Complex reflection groups, braid groups, Hecke algebras (II)

Gunter Malle

TU Kaiserslautern
2./3. September 2021

Some motivation

W Weyl group \rightsquigarrow groups of Lie type $G=G(q)$ with Weyl group W.

Theorem

Constituents of $R_{T_{0}}^{G}\left(1_{T_{0}}\right)$ are in bijection with $\operatorname{Irr}(W)$; $R_{T_{0}}^{G}\left(1 T_{T_{0}}\right)$ decomposes as regular character of W.

Explanation: Hecke algebra $\mathcal{H}:=\operatorname{End}_{\mathbb{C} G}\left(R_{T_{0}}^{G}\left(1_{T_{0}}\right)\right)$ isomorphic to $\mathbb{C}[W]$. With S the Coxeter generators of W,

$$
\left.\mathcal{H}=\left\langle\boldsymbol{t}_{s}(s \in S)\right| \text { braid relations; }\left(\boldsymbol{t}_{s}-q\right)\left(\boldsymbol{t}_{s}+1\right)=0\right\rangle
$$

$\left(\boldsymbol{t}_{s}-q\right)\left(\boldsymbol{t}_{s}+1\right)=0$ 'deforms' order relation $(s-1)(s+1)=0$ in W.
Further: Degrees of constituents of $R_{T_{0}}^{G}\left(1_{T_{0}}\right)$ are expressed by 'Schur elements' of \mathcal{H} with respect to a certain symmetrising form.

Some motivation, contd

For $T \leq G$ any maximal torus (not necessarily in Borel subgroup), have Lusztig induction

$$
R_{T}^{G}: \mathbb{Z} \operatorname{lrr}(T) \longrightarrow \mathbb{Z} \operatorname{lrr}(G)
$$

Observation (Broué-M.-Michel (1993))

If T parametrised by regular $w \in W \Rightarrow$ $R_{T}^{G}\left(1_{T}\right)$ decomposes like regular character of $C_{W}(w)$ (a crg!).

Is there an analogue of Hecke algebra for $C_{W}(w)$ which explains this, a deformation of $\mathbb{C}\left[C_{W}(w)\right]$?

Good presentations

$$
W \leq \mathrm{GL}(V) \mathrm{crg} .
$$

Proposition (Coxeter, ...)

All crg have good, Coxeter-like presentations, where

- generators are reflections,
- for each generator, have relation giving its order,
- all other relations are homogeneous, each involving at most three generators (so 'local': in dimension ≤ 3)

These can be visualised by diagrams, à la Coxeter.

Good presentations, II

If W is truly complex, then the good presentations satisfy at least one of

- there occur reflections of order >2, or
- there are homogeneous relations involving >2 reflections at a time (non-symmetric)

There may be several choices of good presentation for a fixed W.
Furthermore, in general, not all parabolic subgroups can be seen from a fixed presentation.

Hecke algebras, 1st attempt

Preliminary definition (as for Iwahori-Hecke algebras):
Let $W \leq \mathrm{GL}(V)$ be a crg, with good presentation

$$
\left.W=\langle S| R, s^{|s|}=1 \text { for } s \in S\right\rangle
$$

(where $S \subseteq W$ are reflections, R homogeneous relations).
The Hecke algebra $\mathcal{H}(W, \boldsymbol{u})$ attached to W and indeterminates $\boldsymbol{u}=\left(u_{s, j}|s \in S, 1 \leq j \leq|s|)\right.$ is the free associative $\mathbb{Z}\left[\boldsymbol{u}, \boldsymbol{u}^{-1}\right]$-algebra on generators $\left\{\boldsymbol{t}_{s} \mid s \in S\right\}$ and relations

- $\left(\boldsymbol{t}_{s}-u_{s, 1}\right) \cdots\left(\boldsymbol{t}_{s}-u_{s,|s|}\right)=0$ for $s \in S$,
- the homogeneous relations from R.

Problem: W may have several good presentations. Which should we take?

Example

The 3-dimensional primitive $\operatorname{crg} G_{24} \cong \mathrm{PSL}_{2}(7) \times C_{2}$ can be generated by three reflections of order 2. It has (at least) three good presentations on three reflections:

$$
\begin{aligned}
& G_{24}=\langle r, s, t| r^{2}=s^{2}=t^{2}=1 \\
&r s r s=s r s r, r t r=t r t, \text { stst }=t s t s, \text { srstrst }=r s t r s t r\rangle \\
&=\langle r, s, t| r^{2}=s^{2}=t^{2}=1 \\
&r s r=s r s, r t r=t r t, \text { stst }=t s t s, \text { tsrtsrtsr }=s t s r t s r t s\rangle \\
&=\langle r, s, t| r^{2}=s^{2}=t^{2}=1 \\
&r s r=s r s, r t r=t r t, \text { stst }=t s t s, \text { strstrstrs }=t r s t r s t r s t\rangle
\end{aligned}
$$

Are the corresponding Hecke algebras (as defined above) isomorphic?

The braid group

Let $V=\mathbb{C}^{n}, W \leq \mathrm{GL}(V)$ a crg.
For $s \in W$ a reflection, let $H_{s}:=\operatorname{ker}_{V}(s-1)$ its reflecting hyperplane. Set

$$
V^{\mathrm{reg}}:=V \backslash \bigcup_{s \in W \text { refl. }} H_{s} .
$$

Theorem of Steinberg:

$$
V^{\text {reg }} \longrightarrow V^{\text {reg }} / W
$$

is an unramified covering, with Galois group W.
The braid group of W is the fundamental group

$$
B_{W}:=\pi_{1}\left(V^{\text {reg }} / W, x_{0}\right) \quad\left(\text { for some } x_{0} \in V^{\text {reg }}\right)
$$

Example

For $W=\mathfrak{S}_{n}$ in its natural reflection representation, B_{W} is the Artin braid group on n strings.

Presentations of the braid group

H reflecting hyperplane $\Longrightarrow C_{W}(H)$ generated by a reflection s_{H}.
s_{H} is distinguished $: \Longleftrightarrow$ its unique non-trivial eigenvalue is $\exp \left(2 \pi i /\left|s_{H}\right|\right)$.
Set $d_{H}:=\left|C_{W}(H)\right|$.
Braid reflections: Suitable lifts $\boldsymbol{s}_{H} \in B_{W}$ of distinguished $s_{H} \in W$ (see talks of Ivan, Jean).

Theorem (Brieskorn, Deligne (1972), Broué-M.-Rouquier (1998), Bessis (2007))
Assume W irreducible. Then B_{W} has a presentation on at most $\operatorname{dim} V+1$ braid reflections \boldsymbol{s}_{H} by homogeneous positive braid relations in the \boldsymbol{s}_{H}. Adding the relations $\boldsymbol{s}_{H}^{d_{H}}$ yields a good presentation of W.

Hecke algebras, II

Let $\boldsymbol{u}=\left(u_{s, j} \mid s \in W\right.$ distinguished reflection, $\left.1 \leq j \leq|s|\right)$ be a W-invariant set of indeterminates, $A:=\mathbb{Z}\left[\boldsymbol{u}, \boldsymbol{u}^{-1}\right]$.

The (generic) Hecke algebra attached to W is the quotient

$$
\mathcal{H}(W, \boldsymbol{u})=A\left[B_{W}\right] /\left(\left(\boldsymbol{s}-u_{s, 1}\right) \ldots\left(\boldsymbol{s}-u_{s,|s|}\right) \mid \boldsymbol{s} \text { braid-reflection }\right)
$$

of the group algebra $A\left[B_{W}\right]$ of the braid group.
This is independent of a choice of presentation!

Examples

- For W a Coxeter group we obtain the usual generic Iwahori-Hecke algebra (with indeterminates in place of q).
- For $W=G_{5}$,

$$
\mathcal{H}(W, \boldsymbol{u})=\left\langle\boldsymbol{s}, \boldsymbol{t} \mid \boldsymbol{s t s t}=\boldsymbol{t s t s}, \prod_{j=1}^{3}\left(\boldsymbol{s}-u_{s, j}\right)=\prod_{j=1}^{3}\left(\boldsymbol{t}-u_{t, j}\right)=0\right\rangle
$$

Hecke algebras, III

Example

For the 3-dimensional reflection group G_{24}, the three presentations of B_{W} on three braid reflections:

$$
\begin{aligned}
& B_{W}=\langle r, s, t| r s r s=s r s r, r t r=t r t \\
&s t s t=t s t s, \quad s r s t r s t=r s t r s t r\rangle \\
&=\langle r, s, t| r s r=s r s, r t r=t r t \\
&s t s t=t s t s, t s r t s r t s r=s t s r t s r t s\rangle \\
&=\langle r, s, t| r s r=s r s, r t r=t r t \\
&s t s t=t s t s, \quad s t r s t r s t r s=t r s t r s t r s t\rangle
\end{aligned}
$$

just give three presentations of the same Hecke algebra.

Hecke algebras as deformations

From the theorem on presentations of braid groups we get:

Corollary

Under the specialisation

$$
u_{s, j} \mapsto \exp (2 \pi i j /|s|), \quad s \in W \text { distinguished refl., } 1 \leq j \leq|s|,
$$

$\mathcal{H}(W, \boldsymbol{u})$ becomes isomorphic to the group algebra $\mathbb{C}[W]$ of W.

Long open 'Freeness Conjecture' (well-known for Coxeter groups (Tits)):
Theorem (Tits, Ariki-Koike (1993), Broué-M. (1993),..., Chavli (2018), Marin (2019), Tsuchioka(2020))
$\mathcal{H}(W, \boldsymbol{u})$ is a free A-module of rank $|W|$.

For proof, find an A-basis of $\mathcal{H}(W, \boldsymbol{u})$.

Lifting reduced expressions

Choose presentation

$$
B_{W}=\langle\mathbf{S} \mid R\rangle
$$

of the braid group, so that

$$
W=\langle S| R, \text { order relations }\rangle
$$

is a presentation of W, with $S \subset W$ the images of the $\boldsymbol{s} \in \mathbf{S}$.
Write $\boldsymbol{t}_{\boldsymbol{s}}$ for the image of \boldsymbol{s} in $\mathcal{H}(W, \boldsymbol{u})$.
For $w \in W$, choose reduced expression

$$
w=s_{1} \cdots s_{r} \quad \text { with } s_{i} \in S
$$

and let

$$
\boldsymbol{w}:=\boldsymbol{s}_{1} \cdots \boldsymbol{s}_{r} \in B_{W}, \quad \boldsymbol{t}_{\boldsymbol{w}}:=\boldsymbol{t}_{s_{1}} \cdots \boldsymbol{t}_{s_{r}} \in \mathcal{H}(W, \boldsymbol{u}) .
$$

Hope: $\left\{\boldsymbol{t}_{\boldsymbol{w}} \mid w \in W\right\}$ is an A-basis of $\mathcal{H}(W, \boldsymbol{u})$.

Bases of $\mathcal{H}(W, \boldsymbol{u})$

For Coxeter groups,

- $\boldsymbol{w} \in B_{W}$ is independent of the choice of reduced expression of $w \in W$ (Lemma of Matsumoto), and
- there is a natural presentation for B_{W}.

Problem: for crg, in general \boldsymbol{w} depends on

- the choice of presentation, and
- on the choice of reduced expression of w.

So, much more complicated arguments and computations are needed to find an A-basis of $\mathcal{H}(W, \boldsymbol{u}) \ldots$

Tits deformation theorem

Recall: have semisimple specialisation $\mathbb{C}[W]$ of $\mathcal{H}(W, \boldsymbol{u})$, by sending

$$
u_{s, j} \mapsto \exp (2 \pi i j /|s|)
$$

Then Tits' deformation theorem shows:

Corollary (of freeness theorem)

Let W be a crg. Then over a suitable extension field K of $\operatorname{Frac}(A)$,

$$
\mathcal{H}(W, \boldsymbol{u}) \otimes_{A} K \cong K[W]
$$

In particular, there is a 1-1 correspondence $\operatorname{Irr}(\mathcal{H}(W, \boldsymbol{u})) \longleftrightarrow \operatorname{Irr}(W)$.
Conclusion: $\mathcal{H}(W, \boldsymbol{u})$ could be the right candidate to explain R_{T}^{G}.

Splitting fields

Which extension field K suffices?
Recall $k_{W}=$ character field of W. Let $\mu\left(k_{W}\right)=$ roots of unity in k_{W}.
Theorem (M. (1998))
$\mathcal{H}(W, \boldsymbol{u})$ is split over $K_{W}:=k_{W}(\boldsymbol{v})$, where $\boldsymbol{v}=\left(v_{s, j}\right)$ with

$$
v_{s, j}^{\left|\mu\left(k_{w}\right)\right|}=\exp (-2 \pi i j /|s|) u_{s, j} .
$$

Thus, over K_{W}, the specialisation $v_{s, j} \mapsto 1$ induces a natural bijection

$$
\operatorname{Irr}(\mathcal{H}(W, \boldsymbol{u})) \longrightarrow \operatorname{Irr}(W), \quad \chi_{\mathbf{v}} \mapsto \chi
$$

Example (Benson-Curtis (1972), Lusztig)

For W a Weyl group, $\left|\mu\left(k_{W}\right)\right|=|\mu(\mathbb{Q})|=2$
\Longrightarrow splitting field for Iwahori-Hecke algebras is obtained by extracting square roots of the indeterminates.

Symmetrizing forms

We expect Hecke algebras to carry a natural trace form:
There should exist an A-linear form

$$
t: \mathcal{H}(W, \boldsymbol{u}) \longrightarrow A
$$

with the following properties:

- the bilinear form $\mathcal{H} \times \mathcal{H} \rightarrow A,\left(h_{1}, h_{2}\right) \mapsto t\left(h_{1} h_{2}\right)$, is symmetric and non-degenerate over A,
- t specialises to the canonical trace form on the group algebra of W,
- t restricted to a parabolic subalgebra has the same properties on that subalgebra.

Rouquier: under an additional condition, if it exists, such a t is unique.

Symmetrizing forms, contd

For Coxeter groups, such a form on $\mathcal{H}(W, \boldsymbol{u})$ is obtained by setting

$$
t\left(\boldsymbol{t}_{\boldsymbol{w}}\right):= \begin{cases}1 & w=1 \\ 0 & \text { else }\end{cases}
$$

for $w \in W$ (with lifted elements $\boldsymbol{t}_{\boldsymbol{w}} \in \mathcal{H}(W, \boldsymbol{u})$ as above).
Problem: for crg, the $\boldsymbol{t}_{\boldsymbol{w}}$ are not well-defined.
Theorem (Bremke-M. (1997), M.-Mathas (1998),
Boura-Chavli-Chlouveraki-Karvounis (2020))
For almost all irreducible crg, the algebra $\mathcal{H}(W, \boldsymbol{u})$ is symmetric over A.
E.g., for $G(m, 1, n), t$ vanishes on $\boldsymbol{t}_{\boldsymbol{w}}$ for all reduced expressions of all $1 \neq w \in W$.

For the proof, take above definition for some basis and check properties.

Schur elements

Let t denote the canonical symmetrizing form on $\mathcal{H}(W, \boldsymbol{u})$. Write

$$
t=\sum_{\chi \in \operatorname{lrr}(W)} \frac{1}{S_{\chi}} \chi_{\mathbf{v}}
$$

with Schur elements $S_{\chi} \in K_{W}$.
Theorem (Geck-lancu-M. (2000), M. $(1997,2000))$
The Schur elements are explicitly known for all types (assuming the existence of the symmetrizing form t).

For infinite series, determine weights of a Markov trace on $\mathcal{H}(W, \boldsymbol{u})$.

Computing Schur elements

For exceptional types, solve linear system of equations

$$
t\left(\boldsymbol{t}_{\boldsymbol{w}}\right)=\sum_{\chi} \chi_{\boldsymbol{v}}\left(\boldsymbol{t}_{\boldsymbol{w}}\right) \frac{1}{S_{\chi}}=\left\{\begin{array}{ll}
1 & w=1 \\
0 & \text { else }
\end{array} \quad(w \in W)\right.
$$

How do we know $\chi_{\boldsymbol{v}}\left(\boldsymbol{t}_{\boldsymbol{w}}\right)$ on sufficiently many elements?
Construct representations explicitly.
For small dimensions ($m \leq 6$): take matrices with indeterminate entries, plug into relations, solve non-linear system.

Induction: may assume matrices known for a maximal parabolic subalgebra.

Example

For $W=G_{5}$, with parameters (u, v, w, x, y, z), one Schur element is

$$
-\frac{(u y+v x)(v y+u x)(y-z)\left(u v x y+w^{2} z^{2}\right)(x-z)(v-w)(u-w)}{u v w^{4} x y z^{4}} .
$$

In fact, the Schur elements always have total degree 0 and are of the form

$$
S_{\chi}=m \cdot \frac{P_{1}}{P_{2}}
$$

where

- m is an integer in k_{W},
- P_{1} is a product of cyclotomic polynomials over k_{W}, evaluated at monomials in the $v_{s, j}^{ \pm 1}$,
- P_{2} is a monomial in the $v_{s, j}^{ \pm 1}$.

Decomposition of R_{T}^{G}

Recall observation: If torus $T \leq G$ parametrised by $w \in W$ regular \Rightarrow $R_{T}^{G}\left(1_{T}\right)$ decomposes like regular character of $C_{W}(w)$.

Observation (M.)

The degrees of constituents of $R_{T}^{G}\left(1_{T}\right)$ are then given in terms of the Schur elements of a certain specialisation of $\mathcal{H}\left(C_{W}(w), \boldsymbol{u}\right)$.

Conclusion: $\mathcal{H}(W, \boldsymbol{u})$ might definitely be the right algebra to explain R_{T}^{G}.
This conjectural explanation has so far been proved in only very few cases (Digne, Dudas, Michel, Rouquier,...)

The spetsial specialisation

We are interested in 1-parameter specialisations of $\mathcal{H}(W, \boldsymbol{u})$ through which the specialisation to $\mathbb{C}[W]$ factors.

For Iwahori-Hecke algebras, the specialisation where

$$
(s-q)(s+1)=0
$$

(for all distinguished $s \in W$) is particularly important.
For Hecke algebras of crg, may have reflections of order $|s|>2$. So consider the spetsial specialisation $\mathcal{H}(W, q)$ where

$$
(s-q)\left(s^{|s|-1}+s^{|s|-2}+\ldots+1\right)=0
$$

By the above, $\mathcal{H}(W, q)$ is split over $k_{W}(y)$, where $y^{\left|\mu\left(k_{w}\right)\right|}=q$.

Fake degrees

The symmetric algebra $S(V)$, the invariants $S(V)^{W}$, are naturally graded.
$S(V)_{+}^{W}:=$ the invariants of degree at least 1.
$S(V)_{W}:=S(V) /\left(S(V)_{+}^{W}\right)$ the coinvariant algebra.
Theorem (Chevalley (1955))
The graded W-module $S(V)_{w}$ affords the regular representation of W.

The fake degree of $\chi \in \operatorname{Irr}(W)$ is the graded multiplicity

$$
R_{\chi}:=\sum_{j}\left\langle\chi, S(V)_{W}^{j}\right\rangle z^{j} \in \mathbb{Z}[z]
$$

Rationality of the reflection representation

The spetsial algebra 'knows about' W being well-generated!
For $\chi \in \operatorname{Irr}(W)$ let $D_{\chi}:=S_{1} / S_{\chi}$, the generic degree of χ.
$\chi \in \operatorname{Irr}(W)$ is special if $R_{\chi}(q)$ and D_{χ} have same order of zero at $y=0$.

Proposition (M.)

For an irreducible crg W the following are equivalent:
(i) W is well-generated.
(ii) The reflection character of W is special.
(iii) The reflection representation of $\mathcal{H}(W, q)$ can be realised over $k_{W}(q)$.

For example, for Coxeter groups the reflection representation of $\mathcal{H}(W, q)$ is always rational.

