}
& \exists \text { epimorphism } B_{3} \rightarrow S_{3}: \\
& \sigma_{1} \mapsto(1,2) ; \sigma_{2} \mapsto(2,3)
\end{aligned}
$$

$\ln B_{3}: \Delta=\sigma_{1} \sigma_{2} \sigma_{1}$
$\operatorname{Div}(\Delta)=$
$\left\{\sigma_{1}, \sigma_{2}, \sigma_{1} \sigma_{2}, \sigma_{2} \sigma_{1}, \sigma_{1} \sigma_{2} \sigma_{1}\right\}$
$S_{3} \leftrightarrow \operatorname{Div}(\Delta)$

The original Coxeter group

\exists a short exact sequence: $1 \rightarrow P_{n} \rightarrow B_{n} \rightarrow S_{n} \rightarrow 1$

The original Coxeter group construction

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of

Garside

groups
the QYBE groups
Δ-pure

Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

$$
\begin{aligned}
& \exists \text { epimorphism } B_{3} \rightarrow S_{3}: \\
& \sigma_{1} \mapsto(1,2) ; \sigma_{2} \mapsto(2,3)
\end{aligned}
$$

$\ln B_{3}: \Delta=\sigma_{1} \sigma_{2} \sigma_{1}$
$\operatorname{Div}(\Delta)=$
$\left\{\sigma_{1}, \sigma_{2}, \sigma_{1} \sigma_{2}, \sigma_{2} \sigma_{1}, \sigma_{1} \sigma_{2} \sigma_{1}\right\}$
$S_{3} \leftrightarrow \operatorname{Div}(\Delta)$

The original Coxeter group

\exists a short exact sequence: $1 \rightarrow P_{n} \rightarrow B_{n} \rightarrow S_{n} \rightarrow 1$
\exists a bijection
$S_{n} \leftrightarrow \operatorname{Div}(\Delta)$

Do Coxeter-like quotient groups exist for Garside groups?

Garside
groups and the Yang-Baxter equation
Fabienne
\section*{Garside}
groups
A class of
Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability
of groups
Remarks and questions to conclude

The question raised by D.Bessis

Do Coxeter-like quotient groups exist for Garside groups?

Garside groups and the Yang-Baxter equation
Fabienne
Chouraqui

Garside groups

A class of
Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability
of groups
Remarks and questions to conclude

Do Coxeter-like quotient groups exist for Garside groups?

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of
Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability
of groups
Remarks and questions to conclude

The question raised by D.Bessis
Do Garside groups admit a finite quotient that plays the same role S_{n} plays for B_{n} or the Coxeter groups for finite-type Artin groups?

Our answer: yes for QYBE groups with additional condition (C)

Do Coxeter-like quotient groups exist for Garside groups?

Fabienne
Chouraqui

Garside groups

A class of
Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability
of groups
Remarks and questions to conclude

The question raised by D.Bessis

Do Garside groups admit a finite quotient that plays the same role S_{n} plays for B_{n} or the Coxeter groups for finite-type Artin groups?

Our answer: yes for QYBE groups with additional condition (C)

Dehornoy's extension 2014: condition (C) can be relaxed

QYBE groups with condition (C) admit Coxeter-like quotient groups

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside

 groupsA class of Garside groups the QYBE groups
Δ-pure

Garside

Coxeter-like
gps
Orderability of groups

Theorem (F.C and E. Godelle 2013)

Let (X, S) be a non-degenerate, involutive set-solution of the QYBE with structure group G and $|X|=n$. Assume (X, S) satisfies the condition (C). Then there exits a short exact sequence: $1 \rightarrow N \rightarrow G \rightarrow W \rightarrow 1$ satisfying

QYBE groups with condition (C) admit Coxeter-like quotient groups

Theorem (F.C and E. Godelle 2013)

Let (X, S) be a non-degenerate, involutive set-solution of the QYBE with structure group G and $|X|=n$. Assume (X, S) satisfies the condition (C). Then there exits a short exact sequence: $1 \rightarrow N \rightarrow G \rightarrow W \rightarrow 1$ satisfying

- N is a normal free abelian group of rank n

QYBE groups with condition (C) admit Coxeter-like quotient groups

Theorem (F.C and E. Godelle 2013)

Let (X, S) be a non-degenerate, involutive set-solution of the QYBE with structure group G and $|X|=n$. Assume (X, S) satisfies the condition (C). Then there exits a short exact sequence: $1 \rightarrow N \rightarrow G \rightarrow W \rightarrow 1$ satisfying

- N is a normal free abelian group of rank n
- There exists a bijection between W and $\operatorname{Div}(\Delta)$

QYBE groups with condition (C) admit Coxeter-like quotient groups

Theorem (F.C and E. Godelle 2013)

Let (X, S) be a non-degenerate, involutive set-solution of the QYBE with structure group G and $|X|=n$. Assume (X, S) satisfies the condition (C). Then there exits a short exact sequence: $1 \rightarrow N \rightarrow G \rightarrow W \rightarrow 1$ satisfying

- N is a normal free abelian group of rank n
- There exists a bijection between W and $\operatorname{Div}(\Delta)$
- W is a finite group of order 2^{n}

QYBE groups with condition (C) admit Coxeter-like quotient groups

Fabienne
Chouraqui

Theorem (F.C and E.Godelle 2013)

Let (X, S) be a non-degenerate, involutive set-solution of the QYBE with structure group G and $|X|=n$. Assume (X, S) satisfies the condition (C). Then there exits a short exact sequence: $1 \rightarrow N \rightarrow G \rightarrow W \rightarrow 1$ satisfying

- N is a normal free abelian group of rank n
- There exists a bijection between W and $\operatorname{Div}(\Delta)$
- W is a finite group of order 2^{n}

What is condition (C)?

Let $x_{i}, x_{j} \in X$. If $S(i, j)=(i, j)$, then $f_{i} f_{j}=g_{i} g_{j}=I d_{X}$.

Coxeter-like group for Example 2

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of
Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

$$
\begin{align*}
& \text { Let } X=\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}, g_{0}=(0)(1)(2,3), g_{1}= \\
& (1,2,0,3), \\
& g_{2}=(2)(3)(0,1), g_{3}=(1,3,0,2) \tag{5}\\
& \qquad \begin{array}{lll}
x_{1}^{2}=x_{2} x_{0} & x_{3}^{2}=x_{0} x_{2} & x_{0} x_{1}=x_{1} x_{2} \\
x_{1} x_{0}=x_{3} x_{2} & x_{0} x_{3}=x_{2} x_{1} & x_{2} x_{3}=x_{3} x_{0}
\end{array}
\end{align*}
$$

There are 4 trivial relations:

$$
x_{0} x_{0}=x_{0} x_{0}, x_{1} x_{3}=x_{1} x_{3}, x_{2} x_{2}=x_{2} x_{2}, x_{3} x_{1}=x_{3} x_{1}
$$

The solution satisfies (C): $g_{0}^{2}=g_{1} g_{3}=g_{3} g_{1}=g_{2}^{2}=I d x$

$$
N=\left\langle x_{0} x_{0}, x_{1} x_{3}, x_{2} x_{2}, x_{3} x_{1}\right\rangle \simeq \mathbb{Z}^{4}, N \triangleleft G, \text { and } W \simeq G / N
$$

Coxeter-like group for other examples: $X=\left\{x_{0}, x_{1}, x_{2}\right\}$

Garside groups and the Yang-Baxter equation
Fabienne
Chouraqui
Garside groups
A class of Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability of groups
Remarks and questions to conclude

Coxeter-like group for other examples: $X=\left\{x_{0}, x_{1}, x_{2}\right\}$

Garside

 groups and the Yang-Baxter equationFabienne
Chouraqui

Garside groups

A class of Garside
groups
the QYBE groups
Δ-pure

Garside

Coxeter-like gps

Orderability of groups

A square-free solution

$$
\begin{aligned}
& g_{0}=f_{0}=g_{1}=f_{1}=l d \\
& g_{2}=f_{2}=(0,1) \\
& x_{2} x_{0}=x_{1} x_{2}, x_{2} x_{1}= \\
& x_{0} x_{2}, x_{0} x_{1}=x_{1} x_{0}
\end{aligned}
$$

There are 3 trivial relations:

$$
x_{0}^{2}=x_{0}^{2}, x_{1}^{2}=x_{1}^{2}, x_{2}^{2}=x_{2}^{2}
$$

Coxeter-like group for other examples: $X=\left\{x_{0}, x_{1}, x_{2}\right\}$

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of Garside groups
the QYBE groups
Δ-pure

Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

A square-free solution

$$
\begin{aligned}
& g_{0}=f_{0}=g_{1}=f_{1}=l d \\
& g_{2}=f_{2}=(0,1) \\
& x_{2} x_{0}=x_{1} x_{2}, x_{2} x_{1}= \\
& x_{0} x_{2}, x_{0} x_{1}=x_{1} x_{0}
\end{aligned}
$$

There are 3 trivial relations:

$$
x_{0}^{2}=x_{0}^{2}, x_{1}^{2}=x_{1}^{2}, x_{2}^{2}=x_{2}^{2}
$$

$N=\left\langle x_{0}^{2}, x_{1}^{2}, x_{2}^{2}\right\rangle \simeq \mathbb{Z}^{3}, N \triangleleft G$, and $W \simeq G / N$

Coxeter-like group for other examples: $X=\left\{x_{0}, x_{1}, x_{2}\right\}$

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of
Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Example from Dehornoy's

 paper$$
\begin{aligned}
& g_{0}=g_{1}=g_{2}=(0,1,2) \\
& f_{0}=f_{1}=f_{2}=(0,2,1) \\
& x_{0}^{2}=x_{1} x_{2}, x_{1}^{2}=x_{2} x_{0}, x_{2}^{2}= \\
& x_{0} x_{1}
\end{aligned}
$$

There are 3 trivial relations:

$$
x_{0}^{2}=x_{0}^{2}, x_{1}^{2}=x_{1}^{2}, x_{2}^{2}=x_{2}^{2}
$$

A square-free solution

$$
\begin{aligned}
& g_{0}=f_{0}=g_{1}=f_{1}=I d \\
& g_{2}=f_{2}=(0,1) \\
& x_{2} x_{0}=x_{1} x_{2}, x_{2} x_{1}= \\
& x_{0} x_{2}, x_{0} x_{1}=x_{1} x_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \quad N=\left\langle x_{0}^{2}, x_{1}^{2}, x_{2}^{2}\right\rangle \simeq \mathbb{Z}^{3}, N \triangleleft G, \\
& \text { and } W \simeq G / N
\end{aligned}
$$

Coxeter-like group for other examples: $X=\left\{x_{0}, x_{1}, x_{2}\right\}$

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of
Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability
of groups
Remarks and questions to conclude

Example from Dehornoy's

 paper$$
\begin{aligned}
& g_{0}=g_{1}=g_{2}=(0,1,2) \\
& f_{0}=f_{1}=f_{2}=(0,2,1) \\
& x_{0}^{2}=x_{1} x_{2}, x_{1}^{2}=x_{2} x_{0}, x_{2}^{2}= \\
& x_{0} x_{1}
\end{aligned}
$$

There are 3 trivial relations:
$x_{0}^{2}=x_{0}^{2}, x_{1}^{2}=x_{1}^{2}, x_{2}^{2}=x_{2}^{2}$
The 3 trivial: $x_{0} x_{2}=$
$x_{0} x_{2}, x_{2} x_{1}=x_{2} x_{1}, x_{1} x_{0}=x_{1} x_{0}$
$N=\left\langle x_{0}^{2}, x_{1}^{2}, x_{2}^{2}\right\rangle \simeq \mathbb{Z}^{3}, N \triangleleft G$, and $W \simeq G / N$

Coxeter-like group for other examples: $X=\left\{x_{0}, x_{1}, x_{2}\right\}$

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of
Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability of groups

Remarks and questions to conclude

Example from Dehornoy's

 paper$$
\begin{aligned}
& g_{0}=g_{1}=g_{2}=(0,1,2) \\
& f_{0}=f_{1}=f_{2}=(0,2,1) \\
& x_{0}^{2}=x_{1} x_{2}, x_{1}^{2}=x_{2} x_{0}, x_{2}^{2}= \\
& x_{0} x_{1}
\end{aligned}
$$

There are 3 trivial relations:
$x_{0}^{2}=x_{0}^{2}, x_{1}^{2}=x_{1}^{2}, x_{2}^{2}=x_{2}^{2}$
The 3 trivial: $x_{0} x_{2}=$
$x_{0} x_{2}, x_{2} x_{1}=x_{2} x_{1}, x_{1} x_{0}=x_{1} x_{0}$
$N=\left\langle x_{0}^{2}, x_{1}^{2}, x_{2}^{2}\right\rangle \simeq \mathbb{Z}^{3}, N \triangleleft G$, and $W \simeq G / N$
$N=\left\langle x_{0} x_{2} x_{1}, x_{2} x_{1} x_{0}, x_{1} x_{0} x_{2}\right\rangle \simeq$ $\mathbb{Z}^{3}, N \triangleleft G$, and $W \simeq G / N . W$ is in bijection with $\operatorname{Div}\left(\triangle^{3}\right)$.

Orderability of groups

Garside
groups and the Yang-Baxter equation
Fabienne
Chouraqui

A group G is left-orderable

if there exists a strict total ordering \prec of its elements which is invariant under left multiplication:
$g \prec h \Longrightarrow f g \prec f h, \forall f, g, h \in G$.

Garside

 groupsA class of

Orderability of groups

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of
Garside
groups
the QYBE groups
Δ-pure

Garside

Coxeter-like
gps
Orderability of groups conclude

A group G is left-orderable
if there exists a strict total ordering \prec of its elements which is invariant under left multiplication: $g \prec h \Longrightarrow f g \prec f h, \forall f, g, h \in G$.

G is bi-orderable

if \prec is invariant under left and right multiplication: $g \prec h \Longrightarrow f g k \prec f h k, \forall f, g, h, k \in G$.

Orderability of groups

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of
Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability of groups conclude

A group G is left-orderable
if there exists a strict total ordering \prec of its elements which is invariant under left multiplication:
$g \prec h \Longrightarrow f g \prec f h, \forall f, g, h \in G$.

G is bi-orderable

if \prec is invariant under left and right multiplication: $g \prec h \Longrightarrow f g k \prec f h k, \forall f, g, h, k \in G$.

Examples of bi-orderable and left-orderable groups

Bi-orderable: free groups,

Orderability of groups

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of
Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability of groups conclude

A group G is left-orderable
if there exists a strict total ordering \prec of its elements which is invariant under left multiplication:
$g \prec h \Longrightarrow f g \prec f h, \forall f, g, h \in G$.

G is bi-orderable

if \prec is invariant under left and right multiplication: $g \prec h \Longrightarrow f g k \prec f h k, \forall f, g, h, k \in G$.

Examples of bi-orderable and left-orderable groups

Bi-orderable: free groups,torsion-free abelian groups,

Orderability of groups

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of
Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability of groups

Remarks and questions to conclude

A group G is left-orderable
if there exists a strict total ordering \prec of its elements which is invariant under left multiplication:
$g \prec h \Longrightarrow f g \prec f h, \forall f, g, h \in G$.

G is bi-orderable

if \prec is invariant under left and right multiplication:
$g \prec h \Longrightarrow f g k \prec f h k, \forall f, g, h, k \in G$.

Examples of bi-orderable and left-orderable groups

Bi-orderable: free groups,torsion-free abelian groups, pure braid groups,

Orderability of groups

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of
Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability of groups

Remarks and questions to conclude

A group G is left-orderable
if there exists a strict total ordering \prec of its elements which is invariant under left multiplication:
$g \prec h \Longrightarrow f g \prec f h, \forall f, g, h \in G$.

G is bi-orderable

if \prec is invariant under left and right multiplication:
$g \prec h \Longrightarrow f g k \prec f h k, \forall f, g, h, k \in G$.

Examples of bi-orderable and left-orderable groups

Bi-orderable: free groups,torsion-free abelian groups,pure braid groups, f.g of surfaces except the Klein bottle group and the projective plane's group
Left-orderable: knot groups,

Orderability of groups

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of
Garside
groups
the QYBE groups
Δ-pure Garside

Coxeter-like
gps
Orderability of groups

Remarks and questions to conclude

A group G is left-orderable
if there exists a strict total ordering \prec of its elements which is invariant under left multiplication:
$g \prec h \Longrightarrow f g \prec f h, \forall f, g, h \in G$.

G is bi-orderable

if \prec is invariant under left and right multiplication:
$g \prec h \Longrightarrow f g k \prec f h k, \forall f, g, h, k \in G$.

Examples of bi-orderable and left-orderable groups

Bi-orderable: free groups,torsion-free abelian groups,pure braid groups, f.g of surfaces except the Klein bottle group and the projective plane's group
Left-orderable: knot groups, braid groups,

Orderability of groups

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of
Garside
groups
the QYBE groups
Δ-pure Garside

Coxeter-like
gps
Orderability of groups

Remarks and questions to conclude

A group G is left-orderable
if there exists a strict total ordering \prec of its elements which is invariant under left multiplication:
$g \prec h \Longrightarrow f g \prec f h, \forall f, g, h \in G$.

G is bi-orderable

if \prec is invariant under left and right multiplication:
$g \prec h \Longrightarrow f g k \prec f h k, \forall f, g, h, k \in G$.

Examples of bi-orderable and left-orderable groups

Bi-orderable: free groups,torsion-free abelian groups,pure braid groups, f.g of surfaces except the Klein bottle group and the projective plane's group
Left-orderable: knot groups, braid groups, $\operatorname{Homeo}^{+}(\mathbb{R})$

Some more definitions

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside

 groupsA class of Garside
groups the QYBE groups
Δ-pure Garside

Coxeter-like gps

Orderability of groups conclude

- A subgroup N of a left-orderable group G is called convex (w.r. \prec), if for any $x, y, z \in G$ such that $x, z \in N$ and $x \prec y \prec z$, we have $y \in N$.

Some more definitions

Garside groups and the Yang-Baxter
equation
Fabienne
Chouraqui

Garside groups

A class of Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability of groups

■ A subgroup N of a left-orderable group G is called convex (w.r. \prec), if for any $x, y, z \in G$ such that $x, z \in N$ and $x \prec y \prec z$, we have $y \in N$.

- A left order \prec is Conradian if for any strictly positive elements $a, b \in G$, there is a natural number n such that $b \prec a b^{n}$.

Some more definitions

- A subgroup N of a left-orderable group G is called convex (w.r. \prec), if for any $x, y, z \in G$ such that $x, z \in N$ and $x \prec y \prec z$, we have $y \in N$.
- A left order \prec is Conradian if for any strictly positive elements $a, b \in G$, there is a natural number n such that $b \prec a b^{n}$.
- $L O(G)$ is a topological space (compact and totally disconnected and G acts on $L O(G)$ by conjugation (A.Sikora).

Some more definitions

■ A subgroup N of a left-orderable group G is called convex (w.r. \prec), if for any $x, y, z \in G$ such that $x, z \in N$ and $x \prec y \prec z$, we have $y \in N$.

- A left order \prec is Conradian if for any strictly positive elements $a, b \in G$, there is a natural number n such that $b \prec a b^{n}$.
- $L O(G)$ is a topological space (compact and totally disconnected and G acts on $L O(G)$ by conjugation (A.Sikora).
- The set $L O(G)$ cannot be countably infinite (P. Linnell). If G is a countable left-orderable group, $L O(G)$ is either finite, or homeomorphic to the Cantor set, or homeomorphic to a subspace of the Cantor space with isolated points.

So what if a group is left-orderable?

Garside
groups and the Yang-Baxter equation
Fabienne
Chouraqui

Bi-orderable \Rightarrow Locally indicable \Rightarrow Left-orderable \Rightarrow Unique product \Rightarrow Torsion-free

So what if a group is left-orderable?

> Bi-orderable \Rightarrow Locally indicable \Rightarrow Left-orderable \Rightarrow Unique product \Rightarrow Torsion-free

A group G satisfies the unique product property, if for any finite subsets $A, B \subseteq G$, there exists at least one element $x \in A B$ that can be uniquely written as $x=a b$, with $a \in A$ and $b \in B$.

So what if a group is left-orderable?

Garside

Fabienne
Chouraqui

Garside groups

A class of
Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability of groups

> Bi-orderable \Rightarrow Locally indicable \Rightarrow Left-orderable \Rightarrow Unique product \Rightarrow Torsion-free

A group G satisfies the unique product property, if for any finite subsets $A, B \subseteq G$, there exists at least one element $x \in A B$ that can be uniquely written as $x=a b$, with $a \in A$ and $b \in B$.

For a torsion free group

Unique product \Rightarrow Kaplansky's Unit conjecture satisfied: the units in the group algebra are trivial

So what if a group is left-orderable?

Garside

Fabienne
Chouraqui

Garside groups

A class of
Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability of groups

> Bi-orderable \Rightarrow Locally indicable \Rightarrow Left-orderable \Rightarrow Unique product \Rightarrow Torsion-free

A group G satisfies the unique product property, if for any finite subsets $A, B \subseteq G$, there exists at least one element $x \in A B$ that can be uniquely written as $x=a b$, with $a \in A$ and $b \in B$.

For a torsion free group

Unique product \Rightarrow Kaplansky's Unit conjecture satisfied \Rightarrow Kaplansky's Zero-divisor conjecture satisfied

So what if a group is left-orderable?

Garside

Fabienne
Chouraqui

Garside groups

A class of
Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability of groups

Remarks and questions to conclude

> Bi-orderable \Rightarrow Locally indicable \Rightarrow Left-orderable \Rightarrow Unique product \Rightarrow Torsion-free

A group G satisfies the unique product property, if for any finite subsets $A, B \subseteq G$, there exists at least one element $x \in A B$ that can be uniquely written as $x=a b$, with $a \in A$ and $b \in B$.

For a torsion free group

Unique product \Rightarrow Kaplansky's Unit conjecture satisfied \Rightarrow Kaplansky's Zero-divisor conjecture satisfied: there are no zero divisors in the group algebra

So what if a group is left-orderable?

Garside

Fabienne
Chouraqui

Garside groups

A class of
Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability of groups

Remarks and questions to conclude

> Bi-orderable \Rightarrow Locally indicable \Rightarrow Left-orderable \Rightarrow Unique product \Rightarrow Torsion-free

A group G satisfies the unique product property, if for any finite subsets $A, B \subseteq G$, there exists at least one element $x \in A B$ that can be uniquely written as $x=a b$, with $a \in A$ and $b \in B$.

For a torsion free group

Unique product \Rightarrow Kaplansky's Unit conjecture satisfied \Rightarrow Kaplansky's Zero-divisor conjecture satisfied \Rightarrow Kaplansky's Idempotent conjecture satisfied

So what if a group is left-orderable?

Garside

Fabienne
Chouraqui

Garside groups

A class of
Garside
groups
the QYBE groups
Δ-pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

> Bi-orderable \Rightarrow Locally indicable \Rightarrow Left-orderable \Rightarrow Unique product \Rightarrow Torsion-free

A group G satisfies the unique product property, if for any finite subsets $A, B \subseteq G$, there exists at least one element $x \in A B$ that can be uniquely written as $x=a b$, with $a \in A$ and $b \in B$.

For a torsion free group

Unique product \Rightarrow Kaplansky's Unit conjecture satisfied \Rightarrow Kaplansky's Zero-divisor conjecture satisfied \Rightarrow Kaplansky's Idempotent conjecture satisfied: there are no non-trivial idempotents in the group algebra

Are all the Garside groups left-orderable? book of P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest

Garside
groups and the
Yang-Baxter
equation
Fabienne
Chouraqui

Garside

 groupsA class of Garside
groups
the QYBE groups
\triangle-pure
Garside
Coxeter-like
gps
Orderability
of groups

Are all the Garside groups left-orderable? book of P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest

Short answer is: Not necessarily!! Detailed answer [F.C. 2016]:

Are all the Garside groups left-orderable? book of P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Short answer is: Not necessarily!! Detailed answer [F.C. 2016]:

- There exist Garside groups that are locally indicable:
- with space of left orders homeomorphic to the Cantor set.

Are all the Garside groups left-orderable? book of P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest

Short answer is: Not necessarily!! Detailed answer [F.C. 2016]:

- There exist Garside groups that are locally indicable:
- with space of left orders homeomorphic to the Cantor set.
- with an infinite number of Conradian left orders.

Are all the Garside groups left-orderable? book of P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest

Fabienne
Chouraqui

Short answer is: Not necessarily!! Detailed answer [F.C. 2016]:

- There exist Garside groups that are locally indicable:
- with space of left orders homeomorphic to the Cantor set.
- with an infinite number of Conradian left orders.
- with a normal subgroup convex w.r to ∞-many left orders.

Are all the Garside groups left-orderable? book of P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest

Garside groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of Garside groups the QYBE groups

Short answer is: Not necessarily!! Detailed answer [F.C. 2016]:

- There exist Garside groups that are locally indicable:
- with space of left orders homeomorphic to the Cantor set.
- with an infinite number of Conradian left orders.
- with a normal subgroup convex w.r to ∞-many left orders.
- There exist Garside groups that do not satisfy the unique product property (example of E. Jespers and I. Okninski).

Are all the Garside groups left-orderable? book of P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest

Fabienne
Chouraqui

Short answer is: Not necessarily!! Detailed answer [F.C. 2016]:

- There exist Garside groups that are locally indicable:
- with space of left orders homeomorphic to the Cantor set.
- with an infinite number of Conradian left orders.
- with a normal subgroup convex w.r to ∞-many left orders.

■ There exist Garside groups that do not satisfy the unique product property (example of E. Jespers and I. Okninski).

Characterisation of solutions with structure group left-orderable
D. Bachiller, F.Cedo, L. Vendramin 2018

Are all the Garside groups left-orderable? book of P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest

Fabienne
Chouraqui

Garside groups

A class of
Garside groups the QYBE groups

Short answer is: Not necessarily!! Detailed answer [F.C. 2016]:

- There exist Garside groups that are locally indicable:
- with space of left orders homeomorphic to the Cantor set.
- with an infinite number of Conradian left orders.
- with a normal subgroup convex w.r to ∞-many left orders.

■ There exist Garside groups that do not satisfy the unique product property (example of E. Jespers and I. Okninski).

Characterisation of solutions with structure group left-orderable
D. Bachiller, F.Cedo, L. Vendramin 2018

Conditions that ensure a Garside group has a left order
D.Arcis, L.Paris 2018

Remarks and questions to conclude

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside
groups
the QYBE groups
Δ-pure
Garside
Coxeter-like
gps
Orderability of groups

Remarks and questions to conclude

Some remarks to conclude

■ G is a Bieberbach group (T. Gateva-Ivanova and M. Van den Bergh, P. Etingof et al.) i.e. it is a torsion free crystallographic group.

Remarks and questions to conclude

Garside groups and the Yang-Baxter
equation
Fabienne
Chouraqui

Garside groups

A class of Garside groups the QYBE groups
Δ-pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Some remarks to conclude

■ G is a Bieberbach group (T. Gateva-Ivanova and M. Van den Bergh, P. Etingof et al.) i.e. it is a torsion free crystallographic group.
■ Bieberbach groups satisfy Kaplansky's zero divisor conjecture, as it holds for all torsion-free finite-by-solvable groups (P.H. Kropholler, P.A. Linnell, and J.A. Moody).

Remarks and questions to conclude

Garside groups and the Yang-Baxter
equation
Fabienne
Chouraqui

Garside groups

A class of Garside groups the QYBE groups

Some remarks to conclude

■ G is a Bieberbach group (T. Gateva-Ivanova and M. Van den Bergh, P. Etingof et al.) i.e. it is a torsion free crystallographic group.
■ Bieberbach groups satisfy Kaplansky's zero divisor conjecture, as it holds for all torsion-free finite-by-solvable groups (P.H. Kropholler, P.A. Linnell, and J.A. Moody).

- B_{n} satisfy the zero divisor conjecture, as they are left-orderable (P. Dehornoy).

Some questions to conclude

Garside
groups and the
Yang-Baxter
equation
Fabienne
Chouraqui

Garside
groups
Question: does a Garside group satisfy Kaplansky's zero divisor conjecture?

Some questions to conclude

Garside
groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of Garside
groups
the QYBE groups
Δ-pure Garside

Coxeter-like
gps
Orderability
of groups
Remarks and questions to conclude

> Question: does a Garside group satisfy Kaplansky's zero divisor conjecture?

Question: does there exist a counterexample to unique product \Rightarrow left-orderable amongst the structure groups?

Some questions to conclude

Garside
groups and the Yang-Baxter equation

Fabienne
Chouraqui

Garside groups

A class of Garside
groups
the QYBE groups
Δ-pure Garside

Coxeter-like
gps
Orderability
of groups
Remarks and questions to conclude

> Question: does a Garside group satisfy Kaplansky's zero divisor conjecture?

Question: does there exist a counterexample to unique product \Rightarrow left-orderable amongst the structure groups?

The end

Garside
groups and the
Yang-Baxter
equation
Fabienne
Chouraqui

Thank you!

