Complex reflection groups, braid groups, Hecke algebras (II)

Gunter Malle

TU Kaiserslautern

2./3. September 2021

Some motivation

W Weyl group \rightsquigarrow groups of Lie type G = G(q) with Weyl group W.

Theorem

Constituents of $R_{T_0}^G(1_{T_0})$ are in bijection with Irr(W); $R_{T_0}^G(1_{T_0})$ decomposes as regular character of W.

Explanation: Hecke algebra $\mathcal{H} := \operatorname{End}_{\mathbb{C}G}(R^G_{T_0}(1_{T_0}))$ isomorphic to $\mathbb{C}[W]$.

With S the Coxeter generators of W,

$$\mathcal{H} = ig\langle m{t}_s \; (s \in S) \mid ext{braid} \; ext{relations;} \; (m{t}_s - q)(m{t}_s + 1) = 0 ig
angle.$$

 $(t_s - q)(t_s + 1) = 0$ 'deforms' order relation (s - 1)(s + 1) = 0 in W.

Further: Degrees of constituents of $R_{T_0}^G(1_{T_0})$ are expressed by 'Schur elements' of \mathcal{H} with respect to a certain symmetrising form.

Gunter Malle (TU Kaiserslautern)

Some motivation, contd

For $T \leq G$ any maximal torus (not necessarily in Borel subgroup), have Lusztig induction

 $R_T^G : \mathbb{Z}Irr(T) \longrightarrow \mathbb{Z}Irr(G).$

Observation (Broué–M.–Michel (1993))

If T parametrised by regular $w \in W \Rightarrow R_T^G(1_T)$ decomposes like regular character of $C_W(w)$ (a crg!).

Is there an analogue of Hecke algebra for $C_W(w)$ which explains this, a deformation of $\mathbb{C}[C_W(w)]$?

Good presentations

 $W \leq \mathsf{GL}(V)$ crg.

Proposition (Coxeter, ...)

All crg have good, Coxeter-like presentations, where

- generators are reflections,
- for each generator, have relation giving its order,
- all other relations are homogeneous, each involving at most three generators (so 'local': in dimension ≤ 3)

These can be visualised by diagrams, à la Coxeter.

Good presentations, II

If W is truly complex, then the good presentations satisfy at least one of

- there occur reflections of order > 2, or
- there are homogeneous relations involving > 2 reflections at a time (non-symmetric)

There may be several choices of good presentation for a fixed W.

Furthermore, in general, not all parabolic subgroups can be seen from a fixed presentation.

Hecke algebras, 1st attempt

Preliminary definition (as for Iwahori–Hecke algebras):

Let $W \leq \operatorname{GL}(V)$ be a crg, with good presentation

$$W = \langle S \mid R, \ s^{|s|} = 1 \text{ for } s \in S \rangle$$

(where $S \subseteq W$ are reflections, R homogeneous relations).

The Hecke algebra $\mathcal{H}(W, \mathbf{u})$ attached to W and indeterminates $\mathbf{u} = (u_{s,j} \mid s \in S, 1 \le j \le |s|)$ is the free associative $\mathbb{Z}[\mathbf{u}, \mathbf{u}^{-1}]$ -algebra on generators $\{\mathbf{t}_s \mid s \in S\}$ and relations

•
$$(\boldsymbol{t}_s - u_{s,1}) \cdots (\boldsymbol{t}_s - u_{s,|s|}) = 0$$
 for $s \in S$,

• the homogeneous relations from *R*.

Problem: W may have several good presentations. Which should we take?

Example

The 3-dimensional primitive crg $G_{24} \cong PSL_2(7) \times C_2$ can be generated by three reflections of order 2. It has (at least) three good presentations on three reflections:

$$G_{24} = \langle r, s, t \mid r^2 = s^2 = t^2 = 1,$$

$$rsrs = srsr, rtr = trt, stst = tsts, srstrst = rstrstr \rangle,$$

$$= \langle r, s, t \mid r^2 = s^2 = t^2 = 1,$$

$$rsr = srs, rtr = trt, stst = tsts, tsrtsrtsr = stsrtsrts \rangle,$$

$$= \langle r, s, t \mid r^2 = s^2 = t^2 = 1,$$

$$rsr = srs, rtr = trt, stst = tsts, strstrstrs = trstrstrst \rangle.$$

Are the corresponding Hecke algebras (as defined above) isomorphic?

The braid group Let $V = \mathbb{C}^n$, $W \leq GL(V)$ a crg. For $s \in W$ a reflection, let $H_s := \ker_V(s-1)$ its reflecting hyperplane. Set

$$V^{\mathsf{reg}} := V \setminus \bigcup_{s \in W \text{ refl.}} H_s.$$

Theorem of Steinberg:

$$V^{\mathsf{reg}} \longrightarrow V^{\mathsf{reg}}/W$$

is an unramified covering, with Galois group W.

The braid group of W is the fundamental group

$$B_W := \pi_1(V^{\mathsf{reg}}/W, x_0)$$
 (for some $x_0 \in V^{\mathsf{reg}})$.

Example

For $W = \mathfrak{S}_n$ in its natural reflection representation, B_W is the Artin braid group on *n* strings.

Gunter Malle (TU Kaiserslautern)

Braid Groups, Hecke Algebras

Presentations of the braid group

H reflecting hyperplane $\implies C_W(H)$ generated by a reflection s_H . s_H is *distinguished* : \iff its unique non-trivial eigenvalue is $\exp(2\pi i/|s_H|)$. Set $d_H := |C_W(H)|$.

Braid reflections: Suitable lifts $s_H \in B_W$ of distinguished $s_H \in W$ (see talks of Ivan, Jean).

Theorem (Brieskorn, Deligne (1972), Broué–M.–Rouquier (1998), Bessis (2007))

Assume W irreducible. Then B_W has a presentation on at most dim V + 1 braid reflections s_H by homogeneous positive braid relations in the s_H . Adding the relations $s_H^{d_H}$ yields a good presentation of W.

Hecke algebras, II

Let $\boldsymbol{u} = (u_{s,j} \mid s \in W \text{ distinguished reflection}, 1 \leq j \leq |s|)$ be a *W*-invariant set of indeterminates, $A := \mathbb{Z}[\boldsymbol{u}, \boldsymbol{u}^{-1}].$

The (generic) Hecke algebra attached to W is the quotient

$$\mathcal{H}(W, \boldsymbol{u}) = A[B_W] / \left((\boldsymbol{s} - u_{s,1}) \dots (\boldsymbol{s} - u_{s,|s|}) \mid \boldsymbol{s} \text{ braid-reflection}
ight)$$

of the group algebra $A[B_W]$ of the braid group.

This is independent of a choice of presentation!

Examples

- For *W* a Coxeter group we obtain the usual generic Iwahori–Hecke algebra (with indeterminates in place of *q*).
- For $W = G_5$,

$$\mathcal{H}(W, \boldsymbol{u}) = \Big\langle \boldsymbol{s}, \boldsymbol{t} \mid \boldsymbol{stst} = \boldsymbol{tsts}, \prod_{j=1}^{3} (\boldsymbol{s} - u_{s,j}) = \prod_{j=1}^{3} (\boldsymbol{t} - u_{t,j}) = 0 \Big\rangle.$$

Hecke algebras, III

Example

For the 3-dimensional reflection group G_{24} , the three presentations of B_W on three braid reflections:

$$\begin{split} B_W &= \langle r, s, t \mid rsrs = srsr, \ rtr = trt, \\ stst = tsts, \ srstrst = rstrstr \rangle, \\ &= \langle r, s, t \mid rsr = srs, \ rtr = trt, \\ stst = tsts, \ tsrtsrtsr = stsrtsrts \rangle, \\ &= \langle r, s, t \mid rsr = srs, \ rtr = trt, \\ stst = tsts, \ strstrstrs = trstrstrst \rangle, \end{split}$$

just give three presentations of the same Hecke algebra.

Hecke algebras as deformations

From the theorem on presentations of braid groups we get:

Corollary

Under the specialisation

 $u_{s,j} \mapsto \exp(2\pi i j/|s|), \quad s \in W \text{ distinguished refl.}, \ 1 \leq j \leq |s|,$

 $\mathcal{H}(W, \boldsymbol{u})$ becomes isomorphic to the group algebra $\mathbb{C}[W]$ of W.

Long open 'Freeness Conjecture' (well-known for Coxeter groups (Tits)):

Theorem (Tits, Ariki–Koike (1993), Broué–M. (1993),..., Chavli (2018), Marin (2019), Tsuchioka(2020)) $\mathcal{H}(W, \mathbf{u})$ is a free A-module of rank |W|.

For proof, find an A-basis of $\mathcal{H}(W, \boldsymbol{u})$.

Lifting reduced expressions

Choose presentation

$$B_W = \langle \mathbf{S} \mid R \rangle$$

of the braid group, so that

$$W = \langle S \mid R, \text{ order relations} \rangle$$

is a presentation of W, with $S \subset W$ the images of the $s \in S$. Write t_s for the image of s in $\mathcal{H}(W, u)$.

For $w \in W$, choose reduced expression

$$w = s_1 \cdots s_r$$
 with $s_i \in S$

and let

$$\boldsymbol{w} := \boldsymbol{s}_1 \cdots \boldsymbol{s}_r \in B_W, \qquad \boldsymbol{t}_{\boldsymbol{w}} := \boldsymbol{t}_{\boldsymbol{s}_1} \cdots \boldsymbol{t}_{\boldsymbol{s}_r} \in \mathcal{H}(W, \boldsymbol{u}).$$

Hope: $\{\boldsymbol{t}_{\boldsymbol{w}} \mid \boldsymbol{w} \in W\}$ is an *A*-basis of $\mathcal{H}(W, \boldsymbol{u})$.

Gunter Malle (TU Kaiserslautern)

Bases of $\mathcal{H}(W, \boldsymbol{u})$

For Coxeter groups,

• $w \in B_W$ is independent of the choice of reduced expression of $w \in W$ (Lemma of Matsumoto), and

• there is a natural presentation for B_W .

Problem: for crg, in general *w* depends on

- the choice of presentation, and
- on the choice of reduced expression of w.

So, much more complicated arguments and computations are needed to find an A-basis of $\mathcal{H}(W, \boldsymbol{u})$

Tits deformation theorem

Recall: have semisimple specialisation $\mathbb{C}[W]$ of $\mathcal{H}(W, \boldsymbol{u})$, by sending

 $u_{s,j} \mapsto \exp(2\pi i j/|s|).$

Then Tits' deformation theorem shows:

Corollary (of freeness theorem) Let W be a crg. Then over a suitable extension field K of Frac(A), $\mathcal{H}(W, \mathbf{u}) \otimes_A K \cong K[W].$

In particular, there is a 1-1 correspondence $Irr(\mathcal{H}(W, \boldsymbol{u})) \longleftrightarrow Irr(W)$.

Conclusion: $\mathcal{H}(W, \mathbf{u})$ could be the right candidate to explain R_T^G .

Splitting fields

Which extension field K suffices?

Recall k_W = character field of W. Let $\mu(k_W)$ = roots of unity in k_W .

Theorem (M. (1998))

 $\mathcal{H}(W, \boldsymbol{u})$ is split over $K_W := k_W(\boldsymbol{v})$, where $\boldsymbol{v} = (v_{s,j})$ with

$$v_{s,j}^{|\mu(k_W)|} = \exp(-2\pi i j/|s|) u_{s,j}.$$

Thus, over \mathcal{K}_W , the specialisation $v_{s,j}\mapsto 1$ induces a natural bijection

$$\operatorname{Irr}(\mathcal{H}(W, \boldsymbol{u})) \longrightarrow \operatorname{Irr}(W), \qquad \chi_{\boldsymbol{v}} \mapsto \chi.$$

Example (Benson-Curtis (1972), Lusztig)

For W a Weyl group, $|\mu(k_W)| = |\mu(\mathbb{Q})| = 2$ \implies splitting field for Iwahori–Hecke algebras is obtained by extracting square roots of the indeterminates.

Gunter Malle (TU Kaiserslautern)

Symmetrizing forms

We expect Hecke algebras to carry a natural trace form: There should exist an *A*-linear form

 $t:\mathcal{H}(W,\boldsymbol{u})\longrightarrow A$

with the following properties:

- the bilinear form $\mathcal{H} \times \mathcal{H} \to A$, $(h_1, h_2) \mapsto t(h_1h_2)$, is symmetric and non-degenerate over A,
- t specialises to the canonical trace form on the group algebra of W,
- *t* restricted to a parabolic subalgebra has the same properties on that subalgebra.

Rouquier: under an additional condition, if it exists, such a t is unique.

Symmetrizing forms, contd

For Coxeter groups, such a form on $\mathcal{H}(W, \boldsymbol{u})$ is obtained by setting

$$t(oldsymbol{t}_{oldsymbol{w}}) := egin{cases} 1 & w = 1, \ 0 & ext{else}, \end{cases}$$

for $w \in W$ (with lifted elements $\boldsymbol{t}_{\boldsymbol{w}} \in \mathcal{H}(W, \boldsymbol{u})$ as above).

Problem: for crg, the t_w are not well-defined.

Theorem (Bremke–M. (1997), M.–Mathas (1998), Boura–Chavli–Chlouveraki–Karvounis (2020))

For almost all irreducible crg, the algebra $\mathcal{H}(W, \mathbf{u})$ is symmetric over A.

E.g., for G(m, 1, n), t vanishes on t_w for all reduced expressions of all $1 \neq w \in W$.

For the proof, take above definition for some basis and check properties.

Gunter Malle (TU Kaiserslautern)

Braid Groups, Hecke Algebras

Schur elements

Let t denote the canonical symmetrizing form on $\mathcal{H}(W, \mathbf{u})$. Write

$$t = \sum_{\chi \in \mathsf{Irr}(W)} rac{1}{S_{\chi}} \chi_{\mathbf{v}},$$

with *Schur elements* $S_{\chi} \in K_W$.

Theorem (Geck–Iancu–M. (2000), M. (1997,2000))

The Schur elements are explicitly known for all types (assuming the existence of the symmetrizing form t).

For infinite series, determine weights of a Markov trace on $\mathcal{H}(W, \boldsymbol{u})$.

Computing Schur elements

For exceptional types, solve linear system of equations

$$t(\boldsymbol{t}_{\boldsymbol{w}}) = \sum_{\chi} \chi_{\boldsymbol{v}}(\boldsymbol{t}_{\boldsymbol{w}}) \frac{1}{S_{\chi}} = \begin{cases} 1 & w = 1 \\ 0 & \text{else} \end{cases} \qquad (w \in W).$$

How do we know $\chi_{\boldsymbol{v}}(\boldsymbol{t}_{\boldsymbol{w}})$ on sufficiently many elements?

Construct representations explicitly.

For small dimensions ($m \le 6$): take matrices with indeterminate entries, plug into relations, solve non-linear system.

Induction: may assume matrices known for a maximal parabolic subalgebra.

Example

For $W = G_5$, with parameters (u, v, w, x, y, z), one Schur element is $-\frac{(uy + vx)(vy + ux)(y - z)(uvxy + w^2z^2)(x - z)(v - w)(u - w)}{uvw^4xyz^4}.$

In fact, the Schur elements always have total degree 0 and are of the form

$$S_{\chi}=m\cdot\frac{P_1}{P_2},$$

where

- *m* is an integer in *k*_W,
- P₁ is a product of cyclotomic polynomials over k_W, evaluated at monomials in the v^{±1}_{s,i},

Decomposition of R_T^G

Recall observation: If torus $T \leq G$ parametrised by $w \in W$ regular $\Rightarrow R_T^G(1_T)$ decomposes like regular character of $C_W(w)$.

Observation (M.)

The degrees of constituents of $R_T^G(1_T)$ are then given in terms of the Schur elements of a certain specialisation of $\mathcal{H}(C_W(w), \boldsymbol{u})$.

Conclusion: $\mathcal{H}(W, \mathbf{u})$ might definitely be the right algebra to explain R_T^G .

This conjectural explanation has so far been proved in only very few cases (Digne, Dudas, Michel, Rouquier,...)

The spetsial specialisation

We are interested in 1-parameter specialisations of $\mathcal{H}(W, \boldsymbol{u})$ through which the specialisation to $\mathbb{C}[W]$ factors.

For Iwahori-Hecke algebras, the specialisation where

$$(\boldsymbol{s}-q)(\boldsymbol{s}+1)=0$$

(for all distinguished $s \in W$) is particularly important.

For Hecke algebras of crg, may have reflections of order |s| > 2. So consider the *spetsial* specialisation $\mathcal{H}(W, q)$ where

$$(s-q)(s^{|s|-1}+s^{|s|-2}+\ldots+1)=0.$$

By the above, $\mathcal{H}(W,q)$ is split over $k_W(y)$, where $y^{|\mu(k_W)|} = q$.

Fake degrees

The symmetric algebra S(V), the invariants $S(V)^W$, are naturally graded.

 $S(V)_{+}^{W}$:= the invariants of degree at least 1.

 $S(V)_W := S(V) / (S(V)^W_+)$ the coinvariant algebra.

Theorem (Chevalley (1955))

The graded W-module $S(V)_W$ affords the regular representation of W.

The *fake degree* of $\chi \in Irr(W)$ is the graded multiplicity

$$R_{\chi} := \sum_{j} \langle \chi, S(V)^{j}_{W} \rangle z^{j} \in \mathbb{Z}[z].$$

Rationality of the reflection representation

The spetsial algebra 'knows about' W being well-generated!

For $\chi \in Irr(W)$ let $D_{\chi} := S_1/S_{\chi}$, the generic degree of χ .

 $\chi \in Irr(W)$ is special if $R_{\chi}(q)$ and D_{χ} have same order of zero at y = 0.

Proposition (M.)

For an irreducible crg W the following are equivalent:

- (i) W is well-generated.
- (ii) The reflection character of W is special.
- (iii) The reflection representation of $\mathcal{H}(W, q)$ can be realised over $k_W(q)$.

For example, for Coxeter groups the reflection representation of $\mathcal{H}(W, q)$ is always rational.