Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude Garside groups and the Yang-Baxter equation Summer school: The dual approach to Coxeter and Artin groups, Garside theory and applications, Berlin 2021.

Fabienne Chouraqui

University of Haifa, Campus Oranim

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

A monoid M is Garside if

• 1 is the unique invertible element.

イロト イボト イヨト イヨト

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

A monoid M is Garside if

- 1 is the unique invertible element.
- *M* is left and right cancellative.

Garside groups and the Yang-Baxter equation

> Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

A monoid M is Garside if

- 1 is the unique invertible element.
- *M* is left and right cancellative.
- Any 2 elements in *M* have a right and left lcm.

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

A monoid M is Garside if

- 1 is the unique invertible element.
- *M* is left and right cancellative.
- Any 2 elements in *M* have a right and left lcm.
- Any 2 elements in *M* have a right and left gcd.

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

A monoid M is Garside if

- 1 is the unique invertible element.
- *M* is left and right cancellative.
- Any 2 elements in *M* have a right and left lcm.
- Any 2 elements in *M* have a right and left gcd.
- M has a Garside element.

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

A monoid M is Garside if

- 1 is the unique invertible element.
- *M* is left and right cancellative.
- Any 2 elements in *M* have a right and left lcm.
- Any 2 elements in *M* have a right and left gcd.
- M has a Garside element.

Δ in *M* is a Garside element if

• Δ is balanced,

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

 $\Delta - pure$ Garside

Coxeter-lik gps

Orderability of groups

Remarks and questions to conclude

A monoid M is Garside if

- 1 is the unique invertible element.
- *M* is left and right cancellative.
- Any 2 elements in *M* have a right and left lcm.
- Any 2 elements in *M* have a right and left gcd.
- M has a Garside element.

Δ in M is a Garside element if

 Δ is balanced, i.e. the set of left divisors of Δ = the set of its right divisors = Div(Δ)

イロト イボト イヨト イヨト

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

 $\Delta - pure$ Garside

Coxeter-lik gps

Orderability of groups

Remarks and questions to conclude

A monoid M is Garside if

- 1 is the unique invertible element.
- *M* is left and right cancellative.
- Any 2 elements in *M* have a right and left lcm.
- Any 2 elements in *M* have a right and left gcd.
- M has a Garside element.

Δ in M is a Garside element if

- Δ is balanced, i.e. the set of left divisors of Δ = the set of its right divisors = Div(Δ)
- $Div(\Delta)$ is a finite generating set of M.

イロト イボト イヨト イヨト

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

 $\Delta - pure$ Garside

Coxeter-lik gps

Orderability of groups

Remarks and questions to conclude

A monoid M is Garside if

- 1 is the unique invertible element.
- *M* is left and right cancellative.
- Any 2 elements in *M* have a right and left lcm.
- Any 2 elements in *M* have a right and left gcd.
- M has a Garside element.

Δ in M is a Garside element if

- Δ is balanced, i.e. the set of left divisors of Δ = the set of its right divisors = Div(Δ)
- $Div(\Delta)$ is a finite generating set of M.

A Garside group is the group of fractions of a Garside monoid.

Garside
groups and
the
Yang-Baxte
equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

イロト イボト イヨト イヨト

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

If the group G is Garside, then

• G is torsion-free [P.Dehornoy 1998]

Garside groups and the Yang-Baxter equation

> Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

If the group G is Garside, then

■ G is torsion-free [P.Dehornoy 1998]

G is bi-automatic [P.Dehornoy 2002]

イロト イボト イヨト イヨト

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

If the group G is Garside, then

- G is torsion-free [P.Dehornoy 1998]
- G is bi-automatic [P.Dehornoy 2002]
- G has word and conjugacy problem solvable

イロト イボト イヨト イヨト

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

If the group G is Garside, then

- G is torsion-free [P.Dehornoy 1998]
- G is bi-automatic [P.Dehornoy 2002]
- G has word and conjugacy problem solvable
- G has finite homological dimension [P.Dehornoy and Y.Lafont 2003][R.Charney, J. Meier and K. Whittlesey 2004]

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

If the group G is Garside, then

- G is torsion-free [P.Dehornoy 1998]
- G is bi-automatic [P.Dehornoy 2002]
- G has word and conjugacy problem solvable
- G has finite homological dimension [P.Dehornoy and Y.Lafont 2003][R.Charney, J. Meier and K. Whittlesey 2004]

Examples of Garside groups

- Braid groups [Garside]
- Artin groups of finite type [Deligne, Brieskorn-Saito]
- Torus link groups [Picantin]

Some questions about the Garside gps

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude Do Garside groups admit a finite quotient that plays the same role S_n plays for B_n or the Coxeter groups for finite-type Artin groups?

question raised by D.Bessis.

Some questions about the Garside gps

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude Do Garside groups admit a finite quotient that plays the same role S_n plays for B_n or the Coxeter groups for finite-type Artin groups?

question raised by D.Bessis.

Are all the Garside groups left-orderable?

question raised in book *Ordering braids* by P.Dehornoy, I.Dynnikov, D.Rolfsen, B.Wiest.

A D D A D D A D D A D D A

Remarks and questions to conclude

イロン 不同 とくほど 不同 とう

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

 $\ln M$ $x_1 x_3 = x_4 x_2$

イロン スロン イヨン イヨン

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

In <i>M</i>	
$x_1x_3 = x_4x_2$	
$x_2x_1 = x_4x_3$	

イロト イヨト イヨト イヨト

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

lcm of x_1^2 and x_4^2

In M	
$x_1x_3 = x_4x_2$	
$x_2x_1 = x_4x_3$	
$x_1x_2 = x_3x_4$	

イロト イヨト イヨト イヨト

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

 $\Delta - pure$ Garside

Coxeter-lik gps

Orderability of groups

Remarks and questions to conclude

Icm of x_1^2 and x_4^2

In <i>M</i>	
$x_1x_3 = x_4x_2$	
$x_2x_1 = x_4x_3$	
$x_1x_2 = x_3x_4$	
$x_1x_3 = x_4x_2$	

イロト イヨト イヨト イヨト

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Icm of x_1^2 and x_4^2

In M	
$x_1x_3 = x_4x_2$	The lcm is:
	$x_1^2 x_2^2 = x_1^4 =$
$X_1 X_2 = X_2 X_4$	$x_4^2 x_3^2 = x_4^4 =$
	~4~3 ~4 ··
$x_1x_3 = x_4x_2$	

イロト イヨト イヨト イヨト

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude Let $R: V \otimes V \rightarrow V \otimes V$ be a linear operator, where V is a vector space.

The QYBE is the equality $R^{12}R^{13}R^{23} = R^{23}R^{13}R^{12}$ of linear transformations on $V \otimes V \otimes V$, where R^{ij} means R acting on the *i*-th and *j*-th components.

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆—pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude Let $R: V \otimes V \rightarrow V \otimes V$ be a linear operator, where V is a vector space.

The QYBE is the equality $R^{12}R^{13}R^{23} = R^{23}R^{13}R^{12}$ of linear transformations on $V \otimes V \otimes V$, where R^{ij} means R acting on the *i*-th and *j*-th components.

A set-theoretical solution (X, S) of this equation [Drinfeld]

イロト イボト イヨト イヨト

3

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude Let $R: V \otimes V \rightarrow V \otimes V$ be a linear operator, where V is a vector space.

The QYBE is the equality $R^{12}R^{13}R^{23} = R^{23}R^{13}R^{12}$ of linear transformations on $V \otimes V \otimes V$, where R^{ij} means R acting on the *i*-th and *j*-th components.

A set-theoretical solution (X, S) of this equation [Drinfeld]

■ V is a vector space spanned by a set X.

イロト イボト イヨト イヨト

3

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆−pure Garside

Coxeter-lik gps

Orderability of groups

Remarks and questions to conclude Let $R: V \otimes V \rightarrow V \otimes V$ be a linear operator, where V is a vector space.

The QYBE is the equality $R^{12}R^{13}R^{23} = R^{23}R^{13}R^{12}$ of linear transformations on $V \otimes V \otimes V$, where R^{ij} means R acting on the *i*-th and *j*-th components.

A set-theoretical solution (X, S) of this equation [Drinfeld]

■ *V* is a vector space spanned by a set *X*.

• *R* is the linear operator induced by a mapping $S: X \times X \rightarrow X \times X$, that satisfies $S^{12}S^{23}S^{12} = S^{23}S^{12}S^{23}$.

イロト 不得 トイラト イラト 一日

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude Let $X = \{x_1, ..., x_n\}$ and let S be defined in the following way: $S(i,j) = (g_i(j), f_j(i))$, where $f_i, g_i : X \to X$.

イロト イボト イヨト イヨト

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude Let $X = \{x_1, ..., x_n\}$ and let S be defined in the following way: $S(i,j) = (g_i(j), f_j(i))$, where $f_i, g_i : X \to X$.

Proposition [Etingof, Schedler, Soloviev - 1999]

• (X, S) is non-degenerate $\Leftrightarrow f_i$ and g_i are bijective, $1 \le i \le n$.

A D D A D D A D D A D D A

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude Let $X = \{x_1, ..., x_n\}$ and let S be defined in the following way: $S(i,j) = (g_i(j), f_j(i))$, where $f_i, g_i : X \to X$.

Proposition [P.Etingof, T.Schedler, A.Soloviev - 1999] $= (X, S) \text{ is non degenerate } \Leftrightarrow f_{i} \text{ and } g_{i} \text{ are bijective}$

• (X, S) is non-degenerate $\Leftrightarrow f_i$ and g_i are bijective, $1 \le i \le n$.

•
$$(X, S)$$
 is involutive $\Leftrightarrow S^2 = Id_{X \times X}$.

A D D A D D A D D A D D A

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude Let $X = \{x_1, ..., x_n\}$ and let S be defined in the following way: $S(i,j) = (g_i(j), f_j(i))$, where $f_i, g_i : X \to X$.

Proposition [P.Etingof, T.Schedler, A.Soloviev - 1999]

- (X, S) is non-degenerate $\Leftrightarrow f_i$ and g_i are bijective, $1 \le i \le n$.
- (X, S) is involutive $\Leftrightarrow S^2 = Id_{X \times X}$.
- (X, S) is braided $\Leftrightarrow S^{12}S^{23}S^{12} = S^{23}S^{12}S^{23}$

A D D A D D A D D A D D A

3

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆−pure Garside

Coxeter-lik gps

Orderability of groups

Remarks and questions to conclude Let $X = \{x_1, ..., x_n\}$ and let S be defined in the following way: $S(i,j) = (g_i(j), f_j(i))$, where $f_i, g_i : X \to X$.

Proposition [P.Etingof, T.Schedler, A.Soloviev - 1999]

- (X, S) is non-degenerate $\Leftrightarrow f_i$ and g_i are bijective, $1 \le i \le n$.
- (X, S) is involutive $\Leftrightarrow g_{g_i(j)}f_j(i) = i$ and $f_{f_j(i)}g_i(j) = j$, $1 \le i, j \le n$.
- (X, S) is braided $\Leftrightarrow g_i g_j = g_{g_i(j)} g_{f_j(i)}$ and $f_j f_i = f_{f_j(i)} f_{g_i(j)}$ and $f_{g_{f_i(i)}(k)} g_i(j) = g_{f_{g_j}(k)}(i) f_k(j), 1 \le i, j, k \le n.$

A D D A D D A D D A D D A

3

The QYBE group: the structure group of (X, S)

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude Assumption: The pair (X, S) is a non-degenerate, involutive and braided. We call it a non-degenerate, involutive set-solution.

イロト イボト イヨト イヨト

The QYBE group: the structure group of (X, S)

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude Assumption: The pair (X, S) is a non-degenerate, involutive and braided. We call it a non-degenerate, involutive set-solution.

The structure group G of (X, S) [Etingof, Schedler, Soloviev]

• The generators: $X = \{x_1, x_2, .., x_n\}$.

The QYBE group: the structure group of (X, S)

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude Assumption: The pair (X, S) is a non-degenerate, involutive and braided. We call it a non-degenerate, involutive set-solution.

The structure group G of (X, S) [Etingof, Schedler, Soloviev]

• The generators:
$$X = \{x_1, x_2, ..., x_n\}$$
.

• The defining relations: $x_i x_j = x_k x_l$ whenever S(i,j) = (k, l)

The QYBE group: the structure group of (X, S)

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude Assumption: The pair (X, S) is a non-degenerate, involutive and braided. We call it a non-degenerate, involutive set-solution.

The structure group G of (X, S) [Etingof, Schedler, Soloviev]

• The generators:
$$X = \{x_1, x_2, ..., x_n\}$$
.

The defining relations: x_ix_j = x_kx_l whenever S(i,j) = (k,l)

There are exactly
$$\frac{n(n-1)}{2}$$
 defining relations.

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Let
$$X = \{x_1, x_2, x_3, x_4, x_5\}.$$

The functions that define S

Let $f_1 = g_1 = (1, 2, 3, 4)(5)$ $f_2 = g_2 = (1, 4, 3, 2)(5)$ $f_3 = g_3 = (1, 2, 3, 4)(5)$ $f_4 = g_4 = (1, 4, 3, 2)(5)$ $f_5 = g_5 = (1)(2)(3)(4)(5)$

(X, S) is a non-degenerate, involutive set-solution.

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Let
$$X = \{x_1, x_2, x_3, x_4, x_5\}.$$

The functions that define S

Let $f_1 = g_1 = (1, 2, 3, 4)(5)$ $f_2 = g_2 = (1, 4, 3, 2)(5)$ $f_3 = g_3 = (1, 2, 3, 4)(5)$ $f_4 = g_4 = (1, 4, 3, 2)(5)$ $f_5 = g_5 = (1)(2)(3)(4)(5)$

(X, S) is a non-degenerate, involutive set-solution.

The defining relations in G and in M (the monoid with the same pres.)

・ロト ・日ト ・ヨト・

The correspondence between QYBE groups and Garside groups

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆—pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Theorem (F.C. 2009)

Let (X, S) be a non-degenerate, involutive set-solution with structure group G. Then G is Garside.

A D D A D D A D D A D D A

The correspondence between QYBE groups and Garside groups

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Theorem (F.C. 2009)

Let (X, S) be a non-degenerate, involutive set-solution with structure group G. Then G is Garside.

Assume that Mon(X | R) is a **Garside monoid** such that:

- the cardinality of R is n(n-1)/2
- each side of a relation in R has length 2.
- if the word $x_i x_j$ appears in R, then it appears only once.

A D D A D D A D D A D D A

3

The correspondence between QYBE groups and Garside groups

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Theorem (F.C. 2009)

Let (X, S) be a non-degenerate, involutive set-solution with structure group G. Then G is Garside.

Assume that $Mon(X \mid R)$ is a **Garside monoid** such that:

- the cardinality of R is n(n-1)/2
- each side of a relation in R has length 2.
- if the word $x_i x_j$ appears in R, then it appears only once. Then $G = \text{Gp}\langle X \mid R \rangle$ is the structure group of a non-degenerate, involutive set-solution (X, S), with |X| = n.

イロン 不同 とうほう 不同 とう

3

Correspondence between the right complement and the functions defining the solution

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆—pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

right complement \Leftrightarrow functions

Expressing $x_i \setminus x_j$ in terms of the functions g_i : Let x_i, x_j be different elements in X. Then $x_i \setminus x_i = g_i^{-1}(j)$.

イロト イボト イヨト イヨト

Correspondence between the right complement and the functions defining the solution

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

right complement \Leftrightarrow functions

Expressing $x_i \setminus x_j$ in terms of the functions g_i : Let x_i, x_j be different elements in X. Then $x_i \setminus x_j = g_i^{-1}(j)$.

A D D A D D A D D A D D A

Correspondence between the right complement and the functions defining the solution

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆—pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

right complement \Leftrightarrow functions

Expressing $x_i \setminus x_j$ in terms of the functions g_i : Let x_i, x_j be different elements in X. Then $x_i \setminus x_j = g_i^{-1}(j)$.

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆—pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Theorem (F.C. 2009)

Let (X, S) be a non-degenerate, involutive set-solution of the quantum Yang-Baxter equation with structure group G. Assume the cardinality of X is n. Then

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆—pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Theorem (F.C. 2009)

Let (X, S) be a non-degenerate, involutive set-solution of the quantum Yang-Baxter equation with structure group G. Assume the cardinality of X is n. Then

• The right lcm of the generators is a Garside element Δ .

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Theorem (F.C. 2009)

Let (X, S) be a non-degenerate, involutive set-solution of the quantum Yang-Baxter equation with structure group G. Assume the cardinality of X is n. Then

- The right lcm of the generators is a Garside element Δ .
- The Garside element Δ has length n.

イロト イボト イヨト イヨト

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Theorem (F.C. 2009)

Let (X, S) be a non-degenerate, involutive set-solution of the quantum Yang-Baxter equation with structure group G. Assume the cardinality of X is n. Then

- The right lcm of the generators is a Garside element Δ .
- The Garside element Δ has length n.
- The (co)homological dimension of the structure group G is n. [P.Dehornoy, Y.Laffont 2003] [R.Charney, J.Meier, K.Whittlesey 2004] [J. McCammond]

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆—pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Who are the simples?

イロン 不同 とくほど 不同 とう

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆—pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Who are the simples?

 A simple element s is the right lcm of some subset of generators X_l.

イロト イボト イヨト イヨト

э

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Who are the simples?

- A simple element s is the right lcm of some subset of generators X_l.
- A simple element s is the left lcm of some subset of generators X_r.

э

Garside groups and the Yang-Baxter equation

> Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Who are the simples?

- A simple element s is the right lcm of some subset of generators X_l.
- A simple element *s* is the left lcm of some subset of generators *X_r*.

What is the length of a simple?

イロト イボト イヨト イヨト

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Who are the simples?

- A simple element s is the right lcm of some subset of generators X_l.
- A simple element s is the left lcm of some subset of generators X_r.

What is the length of a simple?

• The length of s is equal to $|X_I| = |X_r|$.

イロト イボト イヨト イヨト

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Who are the simples?

- A simple element s is the right lcm of some subset of generators X_l.
- A simple element s is the left lcm of some subset of generators X_r.

What is the length of a simple?

- The length of s is equal to $|X_l| = |X_r|$.
- The length of Δ is equal to |X|.

イロト イボト イヨト イヨト

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Who are the simples?

- A simple element s is the right lcm of some subset of generators X_l.
- A simple element s is the left lcm of some subset of generators X_r.

What is the length of a simple?

- The length of s is equal to $|X_l| = |X_r|$.
- The length of Δ is equal to |X|.

The set of simples is equal to $\overline{X}^ee\cup\{1\}$

イロト イポト イヨト イヨト

э

Decomposability of a solution (X, S)

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆—pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude Let (X, S) be a non-degenerate, involutive set-solution.

Definition

(X, S) is decomposable if it is the union of two nonempty disjoint non-degenerate invariant subsets. Otherwise, (X, S) is indecomposable.

イロト イボト イヨト イヨト

Decomposability of a solution (X, S)

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude Let (X, S) be a non-degenerate, involutive set-solution.

Definition

(X, S) is decomposable if it is the union of two nonempty disjoint non-degenerate invariant subsets. Otherwise, (X, S) is indecomposable.

Theorem (Etingof, Schedler, Soloviev)

(X, S) is indecomposable if and only if G acts transitively on X, where $x_i \rightarrow g_i^{-1}$ is a right action of G on X.

A D D A D D A D D A D D A

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆—pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Let
$$X = \{x_1, x_2, x_3, x_4, x_5\}$$
 and S as before.

(X, S) is a decomposable solution

- $X = \{x_1, x_2, x_3, x_4\} \cup \{x_5\}.$
- $\{x_1, x_2, x_3, x_4\}$ and $\{x_5\}$ are invariant subsets.

イロン 不同 とくほど 不同 とう

э

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆−pure Garside

Coxeter-lik gps

Orderability of groups

Remarks and questions to conclude

Let $X = \{x_1, x_2, x_3, x_4, x_5\}$ and S as before.

(X, S) is a decomposable solution

•
$$X = \{x_1, x_2, x_3, x_4\} \cup \{x_5\}.$$

• $\{x_1, x_2, x_3, x_4\}$ and $\{x_5\}$ are invariant subsets.

The defining relations in G and in M

$x_1^2 = x_2^2$	$x_3^2 = x_4^2$	$(x_5x_5=x_5x_5)$
$x_1x_2 = x_3x_4$	$x_1x_5 = x_5x_1$	
$x_1x_3 = x_4x_2$	$x_2x_5 = x_5x_2$	
$x_2x_4 = x_3x_1$	$x_3x_5 = x_5x_3$	
$x_2x_1 = x_4x_3$	$x_4x_5 = x_5x_4$	

A D D A D D A D D A D D A

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Let
$$X = \{x_0, x_1, x_2, x_3\}.$$

$$\begin{array}{ll} g_0 = (0)(1)(2,3) & g_1 = (1,2,0,3) \\ g_2 = (2)(3)(0,1) & g_3 = (1,3,0,2) \end{array} \tag{2}$$

イロン イロン イヨン イヨン

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Let
$$X = \{x_0, x_1, x_2, x_3\}.$$

$$\begin{array}{ll} g_0 = (0)(1)(2,3) & g_1 = (1,2,0,3) \\ g_2 = (2)(3)(0,1) & g_3 = (1,3,0,2) \end{array}$$
(1)

The solution is indecomposable with defining relations:

$$x_1 x_1 = x_2 x_0 \quad x_1 x_0 = x_3 x_2$$

$$x_0 x_3 = x_2 x_1 \quad x_1 x_2 = x_0 x_1$$

$$x_2 x_3 = x_3 x_0 \quad x_3^2 = x_0 x_2$$

(2)

イロン イヨン イヨン

э

Δ -pure Garside monoids [Picantin 2001]

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Definition of a Δ -pure Garside monoid

Let M be a Garside monoid. Then M is Δ -pure if for every x, y in X, it holds that $\Delta_x = \Delta_y$, where $\Delta_x = \lor (M \setminus x) = \lor \{w \setminus x; w \in M\}$.

A D D A D D A D D A D D A

Δ -pure Garside monoids [Picantin 2001]

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Definition of a $\Delta-$ pure Garside monoid

Let *M* be a Garside monoid. Then *M* is Δ -pure if for every *x*, *y* in *X*, it holds that $\Delta_x = \Delta_y$, where $\Delta_x = \lor(M \setminus x) = \lor\{w \setminus x; w \in M\}$.

Theorem (Picantin 2001)

If M is a Δ -pure Garside monoid, Δ is its Garside element and G its group of fractions. Then the center of M (resp. of G) is the infinite cyclic submonoid (resp. subgroup) generated by Δ^e , where e is a natural number (the order of the conjugation automorphism by Δ).

イロト イポト イヨト イヨト

Which structure monoids are Δ -pure Garside ?

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Theorem (F.C. 2009)

Let (X, S) be a non-degenerate, involutive set-solution of the quantum Yang-Baxter equation with structure group G. Then (X, S) is indecomposable if and only if G is Δ -pure Garside.

Which structure monoids are Δ -pure Garside ?

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

 $\Delta - pure$ Garside

Coxeter-lik gps

Orderability of groups

Remarks and questions to conclude

Theorem (F.C. 2009)

Let (X, S) be a non-degenerate, involutive set-solution of the quantum Yang-Baxter equation with structure group G. Then (X, S) is indecomposable if and only if G is Δ -pure Garside.

A consequence

If (X, S) is indecomposable then the center of G is cyclic, generated by some exponent of Δ .

A D D A D D A D D A D D A

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Let
$$X = \{x_0, x_1, x_2, x_3\}.$$

$$g_0 = (0)(1)(2,3) \qquad g_1 = (1,2,0,3) g_2 = (2)(3)(0,1) \qquad g_3 = (1,3,0,2)$$
(3)

The solution is indecomposable with defining relations:

$$x_1 x_1 = x_2 x_0 \quad x_1 x_0 = x_3 x_2 x_0 x_3 = x_2 x_1 \quad x_1 x_2 = x_0 x_1 x_2 x_3 = x_3 x_0 \quad x_3^2 = x_0 x_2$$
(4)

イロン 不同 とくほど 不同 とう

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Let
$$X = \{x_0, x_1, x_2, x_3\}.$$

$$g_0 = (0)(1)(2,3) \qquad g_1 = (1,2,0,3) g_2 = (2)(3)(0,1) \qquad g_3 = (1,3,0,2)$$
(3)

The solution is indecomposable with defining relations:

$$x_1 x_1 = x_2 x_0 \quad x_1 x_0 = x_3 x_2 x_0 x_3 = x_2 x_1 \quad x_1 x_2 = x_0 x_1 x_2 x_3 = x_3 x_0 \quad x_3^2 = x_0 x_2$$
(4)

э

The center of G is generated by $\Delta = (x_0x_1)^2 = (x_2x_3)^2$, e = 1.

The BRAID group B_n

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

The BRAID group?

イロン 不同 とくほど 不同 とう

The BRAID group B_n

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

The BRAID group?

Fabienne Chouraqui

The BRAID group $B_3 = \langle \sigma_1, \sigma_2 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle$

The original Coxeter group construction

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude \exists epimorphism $B_3 \rightarrow S_3$: $\sigma_1 \mapsto (1,2); \ \sigma_2 \mapsto (2,3)$

э

The original Coxeter group construction

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude \exists epimorphism $B_3 \rightarrow S_3$: $\sigma_1 \mapsto (1,2); \ \sigma_2 \mapsto (2,3)$

In B_3 : $\Delta = \sigma_1 \sigma_2 \sigma_1$

イロン 不同 とうほう 不同 とう

э

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude \exists epimorphism $B_3 \rightarrow S_3$: $\sigma_1 \mapsto (1,2); \ \sigma_2 \mapsto (2,3)$

In B_3 : $\Delta = \sigma_1 \sigma_2 \sigma_1$

イロン 不同 とうほう 不同 とう

э

 $\mathsf{Div}(\Delta) = \{\sigma_1, \sigma_2, \sigma_1 \sigma_2, \sigma_2 \sigma_1, \sigma_1 \sigma_2 \sigma_1\}$

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude \exists epimorphism $B_3 \rightarrow S_3$: $\sigma_1 \mapsto (1,2); \ \sigma_2 \mapsto (2,3)$

In B_3 : $\Delta = \sigma_1 \sigma_2 \sigma_1$

э

 $Div(\Delta) = \{\sigma_1, \sigma_2, \sigma_1\sigma_2, \sigma_2\sigma_1, \sigma_1\sigma_2\sigma_1\}$ $S_3 \leftrightarrow Div(\Delta)$

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

 \exists epimorphism $B_3 \rightarrow S_3$: In B_3 : $\Delta = \sigma_1 \sigma_2 \sigma_1$ $\sigma_1 \mapsto (1,2); \ \sigma_2 \mapsto (2,3)$ $Div(\Delta) =$ $\{\sigma_1, \sigma_2, \sigma_1\sigma_2, \sigma_2\sigma_1, \sigma_1\sigma_2\sigma_1\}$ $S_3 \leftrightarrow \text{Div}(\Delta)$ The original Coxeter group \exists a short exact sequence: σ_2^{-1} $1 \rightarrow P_n \rightarrow B_n \rightarrow S_n \rightarrow 1$

イロト イヨト イヨト イヨト

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude \exists epimorphism $B_3 \rightarrow S_3$: $\sigma_1 \mapsto (1,2); \ \sigma_2 \mapsto (2,3)$

 $\begin{array}{l} \ln B_3: \ \Delta = \sigma_1 \sigma_2 \sigma_1 \\ \operatorname{Div}(\Delta) = \\ \{\sigma_1, \sigma_2, \sigma_1 \sigma_2, \sigma_2 \sigma_1, \sigma_1 \sigma_2 \sigma_1\} \\ S_3 \leftrightarrow \operatorname{Div}(\Delta) \end{array}$

The original Coxeter group

イロト イヨト イヨト イヨト

 $\exists \text{ a short exact sequence:} \\ 1 \to P_n \to B_n \to S_n \to 1 \\ \exists \text{ a bijection} \\ S_n \leftrightarrow \text{Div}(\Delta)$

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

The question raised by D.Bessis

イロト イボト イヨト イヨト

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

The question raised by D.Bessis

Do Garside groups admit a finite quotient that plays the same role S_n plays for B_n or the Coxeter groups for finite-type Artin groups?

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

The question raised by D.Bessis

Do Garside groups admit a finite quotient that plays the same role S_n plays for B_n or the Coxeter groups for finite-type Artin groups?

Our answer: yes for QYBE groups with additional condition (C)

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

The question raised by D.Bessis

Do Garside groups admit a finite quotient that plays the same role S_n plays for B_n or the Coxeter groups for finite-type Artin groups?

Our answer: yes for QYBE groups with additional condition (*C*)

Dehornoy's extension 2014: condition (C) can be relaxed

A D D A D D A D D A D D A

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Theorem (F.C and E.Godelle 2013)

Let (X, S) be a non-degenerate, involutive set-solution of the QYBE with structure group G and |X| = n. Assume (X, S) satisfies the condition (C). Then there exits a short exact sequence: $1 \rightarrow N \rightarrow G \rightarrow W \rightarrow 1$ satisfying

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Theorem (F.C and E.Godelle 2013)

Let (X, S) be a non-degenerate, involutive set-solution of the QYBE with structure group G and |X| = n. Assume (X, S) satisfies the condition (C). Then there exits a short exact sequence: $1 \rightarrow N \rightarrow G \rightarrow W \rightarrow 1$ satisfying

■ N is a normal free abelian group of rank n

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Theorem (F.C and E.Godelle 2013)

Let (X, S) be a non-degenerate, involutive set-solution of the QYBE with structure group G and |X| = n. Assume (X, S) satisfies the condition (C). Then there exits a short exact sequence: $1 \rightarrow N \rightarrow G \rightarrow W \rightarrow 1$ satisfying

- N is a normal free abelian group of rank n
- There exists a bijection between W and Div(Δ)

イロト イボト イヨト イヨト

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Theorem (F.C and E.Godelle 2013)

Let (X, S) be a non-degenerate, involutive set-solution of the QYBE with structure group G and |X| = n. Assume (X, S) satisfies the condition (C). Then there exits a short exact sequence: $1 \rightarrow N \rightarrow G \rightarrow W \rightarrow 1$ satisfying

- N is a normal free abelian group of rank n
- There exists a bijection between W and Div(Δ)
- W is a finite group of order 2ⁿ

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Theorem (F.C and E.Godelle 2013)

Let (X, S) be a non-degenerate, involutive set-solution of the QYBE with structure group G and |X| = n. Assume (X, S) satisfies the condition (C). Then there exits a short exact sequence: $1 \rightarrow N \rightarrow G \rightarrow W \rightarrow 1$ satisfying

- N is a normal free abelian group of rank n
- There exists a bijection between W and Div(Δ)
- W is a finite group of order 2ⁿ

What is condition (C)?

Let $x_i, x_j \in X$. If S(i, j) = (i, j), then $f_i f_j = g_i g_j = Id_X$.

Coxeter-like group for Example 2

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Let
$$X = \{x_0, x_1, x_2, x_3\}$$
, $g_0 = (0)(1)(2,3)$, $g_1 = (1,2,0,3)$, $g_2 = (2)(3)(0,1)$, $g_3 = (1,3,0,2)$.

$$\begin{array}{ll} x_1^2 = x_2 x_0 & x_3^2 = x_0 x_2 & x_0 x_1 = x_1 x_2 \\ x_1 x_0 = x_3 x_2 & x_0 x_3 = x_2 x_1 & x_2 x_3 = x_3 x_0 \end{array} \tag{5}$$

Э

There are 4 trivial relations: $x_0x_0 = x_0x_0, x_1x_3 = x_1x_3, x_2x_2 = x_2x_2, x_3x_1 = x_3x_1$

The solution satisfies (C):
$$g_o^2 = g_1g_3 = g_3g_1 = g_2^2 = Id_X$$

 $N = \langle x_0 x_0, x_1 x_3, x_2 x_2, x_3 x_1 \rangle \simeq \mathbb{Z}^4$, $N \lhd G$, and $W \simeq G/N$

Fabienne Chouraqui Garside groups and the Yang-Baxter equation

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

A square-free solution

$$g_0 = f_0 = g_1 = f_1 = Id,$$

$$g_2 = f_2 = (0, 1)$$

$$x_2x_0 = x_1x_2, x_2x_1 =$$

$$x_0 x_2, x_0 x_1 = x_1 x_0$$

イロト イボト イヨト イヨト

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

A square-free solution

$$g_0 = f_0 = g_1 = f_1 = Id,$$

$$g_2 = f_2 = (0, 1)$$

$$x_2x_0 = x_1x_2, x_2x_1 =$$

$$x_0x_2, x_0x_1 = x_1x_0$$

There are 3 trivial relations: $x_0^2 = x_0^2, \ x_1^2 = x_1^2, \ x_2^2 = x_2^2$

イロト イボト イヨト イヨト

Coxeter-like group for other examples:
$$X = \{x_0, x_1, x_2\}$$

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

A square-free solution

$$g_0 = f_0 = g_1 = f_1 = Id,$$

$$g_2 = f_2 = (0, 1)$$

$$x_2x_0 = x_1x_2, x_2x_1 =$$

$$x_0x_2, x_0x_1 = x_1x_0$$

There are 3 trivial relations: $x_0^2 = x_0^2, x_1^2 = x_1^2, x_2^2 = x_2^2$

$$N=\langle x_0^2,x_1^2,x_2^2
angle\simeq \mathbb{Z}^3$$
, $N\lhd G$, and $W\simeq G/N$

イロン スロン イヨン イヨン

roups and the ng-Baxter equation	A square-free solution	Example from Dehornoy's paper
-abienne 'houraqui	$g_0 = f_0 = g_1 = f_1 = Id, \ g_2 = f_2 = (0, 1)$	$egin{aligned} g_0 &= g_1 = g_2 = (0,1,2) \ f_0 &= f_1 = f_2 = (0,2,1) \end{aligned}$
side ups	$x_2 x_0 = x_1 x_2, x_2 x_1 =$	$x_0^2 = x_1 x_2, \ x_1^2 = x_2 x_0, \ x_2^2 =$
lass of side	$x_0x_2, x_0x_1 = x_1x_0$	<i>x</i> ₀ <i>x</i> ₁

There are 3 trivial relations:
$$x_0^2 = x_0^2, \ x_1^2 = x_1^2, \ x_2^2 = x_2^2$$

Coxeter-like gps

Garside groups an the Yang-Baxt

Orderability of groups

Remarks and questions to conclude $N = \langle x_0^2, x_1^2, x_2^2
angle \simeq \mathbb{Z}^3$, $N \lhd G$, and $W \simeq G/N$

Garside groups an the Yang-Baxt

Cox gps

roups and the ang-Baxter equation	A square-free solution	Example from Dehornoy's paper
Fabienne Chouraqui rside oups	$g_0 = f_0 = g_1 = f_1 = Id,$ $g_2 = f_2 = (0, 1)$ $x_2 x_0 = x_1 x_2, x_2 x_1 =$	$egin{aligned} g_0 &= g_1 = g_2 = (0,1,2) \ f_0 &= f_1 = f_2 = (0,2,1) \ x_0^2 &= x_1 x_2, \ x_1^2 &= x_2 x_0, \ x_2^2 &= \end{aligned}$
class of rside oups	$x_0 x_2, x_0 x_1 = x_1 x_0$	<i>x</i> ₀ <i>x</i> ₁
QYBE groups	There are 3 trivial relations:	The 3 trivial: $x_0 x_2 =$
-pure rside	$x_0^2 = x_0^2, \ x_1^2 = x_1^2, \ x_2^2 = x_2^2$	$x_0x_2, x_2x_1 = x_2x_1, x_1x_0 = x_1x_0$
xeter-like		
derability groups	$N=\langle x_0^2,x_1^2,x_2^2 angle\simeq \mathbb{Z}^3$, $N \lhd G$, and $W\simeq G/N$	
marks and		

Fabienne Chouraqui Garside groups and the Yang-Baxter equation

• (1) • (2) • (3) • (3) • (3)

Garside groups an the Yang-Baxt

Cox gps

roups and the ing-Baxter equation	A square-free solution	Example from Dehornoy's paper
Fabienne Chouraqui rside ups class of rside	$g_0 = f_0 = g_1 = f_1 = Id,$ $g_2 = f_2 = (0, 1)$ $x_2x_0 = x_1x_2, x_2x_1 =$ $x_0x_2, x_0x_1 = x_1x_0$	$g_0 = g_1 = g_2 = (0, 1, 2)$ $f_0 = f_1 = f_2 = (0, 2, 1)$ $x_0^2 = x_1 x_2, \ x_1^2 = x_2 x_0, \ x_2^2 = x_0 x_1$
ups _{QYBE groups} -pure rside	There are 3 trivial relations: $x_0^2 = x_0^2, x_1^2 = x_1^2, x_2^2 = x_2^2$	The 3 trivial: $x_0x_2 = x_0x_2$, $x_2x_1 = x_2x_1$, $x_1x_0 = x_1x_0$
keter-like derability groups marks and estions to iclude	$N=\langle x_0^2,x_1^2,x_2^2 angle\simeq \mathbb{Z}^3$, $N\lhd G$, and $W\simeq G/N$	$N = \langle x_0 x_2 x_1, x_2 x_1 x_0, x_1 x_0 x_2 \rangle \simeq \mathbb{Z}^3, N \lhd G, \text{ and } W \simeq G/N. W$ is in bijection with $\text{Div}(\Delta^3)$.
		・ロ・・四・・山・・山・

Fabienne Chouraqui

Garside groups and the Yang-Baxter equation

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

A group G is left-orderable

if there exists a strict total ordering \prec of its elements which is invariant under left multiplication: $g \prec h \Longrightarrow fg \prec fh, \forall f, g, h \in G.$

A D D A D D A D D A D D A

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

A group G is left-orderable

if there exists a strict total ordering \prec of its elements which is invariant under left multiplication: $g \prec h \Longrightarrow fg \prec fh, \forall f, g, h \in G.$

G is bi-orderable

if \prec is invariant under left and right multiplication: $g \prec h \Longrightarrow fgk \prec fhk, \forall f, g, h, k \in G.$

イロン 不同 とうほう 不同 とう

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

A group G is left-orderable

if there exists a strict total ordering \prec of its elements which is invariant under left multiplication: $g \prec h \Longrightarrow fg \prec fh, \forall f, g, h \in G.$

G is *bi-orderable*

if \prec is invariant under left and right multiplication: $g \prec h \Longrightarrow fgk \prec fhk, \forall f, g, h, k \in G.$

Examples of bi-orderable and left-orderable groups

Bi-orderable: free groups,

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

A group G is left-orderable

if there exists a strict total ordering \prec of its elements which is invariant under left multiplication: $g \prec h \Longrightarrow fg \prec fh, \forall f, g, h \in G.$

G is *bi-orderable*

if \prec is invariant under left and right multiplication: $g \prec h \Longrightarrow fgk \prec fhk, \forall f, g, h, k \in G.$

Examples of bi-orderable and left-orderable groups

Bi-orderable: free groups, torsion-free abelian groups,

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

A group G is left-orderable

if there exists a strict total ordering \prec of its elements which is invariant under left multiplication: $g \prec h \Longrightarrow fg \prec fh, \forall f, g, h \in G.$

G is *bi-orderable*

if \prec is invariant under left and right multiplication: $g \prec h \Longrightarrow fgk \prec fhk, \forall f, g, h, k \in G.$

Examples of bi-orderable and left-orderable groups

Bi-orderable: free groups,torsion-free abelian groups,pure braid groups,

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

A group G is left-orderable

if there exists a strict total ordering \prec of its elements which is invariant under left multiplication: $g \prec h \Longrightarrow fg \prec fh, \forall f, g, h \in G.$

G is *bi-orderable*

if \prec is invariant under left and right multiplication: $g \prec h \Longrightarrow fgk \prec fhk, \forall f, g, h, k \in G.$

Examples of bi-orderable and left-orderable groups

Bi-orderable: free groups,torsion-free abelian groups,pure braid groups, f.g of surfaces except the Klein bottle group and the projective plane's group Left-orderable: knot groups,

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

A group G is left-orderable

if there exists a strict total ordering \prec of its elements which is invariant under left multiplication: $g \prec h \Longrightarrow fg \prec fh, \forall f, g, h \in G.$

G is *bi-orderable*

if \prec is invariant under left and right multiplication: $g \prec h \Longrightarrow fgk \prec fhk, \forall f, g, h, k \in G.$

Examples of bi-orderable and left-orderable groups

Bi-orderable: free groups,torsion-free abelian groups,pure braid groups, f.g of surfaces except the Klein bottle group and the projective plane's group Left-orderable: knot groups, braid groups,

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

A group G is left-orderable

if there exists a strict total ordering \prec of its elements which is invariant under left multiplication: $g \prec h \Longrightarrow fg \prec fh, \forall f, g, h \in G.$

G is *bi-orderable*

if \prec is invariant under left and right multiplication: $g \prec h \Longrightarrow fgk \prec fhk, \forall f, g, h, k \in G.$

Examples of bi-orderable and left-orderable groups

Bi-orderable: free groups,torsion-free abelian groups,pure braid groups, f.g of surfaces except the Klein bottle group and the projective plane's group Left-orderable: knot groups, braid groups, $Homeo^+(\mathbb{R})$

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude • A subgroup N of a left-orderable group G is called *convex* (w.r. \prec), if for any $x, y, z \in G$ such that $x, z \in N$ and $x \prec y \prec z$, we have $y \in N$.

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

- A subgroup N of a left-orderable group G is called *convex* (w.r. \prec), if for any $x, y, z \in G$ such that $x, z \in N$ and $x \prec y \prec z$, we have $y \in N$.
- A left order ≺ is Conradian if for any strictly positive elements a, b ∈ G, there is a natural number n such that b ≺ abⁿ.

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

- A subgroup N of a left-orderable group G is called *convex* (w.r. \prec), if for any $x, y, z \in G$ such that $x, z \in N$ and $x \prec y \prec z$, we have $y \in N$.
- A left order ≺ is Conradian if for any strictly positive elements a, b ∈ G, there is a natural number n such that b ≺ abⁿ.
- LO(G) is a topological space (compact and totally disconnected and G acts on LO(G) by conjugation (A.Sikora).

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

- A subgroup N of a left-orderable group G is called *convex* (w.r. \prec), if for any $x, y, z \in G$ such that $x, z \in N$ and $x \prec y \prec z$, we have $y \in N$.
- A left order ≺ is *Conradian* if for any strictly positive elements a, b ∈ G, there is a natural number n such that b ≺ abⁿ.
- LO(G) is a topological space (compact and totally disconnected and G acts on LO(G) by conjugation (A.Sikora).
- The set LO(G) cannot be countably infinite (P. Linnell). If G is a countable left-orderable group, LO(G) is either finite, or homeomorphic to the Cantor set, or homeomorphic to a subspace of the Cantor space with isolated points.

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude $\begin{array}{l} \mbox{Bi-orderable} \Rightarrow \mbox{Locally indicable} \Rightarrow \mbox{Left-orderable} \Rightarrow \mbox{Unique} \\ \mbox{product} \Rightarrow \mbox{Torsion-free} \end{array}$

イロト イボト イヨト イヨト

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude $\begin{array}{l} \mbox{Bi-orderable} \Rightarrow \mbox{Locally indicable} \Rightarrow \mbox{Left-orderable} \Rightarrow \mbox{Unique} \\ \mbox{product} \Rightarrow \mbox{Torsion-free} \end{array}$

A group G satisfies the unique product property, if for any finite subsets $A, B \subseteq G$, there exists at least one element $x \in AB$ that can be uniquely written as x = ab, with $a \in A$ and $b \in B$.

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude $\begin{array}{l} \mbox{Bi-orderable} \Rightarrow \mbox{Locally indicable} \Rightarrow \mbox{Left-orderable} \Rightarrow \mbox{Unique} \\ \mbox{product} \Rightarrow \mbox{Torsion-free} \end{array}$

A group G satisfies the unique product property, if for any finite subsets $A, B \subseteq G$, there exists at least one element $x \in AB$ that can be uniquely written as x = ab, with $a \in A$ and $b \in B$.

For a torsion free group

Unique product \Rightarrow Kaplansky's Unit conjecture satisfied: the units in the group algebra are trivial

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude $\begin{array}{l} \mbox{Bi-orderable} \Rightarrow \mbox{Locally indicable} \Rightarrow \mbox{Left-orderable} \Rightarrow \mbox{Unique} \\ \mbox{product} \Rightarrow \mbox{Torsion-free} \end{array}$

A group G satisfies the unique product property, if for any finite subsets $A, B \subseteq G$, there exists at least one element $x \in AB$ that can be uniquely written as x = ab, with $a \in A$ and $b \in B$.

For a torsion free group

Unique product \Rightarrow Kaplansky's Unit conjecture satisfied \Rightarrow Kaplansky's Zero-divisor conjecture satisfied

So what if a group is left-orderable?

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude $\begin{array}{l} \mbox{Bi-orderable} \Rightarrow \mbox{Locally indicable} \Rightarrow \mbox{Left-orderable} \Rightarrow \mbox{Unique} \\ \mbox{product} \Rightarrow \mbox{Torsion-free} \end{array}$

A group G satisfies the unique product property, if for any finite subsets $A, B \subseteq G$, there exists at least one element $x \in AB$ that can be uniquely written as x = ab, with $a \in A$ and $b \in B$.

For a torsion free group

Unique product \Rightarrow Kaplansky's Unit conjecture satisfied \Rightarrow Kaplansky's Zero-divisor conjecture satisfied: there are no zero divisors in the group algebra

So what if a group is left-orderable?

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude $\begin{array}{l} \mbox{Bi-orderable} \Rightarrow \mbox{Locally indicable} \Rightarrow \mbox{Left-orderable} \Rightarrow \mbox{Unique} \\ \mbox{product} \Rightarrow \mbox{Torsion-free} \end{array}$

A group G satisfies the unique product property, if for any finite subsets $A, B \subseteq G$, there exists at least one element $x \in AB$ that can be uniquely written as x = ab, with $a \in A$ and $b \in B$.

For a torsion free group

Unique product \Rightarrow Kaplansky's Unit conjecture satisfied \Rightarrow Kaplansky's Zero-divisor conjecture satisfied \Rightarrow Kaplansky's Idempotent conjecture satisfied

So what if a group is left-orderable?

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

 $\Delta - pure$ Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude $\begin{array}{l} \mbox{Bi-orderable} \Rightarrow \mbox{Locally indicable} \Rightarrow \mbox{Left-orderable} \Rightarrow \mbox{Unique} \\ \mbox{product} \Rightarrow \mbox{Torsion-free} \end{array}$

A group G satisfies the unique product property, if for any finite subsets $A, B \subseteq G$, there exists at least one element $x \in AB$ that can be uniquely written as x = ab, with $a \in A$ and $b \in B$.

For a torsion free group

Unique product \Rightarrow Kaplansky's Unit conjecture satisfied \Rightarrow Kaplansky's Zero-divisor conjecture satisfied \Rightarrow Kaplansky's Idempotent conjecture satisfied: there are no non-trivial idempotents in the group algebra

э

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

イロト イボト イヨト イヨト

э

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE groups

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Short answer is: Not necessarily!! Detailed answer [F.C. 2016]:

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Short answer is: Not necessarily!! Detailed answer [F.C. 2016]:

• There exist Garside groups that are locally indicable:

• with space of left orders homeomorphic to the Cantor set.

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Short answer is: Not necessarily!! Detailed answer [F.C. 2016]:

There exist Garside groups that are locally indicable:

- with space of left orders homeomorphic to the Cantor set.
- with an infinite number of Conradian left orders.

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Short answer is: Not necessarily!! Detailed answer [F.C. 2016]:

There exist Garside groups that are locally indicable:

- with space of left orders homeomorphic to the Cantor set.
- with an infinite number of Conradian left orders.
- with a normal subgroup convex w.r to ∞ -many left orders.

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Short answer is: Not necessarily!! Detailed answer [F.C. 2016]:

There exist Garside groups that are locally indicable:

- with space of left orders homeomorphic to the Cantor set.
- with an infinite number of Conradian left orders.
- with a normal subgroup convex w.r to ∞ -many left orders.
- There exist Garside groups that do not satisfy the unique product property (example of E. Jespers and I. Okninski).

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆-pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Short answer is: Not necessarily!! Detailed answer [F.C. 2016]:

There exist Garside groups that are locally indicable:

- with space of left orders homeomorphic to the Cantor set.
- with an infinite number of Conradian left orders.
- \blacksquare with a normal subgroup convex w.r to $\infty\text{-many}$ left orders.
- There exist Garside groups that do not satisfy the unique product property (example of E. Jespers and I. Okninski).

Characterisation of solutions with structure group left-orderable

D. Bachiller, F.Cedo, L. Vendramin 2018

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Short answer is: Not necessarily!! Detailed answer [F.C. 2016]:

There exist Garside groups that are locally indicable:

- with space of left orders homeomorphic to the Cantor set.
- with an infinite number of Conradian left orders.
- \blacksquare with a normal subgroup convex w.r to $\infty\text{-many}$ left orders.
- There exist Garside groups that do not satisfy the unique product property (example of E. Jespers and I. Okninski).

Characterisation of solutions with structure group left-orderable

D. Bachiller, F.Cedo, L. Vendramin 2018

Conditions that ensure a Garside group has a left order

D.Arcis, L.Paris 2018

Fabienne Chouraqui Garside groups and the Yang-Baxter equation

Remarks and questions to conclude

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Some remarks to conclude

 G is a Bieberbach group (T. Gateva-Ivanova and M. Van den Bergh, P. Etingof et al.) i.e. it is a torsion free crystallographic group.

Remarks and questions to conclude

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆—pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Some remarks to conclude

- G is a Bieberbach group (T. Gateva-Ivanova and M. Van den Bergh, P. Etingof et al.) i.e. it is a torsion free crystallographic group.
- Bieberbach groups satisfy Kaplansky's zero divisor conjecture, as it holds for all torsion-free finite-by-solvable groups (P.H. Kropholler, P.A. Linnell, and J.A. Moody).

Remarks and questions to conclude

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆−pure Garside

Coxeter-lik gps

Orderability of groups

Remarks and questions to conclude

Some remarks to conclude

- G is a Bieberbach group (T. Gateva-Ivanova and M. Van den Bergh, P. Etingof et al.) i.e. it is a torsion free crystallographic group.
- Bieberbach groups satisfy Kaplansky's zero divisor conjecture, as it holds for all torsion-free finite-by-solvable groups (P.H. Kropholler, P.A. Linnell, and J.A. Moody).
- B_n satisfy the zero divisor conjecture, as they are left-orderable (P. Dehornoy).

イロト イボト イヨト イヨト

Some questions to conclude

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE grou

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Question: does a Garside group satisfy Kaplansky's zero divisor conjecture?

э

Some questions to conclude

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Question: does a Garside group satisfy Kaplansky's zero divisor conjecture?

Question: does there exist a counterexample to unique product \Rightarrow left-orderable amongst the structure groups?

Some questions to conclude

Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Garside groups

A class of Garside groups the QYBE group

∆−pure Garside

Coxeter-like gps

Orderability of groups

Remarks and questions to conclude

Question: does a Garside group satisfy Kaplansky's zero divisor conjecture?

Question: does there exist a counterexample to unique product \Rightarrow left-orderable amongst the structure groups?

	The end
Garside groups and the Yang-Baxter equation Fabienne Chouraqui	
Garside groups A class of Garside groups the QYBE groups	Thank you!
△—pure Garside Coxeter-like gps	
Orderability of groups	
Remarks and questions to conclude	< ロ > < 唇 > < 差 > < 差 > 、 差 の Q @
	Fabienne Chouraqui Garside groups and the Yang-Baxter equation