Complex Braid Groups

Ivan Marin, Université d'Amiens (UPJV)

Part 1 : Presentations
Berlin, August-September 2021

Table of contents

(1) Definitions
(2) Braids
(3) Braid groups of $G(d e, e, n)$
(4) A few words about exceptional groups
(2) Braids
(3) Braid groups of $G(d e, e, n)$

4 A few words about exceptional groups

Notations for complex reflection groups

Let $W<\mathrm{GL}(V)$ be a complex reflection group, $n=\operatorname{dim} V$

$$
W=\langle\mathcal{R}\rangle \mathcal{R}=\{s \in W ; \operatorname{dim} \operatorname{Ker}(s-1)=n-1\}
$$

Notations for complex reflection groups

Let $W<\mathrm{GL}(V)$ be a complex reflection group, $n=\operatorname{dim} V$

$$
W=\langle\mathcal{R}\rangle \mathcal{R}=\{s \in W ; \operatorname{dim} \operatorname{Ker}(s-1)=n-1\}
$$

The collection of its reflecting hyperplanes is the hyperplane arrangement

$$
\mathcal{A}=\{\operatorname{Ker}(s-1), s \in \mathcal{R}\}
$$

Notations for complex reflection groups

Let $W<\mathrm{GL}(V)$ be a complex reflection group, $n=\operatorname{dim} V$

$$
W=\langle\mathcal{R}\rangle \mathcal{R}=\{s \in W ; \operatorname{dim} \operatorname{Ker}(s-1)=n-1\}
$$

The collection of its reflecting hyperplanes is the hyperplane arrangement

$$
\mathcal{A}=\{\operatorname{Ker}(s-1), s \in \mathcal{R}\}
$$

For $H \in \mathcal{A}, W_{H}=\left\{w \in W ; w_{\mid H}=\operatorname{Id}_{H}\right\}$ is cyclic, isomorphic to its image under det: $W_{H} \rightarrow \mathbb{C}^{\times}$.

Notations for complex reflection groups

Let $W<\mathrm{GL}(V)$ be a complex reflection group, $n=\operatorname{dim} V$

$$
W=\langle\mathcal{R}\rangle \mathcal{R}=\{s \in W ; \operatorname{dim} \operatorname{Ker}(s-1)=n-1\}
$$

The collection of its reflecting hyperplanes is the hyperplane arrangement

$$
\mathcal{A}=\{\operatorname{Ker}(s-1), s \in \mathcal{R}\}
$$

For $H \in \mathcal{A}, W_{H}=\left\{w \in W ; w_{\mid H}=\operatorname{Id}_{H}\right\}$ is cyclic, isomorphic to its image under det : $W_{H} \rightarrow \mathbb{C}^{\times}$.

The generator of W_{H} mapped to $\exp \left(2 \pi \mathrm{i} /\left|W_{H}\right|\right)$ is a reflection s_{H} called the distinguished reflection associated to H. The collection of all distinguished reflections is denoted \mathcal{R}^{*}.

Notations for complex reflection groups

Let $W<\mathrm{GL}(V)$ be a complex reflection group, $n=\operatorname{dim} V$

$$
W=\langle\mathcal{R}\rangle \mathcal{R}=\{s \in W ; \operatorname{dim} \operatorname{Ker}(s-1)=n-1\}
$$

The collection of its reflecting hyperplanes is the hyperplane arrangement

$$
\mathcal{A}=\{\operatorname{Ker}(s-1), s \in \mathcal{R}\}
$$

For $H \in \mathcal{A}, W_{H}=\left\{w \in W ; w_{\mid H}=\operatorname{Id}_{H}\right\}$ is cyclic, isomorphic to its image under det : $W_{H} \rightarrow \mathbb{C}^{\times}$.

The generator of W_{H} mapped to $\exp \left(2 \pi \mathrm{i} /\left|W_{H}\right|\right)$ is a reflection s_{H} called the distinguished reflection associated to H. The collection of all distinguished reflections is denoted \mathcal{R}^{*}.
\mathcal{R}^{*} is in 1-1 correspondence with \mathcal{A},

$$
s \mapsto \operatorname{Ker}(s-1), \quad H \mapsto s_{H}
$$

Classification of irreducible CRG's

The main series is made of the groups $G(d e, e, n)$ of

- $n \times n$ monomial matrices
- with nonzero entries inside $\mu_{r}, r=d e$
- whose product belongs to μ_{d}.

Classification of irreducible CRG's

The main series is made of the groups $G(d e, e, n)$ of

- $n \times n$ monomial matrices
- with nonzero entries inside $\mu_{r}, r=d e$
- whose product belongs to μ_{d}.

Of course $W=G(d e, e, n)<G(r, 1, n)$.

Classification of irreducible CRG's

The main series is made of the groups $G(d e, e, n)$ of

- $n \times n$ monomial matrices
- with nonzero entries inside $\mu_{r}, r=d e$
- whose product belongs to μ_{d}.

Of course $W=G(d e, e, n)<G(r, 1, n)$.

- W contains diagonal reflections, of the form $\operatorname{diag}(1, \ldots, 1, \zeta, 1, \ldots)$ if and only if $d>1$.

Classification of irreducible CRG's

The main series is made of the groups $G(d e, e, n)$ of

- $n \times n$ monomial matrices
- with nonzero entries inside $\mu_{r}, r=d e$
- whose product belongs to μ_{d}.

Of course $W=G(d e, e, n)<G(r, 1, n)$.

- W contains diagonal reflections, of the form $\operatorname{diag}(1, \ldots, 1, \zeta, 1, \ldots)$ if and only if $d>1$.
- its non-diagonal reflections belong to $G(r, r, n)<W$ and have the form

$$
\operatorname{Id}_{u} \oplus\left(\begin{array}{cc}
0 & \zeta_{e}^{-k} \\
\zeta_{e}^{k} & 0
\end{array}\right) \oplus \operatorname{Id}_{n-2-u}
$$

In addition to these, there are 34 exceptional groups G_{4}, \ldots, G_{37}, half of them in rank 2.

Complex braid groups

- $W=\langle\mathcal{R}\rangle=\left\langle\mathcal{R}^{*}\right\rangle$ complex reflection group
- $X=\mathbb{C}^{n} \backslash \cup \mathcal{A}$

Complex braid groups

- $W=\langle\mathcal{R}\rangle=\left\langle\mathcal{R}^{*}\right\rangle$ complex reflection group
- $X=\mathbb{C}^{n} \backslash \cup \mathcal{A}$
- $X \rightarrow X / W$ is a Galois covering

Complex braid groups

- $W=\langle\mathcal{R}\rangle=\left\langle\mathcal{R}^{*}\right\rangle$ complex reflection group
- $X=\mathbb{C}^{n} \backslash \cup \mathcal{A}$
- $X \rightarrow X / W$ is a Galois covering
- $B=\pi_{1}(X / W)$ its braid group

Complex braid groups

- $W=\langle\mathcal{R}\rangle=\left\langle\mathcal{R}^{*}\right\rangle$ complex reflection group
- $X=\mathbb{C}^{n} \backslash \bigcup \mathcal{A}$
- $X \rightarrow X / W$ is a Galois covering
- $B=\pi_{1}(X / W)$ its braid group fits into a short exact sequence

$$
1 \rightarrow P \rightarrow B \rightarrow W \rightarrow 1
$$

where $P=\pi_{1}(X)=\operatorname{Ker}(B \rightarrow W)$.

Complex braid groups

- $W=\langle\mathcal{R}\rangle=\left\langle\mathcal{R}^{*}\right\rangle$ complex reflection group
- $X=\mathbb{C}^{n} \backslash \bigcup \mathcal{A}$
- $X \rightarrow X / W$ is a Galois covering
- $B=\pi_{1}(X / W)$ its braid group fits into a short exact sequence

$$
1 \rightarrow P \rightarrow B \rightarrow W \rightarrow 1
$$

where $P=\pi_{1}(X)=\operatorname{Ker}(B \rightarrow W)$.
A nontrivial theorem, obtained using the classification, is the following one.

Complex braid groups

- $W=\langle\mathcal{R}\rangle=\left\langle\mathcal{R}^{*}\right\rangle$ complex reflection group
- $X=\mathbb{C}^{n} \backslash \cup \mathcal{A}$
- $X \rightarrow X / W$ is a Galois covering
- $B=\pi_{1}(X / W)$ its braid group fits into a short exact sequence

$$
1 \rightarrow P \rightarrow B \rightarrow W \rightarrow 1
$$

where $P=\pi_{1}(X)=\operatorname{Ker}(B \rightarrow W)$.
A nontrivial theorem, obtained using the classification, is the following one.

Theorem

B is torsion-free.

Complex braid groups

- $W=\langle\mathcal{R}\rangle=\left\langle\mathcal{R}^{*}\right\rangle$ complex reflection group
- $X=\mathbb{C}^{n} \backslash \bigcup \mathcal{A}$
- $X \rightarrow X / W$ is a Galois covering
- $B=\pi_{1}(X / W)$ its braid group fits into a short exact sequence

$$
1 \rightarrow P \rightarrow B \rightarrow W \rightarrow 1
$$

where $P=\pi_{1}(X)=\operatorname{Ker}(B \rightarrow W)$.
A nontrivial theorem, obtained using the classification, is the following one.

Theorem

B is torsion-free.
In particular the short exact sequence $1 \rightarrow P \rightarrow B \rightarrow W \rightarrow 1$ is
not split, and P is also torsion-free.

Complex braid groups

- $W=\langle\mathcal{R}\rangle=\left\langle\mathcal{R}^{*}\right\rangle$ complex reflection group
- $B=\pi_{1}(X / W)$ its braid group,

Complex braid groups

- $W=\langle\mathcal{R}\rangle=\left\langle\mathcal{R}^{*}\right\rangle$ complex reflection group
- $B=\pi_{1}(X / W)$ its braid group,

$$
B=\langle\sigma| \sigma \in B \text { braided reflection }\rangle
$$

Complex braid groups

- $W=\langle\mathcal{R}\rangle=\left\langle\mathcal{R}^{*}\right\rangle$ complex reflection group
- $B=\pi_{1}(X / W)$ its braid group,

$$
B=\langle\sigma| \sigma \in B \text { braided reflection }\rangle
$$

Braided reflections

Braided reflections and length function

Braided reflections and length function

Every reflecting hyperplane $H \in \mathcal{A}$ can be defined as the kernel of some linear form α_{H}.

Braided reflections and length function

Every reflecting hyperplane $H \in \mathcal{A}$ can be defined as the kernel of some linear form α_{H}. Then the map

$$
\prod_{H} \alpha_{H}^{\left|W_{H}\right|}: X \rightarrow \mathbb{C}^{\times}
$$

is W-invariant,

Braided reflections and length function

Every reflecting hyperplane $H \in \mathcal{A}$ can be defined as the kernel of some linear form α_{H}. Then the map

$$
\prod_{H} \alpha_{H}^{\left|W_{H}\right|}: X \rightarrow \mathbb{C}^{\times}
$$

is W-invariant,hence induces a continuous map $X / W \rightarrow \mathbb{C}^{\times}$.

Braided reflections and length function

Every reflecting hyperplane $H \in \mathcal{A}$ can be defined as the kernel of some linear form α_{H}. Then the map

$$
\prod_{H} \alpha_{H}^{\left|W_{H}\right|}: X \rightarrow \mathbb{C}^{\times}
$$

is W-invariant,hence induces a continuous map $X / W \rightarrow \mathbb{C}^{\times}$.

Definition

The length morphism $\ell: B \rightarrow \mathbb{Z}$ is the induced morphism $B=\pi_{1}(X / W) \rightarrow \pi_{1}\left(\mathbb{C}^{\times}\right)=\mathbb{Z}$.

Braided reflections and length function

Every reflecting hyperplane $H \in \mathcal{A}$ can be defined as the kernel of some linear form α_{H}. Then the map

$$
\prod_{H} \alpha_{H}^{\left|W_{H}\right|}: X \rightarrow \mathbb{C}^{\times}
$$

is W-invariant, hence induces a continuous map $X / W \rightarrow \mathbb{C}^{\times}$.

Definition

The length morphism $\ell: B \rightarrow \mathbb{Z}$ is the induced morphism $B=\pi_{1}(X / W) \rightarrow \pi_{1}\left(\mathbb{C}^{\times}\right)=\mathbb{Z}$.

The following is easy to prove

Proposition

For every braided reflection σ, we have $\ell(\sigma)=1$.

Braided reflections and presentations of B

For each braided reflection σ, let us denote $m(\sigma)$ the order of the corresponding reflection.

Braided reflections and presentations of B

For each braided reflection σ, let us denote $m(\sigma)$ the order of the corresponding reflection.

Proposition

The kernel of $B \rightarrow W$ is (normally) generated by the $\sigma^{m(\sigma)}$, for σ running among the collection of all braided reflections.

Braided reflections and presentations of B

For each braided reflection σ, let us denote $m(\sigma)$ the order of the corresponding reflection.

Proposition

The kernel of $B \rightarrow W$ is (normally) generated by the $\sigma^{m(\sigma)}$, for σ running among the collection of all braided reflections.

As a consequence, any presentation of B with generators braided reflections will provide a presentation of W, as soon as the set of generators contains representatives for every conjugacy class of reflections.

Lemma

Two braided reflections are conjugates inside B if and only if their images are conjugates inside W.

Central elements in complex braid groups

Central elements in complex braid groups

For $* \in X$ the chosen basepoint, the map $t \mapsto \exp (2 \pi \mathrm{i} t) . *$ is a loop inside X. Its image inside $P=\pi_{1}(X)=\operatorname{Ker}(B \rightarrow W)$ is denoted z_{P}.

Central elements in complex braid groups

For $* \in X$ the chosen basepoint, the map $t \mapsto \exp (2 \pi \mathrm{i} t) . *$ is a loop inside X. Its image inside $P=\pi_{1}(X)=\operatorname{Ker}(B \rightarrow W)$ is denoted z_{p}.

Lemma

$z_{P} \in Z(P)$.

Central elements in complex braid groups

For $* \in X$ the chosen basepoint, the map $t \mapsto \exp (2 \pi \mathrm{i} t)$.* is a loop inside X. Its image inside $P=\pi_{1}(X)=\operatorname{Ker}(B \rightarrow W)$ is denoted z_{p}.

Lemma

$z_{P} \in Z(P)$.
Let us assume that W is irreducible. Then by Schur's Lemma

$$
Z(W)=\mu_{m} \text { Id for } m=|Z(W)|
$$

Central elements in complex braid groups

For $* \in X$ the chosen basepoint, the map $t \mapsto \exp (2 \pi \mathrm{i} t)$.* is a loop inside X. Its image inside $P=\pi_{1}(X)=\operatorname{Ker}(B \rightarrow W)$ is denoted z_{p}.

Lemma

$z_{P} \in Z(P)$.
Let us assume that W is irreducible. Then by Schur's Lemma

$$
Z(W)=\mu_{m} \text { Id for } m=|Z(W)|
$$

and the map $t \mapsto \exp (2 \pi \mathrm{i} t /|Z(W)|) . *$ is a path inside X whose image in X / W is a loop.

Central elements in complex braid groups

For $* \in X$ the chosen basepoint, the map $t \mapsto \exp (2 \pi \mathrm{i} t)$.* is a loop inside X. Its image inside $P=\pi_{1}(X)=\operatorname{Ker}(B \rightarrow W)$ is denoted z_{P}.

Lemma

$z_{P} \in Z(P)$.
Let us assume that W is irreducible. Then by Schur's Lemma

$$
Z(W)=\mu_{m} \text { Id for } m=|Z(W)|
$$

and the map $t \mapsto \exp (2 \pi \mathrm{i} t /|Z(W)|) . *$ is a path inside X whose image in X / W is a loop.
Its image inside $B=\pi_{1}(X / W)$ is denoted z_{B}.

Lemma

$z_{B} \in Z(B)$ and $z_{B}^{|Z(W)|}=z_{P}$.
(2) Braids
(3) Braid groups of $G(d e, e, n)$

4 A few words about exceptional groups

Braid groups of surfaces

Let Σ be a connected, orientable surface.

Braid groups of surfaces

Let Σ be a connected, orientable surface.

Definition

The braid group on n strands $\mathcal{B}_{n}(\Sigma)$ of the surface Σ is the fundamental group of the configuration space $\mathcal{C}_{n}(\Sigma)$ of sets of n points inside Σ.

Braid groups of surfaces

Let Σ be a connected, orientable surface.

Definition

The braid group on n strands $\mathcal{B}_{n}(\Sigma)$ of the surface Σ is the fundamental group of the configuration space $\mathcal{C}_{n}(\Sigma)$ of sets of n points inside Σ.

More precisely, a topology on $\mathcal{C}_{n}(\Sigma)$ can be defined as the restriction of the Hausdorff metric between compact subsets of Σ, and $\mathcal{C}_{n}(\Sigma)$ is easily checked to be always path connected. Then $\mathcal{B}_{n}(\Sigma)=\pi_{1}\left(\mathcal{C}_{n}(\Sigma)\right)$.

Braid groups of surfaces

Let Σ be a connected，orientable surface．

Definition

The braid group on n strands $\mathcal{B}_{n}(\Sigma)$ of the surface Σ is the fundamental group of the configuration space $\mathcal{C}_{n}(\Sigma)$ of sets of n points inside Σ ．

More precisely，a topology on $\mathcal{C}_{n}(\Sigma)$ can be defined as the restriction of the Hausdorff metric between compact subsets of Σ ，and $\mathcal{C}_{n}(\Sigma)$ is easily checked to be always path connected．Then $\mathcal{B}_{n}(\Sigma)=\pi_{1}\left(\mathcal{C}_{n}(\Sigma)\right)$ ． Alternatively $\mathcal{C}_{n}(\Sigma)$ can be defined as a quotient space of

$$
\left\{\underline{z}=\left(z_{1}, \ldots, z_{n}\right) \in \Sigma^{n} \mid i \neq j \Rightarrow z_{i} \neq z_{j}\right\}
$$

by the action of \mathfrak{S}_{n} by permutation of the coordinates．

The usual braid group : $\mathcal{B}_{n}=\mathcal{B}(\Sigma), \Sigma=\mathbb{C}$

The usual braid group : $\mathcal{B}_{n}=\mathcal{B}(\Sigma), \Sigma=\mathbb{C}$

The usual braid group : $\mathcal{B}_{n}=\mathcal{B}(\Sigma), \Sigma=\mathbb{C}$

γ^{MMA}

Braid groups

$V^{B M A}$

Braid groups

$$
V^{A M B}
$$

Braid groups

$$
V^{A M B}
$$

The punctured braid group : $\mathcal{B}_{n}^{*}=\mathcal{B}_{n}(\Sigma), \Sigma=\mathbb{C}^{\times}$

The punctured braid group : $\mathcal{B}_{n}^{*}=\mathcal{B}_{n}(\Sigma), \Sigma=\mathbb{C}^{\times}$

$$
V^{\mathrm{N} M E}
$$

The punctured braid group : $\mathcal{B}_{n}^{*}=\mathcal{B}_{n}(\Sigma), \Sigma=\mathbb{C}^{\times}$

\mathcal{B}_{n}^{*} and \mathcal{B}_{n}

From the projection map $\pi: \mathcal{B}_{n+1} \rightarrow \mathfrak{S}_{n+1}$, and taking for $\Sigma=\mathbb{C} \backslash\{1\}$, we get that
\mathcal{B}_{n}^{*} can be identified with the collection of braids leaving the first strand unpermuted.

\mathcal{B}_{n}^{*} and \mathcal{B}_{n}

From the projection map $\pi: \mathcal{B}_{n+1} \rightarrow \mathfrak{S}_{n+1}$, and taking for $\Sigma=\mathbb{C} \backslash\{1\}$, we get that
\mathcal{B}_{n}^{*} can be identified with the collection of braids leaving the first strand unpermuted.
that is

$$
\mathcal{B}_{n}^{*}=\pi^{-1}\left(\mathfrak{S}_{n+1}^{(1)}\right), \quad \mathfrak{S}_{n+1}^{(1)}=\left\{w \in \mathfrak{S}_{n+1} \mid w(1)=1\right\}
$$

\mathcal{B}_{n}^{*} and \mathcal{B}_{n}

From the projection map $\pi: \mathcal{B}_{n+1} \rightarrow \mathfrak{S}_{n+1}$, and taking for $\Sigma=\mathbb{C} \backslash\{1\}$, we get that
\mathcal{B}_{n}^{*} can be identified with the collection of braids leaving the first strand unpermuted.
that is

$$
\mathcal{B}_{n}^{*}=\pi^{-1}\left(\mathfrak{S}_{n+1}^{(1)}\right), \quad \mathfrak{S}_{n+1}^{(1)}=\left\{w \in \mathfrak{S}_{n+1} \mid w(1)=1\right\}
$$

It follows that \mathcal{B}_{n}^{*} is a (non normal) finite index subgroup of \mathcal{B}_{n} of index $n+1$.

$$
\mathcal{B}_{n}^{*} \hookrightarrow \mathcal{B}_{n+1}
$$

$\mathcal{B}_{n}^{*} \hookrightarrow \mathcal{B}_{n+1}$

MMr

\mathcal{B}_{n}^{*} and \mathcal{B}_{n}

From the projection map $\pi: \mathcal{B}_{n+1} \rightarrow \mathfrak{S}_{n+1}$, and taking for $\Sigma=\mathbb{C} \backslash\{1\}$, we have

$$
\mathcal{B}_{n}^{*}=\pi^{-1}\left(\mathfrak{S}_{n+1}^{(1)}\right), \quad \mathfrak{S}_{n+1}^{(1)}=\left\{w \in \mathfrak{S}_{n+1} \mid w(1)=1\right\}
$$

It follows that \mathcal{B}_{n}^{*} is a (non normal) finite index subgroup of \mathcal{B}_{n} of index n.

$$
\mathcal{B}_{n}^{*} \hookrightarrow \mathcal{B}_{n+1}
$$

\mathcal{B}_{n}^{*} and \mathcal{B}_{n}

From the projection map $\pi: \mathcal{B}_{n+1} \rightarrow \mathfrak{S}_{n+1}$, and taking for $\Sigma=\mathbb{C} \backslash\{1\}$, we have

$$
\mathcal{B}_{n}^{*}=\pi^{-1}\left(\mathfrak{S}_{n+1}^{(1)}\right), \quad \mathfrak{S}_{n+1}^{(1)}=\left\{w \in \mathfrak{S}_{n+1} \mid w(1)=1\right\}
$$

It follows that \mathcal{B}_{n}^{*} is a (non normal) finite index subgroup of \mathcal{B}_{n} of index n.

$$
\mathcal{B}_{n}^{*} \hookrightarrow \mathcal{B}_{n+1}
$$

On the other hand, the inclusion map $\mathbb{C}^{\times} \rightarrow \mathbb{C}$ induces a morphism

$$
\mathcal{B}_{n}^{*}=\mathcal{B}_{n}\left(\mathbb{C}^{\times}\right) \rightarrow \mathcal{B}_{n}(\mathbb{C})=\mathcal{B}_{n}
$$

\mathcal{B}_{n}^{*} and \mathcal{B}_{n}

From the projection map $\pi: \mathcal{B}_{n+1} \rightarrow \mathfrak{S}_{n+1}$, and taking for $\Sigma=\mathbb{C} \backslash\{1\}$, we have

$$
\mathcal{B}_{n}^{*}=\pi^{-1}\left(\mathfrak{S}_{n+1}^{(1)}\right), \quad \mathfrak{S}_{n+1}^{(1)}=\left\{w \in \mathfrak{S}_{n+1} \mid w(1)=1\right\}
$$

It follows that \mathcal{B}_{n}^{*} is a (non normal) finite index subgroup of \mathcal{B}_{n} of index n.

$$
\mathcal{B}_{n}^{*} \hookrightarrow \mathcal{B}_{n+1}
$$

On the other hand, the inclusion map $\mathbb{C}^{\times} \rightarrow \mathbb{C}$ induces a morphism

$$
\mathcal{B}_{n}^{*}=\mathcal{B}_{n}\left(\mathbb{C}^{\times}\right) \rightarrow \mathcal{B}_{n}(\mathbb{C})=\mathcal{B}_{n}
$$

It can be illustrated as follows.

The punctured braid group : $\mathcal{B}_{n}^{*}=\mathcal{B}_{n}(\Sigma), \Sigma=\mathbb{C}^{\times}$

$$
V^{\mathrm{N} M \mathrm{M}}
$$

The punctured braid group : $\mathcal{B}_{n}^{*}=\mathcal{B}_{n}(\Sigma), \Sigma=\mathbb{C}^{\times}$

$$
V^{\mathrm{M}} \mathrm{MA}
$$

The punctured braid group : $\mathcal{B}_{n}^{*}=\mathcal{B}_{n}(\Sigma), \Sigma=\mathbb{C}^{\times}$

$\mathrm{V}^{\triangle \mathrm{ME}}$

The kernel of $\mathcal{B}_{n}^{*} \rightarrow \mathcal{B}_{n}$

The kernel of $\mathcal{B}_{n}^{*} \rightarrow \mathcal{B}_{n}$

$$
V^{A M B}
$$

The kernel of $\mathcal{B}_{n}^{*} \rightarrow \mathcal{B}_{n}$

Proposition

$\mathcal{F}_{n}=\left\langle\tau_{1}=\tau, \tau_{2}, \ldots, \tau_{n}\right\rangle$ is a free group on the n generators $\tau_{1}, \ldots, \tau_{n}$.

The kernel of $\mathcal{B}_{n}^{*} \rightarrow \mathcal{B}_{n}$

τn

Proposition

$\mathcal{F}_{n}=\left\langle\tau_{1}=\tau, \tau_{2}, \ldots, \tau_{n}\right\rangle$ is a free group on the n generators $\tau_{1}, \ldots, \tau_{n}$.

Proposition

$\mathcal{F}_{n}=\operatorname{Ker}\left(\mathcal{B}_{n}^{*} \rightarrow \mathcal{B}_{n}\right)$ and

$$
\mathcal{B}_{n}^{*} \simeq \mathcal{B}_{n} \ltimes \mathcal{F}_{n}
$$

Presentations for \mathcal{B}_{n} and \mathcal{B}_{n}^{*} (after Chu/Chow)

A presentation of \mathcal{B}_{n} and \mathcal{B}_{n}^{*} is obtained inductively from the properties above, as follows.

Presentations for \mathcal{B}_{n} and \mathcal{B}_{n}^{*} (after Chu/Chow)

A presentation of \mathcal{B}_{n} and \mathcal{B}_{n}^{*} is obtained inductively from the properties above, as follows.
Define a combinatorial braid group from the well-known presentation

$$
\tilde{\mathcal{B}}_{n}=\left\langle\begin{array}{l|l}
\sigma_{1}, \ldots, \sigma_{n-1} & \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i},|i-j| \geq 2
\end{array}
\end{array}\right\rangle
$$

Presentations for \mathcal{B}_{n} and \mathcal{B}_{n}^{*} (after Chu/Chow)

A presentation of \mathcal{B}_{n} and \mathcal{B}_{n}^{*} is obtained inductively from the properties above, as follows.
Define a combinatorial braid group from the well-known presentation

$$
\tilde{\mathcal{B}}_{n}=\left\langle\begin{array}{l|l}
\sigma_{1}, \ldots, \sigma_{n-1} & \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i},|i-j| \geq 2
\end{array}
\end{array}\right\rangle
$$

and $\pi: \tilde{\mathcal{B}}_{n} \rightarrow \mathfrak{S}_{n}$ through $\sigma_{i} \mapsto(i, i+1)$.

Presentations for \mathcal{B}_{n} and \mathcal{B}_{n}^{*} (after Chu/Chow)

A presentation of \mathcal{B}_{n} and \mathcal{B}_{n}^{*} is obtained inductively from the properties above, as follows.
Define a combinatorial braid group from the well-known presentation

$$
\tilde{\mathcal{B}}_{n}=\left\langle\begin{array}{l|l}
\sigma_{1}, \ldots, \sigma_{n-1} & \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i},|i-j| \geq 2
\end{array}
\end{array}\right\rangle
$$

and $\pi: \tilde{\mathcal{B}}_{n} \rightarrow \mathfrak{S}_{n}$ through $\sigma_{i} \mapsto(i, i+1)$.
Then a combinatorial version of the punctured braid group can be defined as $\tilde{\mathcal{B}}_{n-1}^{*}=\pi^{-1}\left(\mathfrak{S}_{n}^{(1)}\right)<\tilde{\mathcal{B}}_{n}$.

Presentations for \mathcal{B}_{n} and \mathcal{B}_{n}^{*} (after Chu/Chow)

A presentation of \mathcal{B}_{n} and \mathcal{B}_{n}^{*} is obtained inductively from the properties above, as follows.
Define a combinatorial braid group from the well-known presentation

$$
\tilde{\mathcal{B}}_{n}=\left\langle\begin{array}{l|l}
\sigma_{1}, \ldots, \sigma_{n-1} & \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i},|i-j| \geq 2
\end{array}
\end{array}\right\rangle
$$

and $\pi: \tilde{\mathcal{B}}_{n} \rightarrow \mathfrak{S}_{n}$ through $\sigma_{i} \mapsto(i, i+1)$.
Then a combinatorial version of the punctured braid group can be defined as $\tilde{\mathcal{B}}_{n-1}^{*}=\pi^{-1}\left(\mathfrak{S}_{n}^{(1)}\right)<\tilde{\mathcal{B}}_{n}$.
The Reidemeister-Schreier method yields a presentation

Presentations for \mathcal{B}_{n} and \mathcal{B}_{n}^{*} (after Chu/Chow)

A presentation of \mathcal{B}_{n} and \mathcal{B}_{n}^{*} is obtained inductively from the properties above, as follows.
Define a combinatorial braid group from the well-known presentation

$$
\tilde{\mathcal{B}}_{n}=\left\langle\begin{array}{l|l}
\sigma_{1}, \ldots, \sigma_{n-1} & \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i},|i-j| \geq 2
\end{array}
\end{array}\right\rangle
$$

and $\pi: \tilde{\mathcal{B}}_{n} \rightarrow \mathfrak{S}_{n}$ through $\sigma_{i} \mapsto(i, i+1)$.
Then a combinatorial version of the punctured braid group can be defined as $\tilde{\mathcal{B}}_{n-1}^{*}=\pi^{-1}\left(\mathfrak{S}_{n}^{(1)}\right)<\tilde{\mathcal{B}}_{n}$.
The Reidemeister-Schreier method yields a presentation

$$
\tilde{\mathcal{B}}_{n-1}^{*}=\left\langle\begin{array}{l|l}
\tau, \sigma_{2}, \ldots, \sigma_{n-1} & \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i},|i-j| \geq 2 \\
\sigma_{i} \tau=\tau \sigma_{i}, i>2 \\
\sigma_{2} \tau \sigma_{2} \tau=\tau \sigma_{2} \tau \sigma_{2}
\end{array} \tag{1}
\end{array}\right\rangle
$$

Presentations for \mathcal{B}_{n} and \mathcal{B}_{n}^{*}

We have obvious morphisms $\tilde{\mathcal{B}}_{n} \rightarrow \mathcal{B}_{n}$ and $\tilde{\mathcal{B}}_{n}^{*} \rightarrow \mathcal{B}_{n}^{*}$.

Presentations for \mathcal{B}_{n} and \mathcal{B}_{n}^{*}

We have obvious morphisms $\tilde{\mathcal{B}}_{n} \rightarrow \mathcal{B}_{n}$ and $\tilde{\mathcal{B}}_{n}^{*} \rightarrow \mathcal{B}_{n}^{*}$. We want to prove that that they are isomorphisms, by induction on n.

Presentations for \mathcal{B}_{n} and \mathcal{B}_{n}^{*}

We have obvious morphisms $\tilde{\mathcal{B}}_{n} \rightarrow \mathcal{B}_{n}$ and $\tilde{\mathcal{B}}_{n}^{*} \rightarrow \mathcal{B}_{n}^{*}$. We want to prove that that they are isomorphisms, by induction on n. We have a morphism $\tilde{\mathcal{B}}_{n}^{*} \rightarrow \tilde{\mathcal{B}}_{n}$, mapping $\sigma_{i} \mapsto \sigma_{i}, \tau \mapsto 1$.

Presentations for \mathcal{B}_{n} and \mathcal{B}_{n}^{*}

We have obvious morphisms $\tilde{\mathcal{B}}_{n} \rightarrow \mathcal{B}_{n}$ and $\tilde{\mathcal{B}}_{n}^{*} \rightarrow \mathcal{B}_{n}^{*}$. We want to prove that that they are isomorphisms, by induction on n.
We have a morphism $\tilde{\mathcal{B}}_{n}^{*} \rightarrow \tilde{\mathcal{B}}_{n}$, mapping $\sigma_{i} \mapsto \sigma_{i}, \tau \mapsto 1$. Define the τ_{i} as above. Then :

Presentations for \mathcal{B}_{n} and \mathcal{B}_{n}^{*}

We have obvious morphisms $\tilde{\mathcal{B}}_{n} \rightarrow \mathcal{B}_{n}$ and $\tilde{\mathcal{B}}_{n}^{*} \rightarrow \mathcal{B}_{n}^{*}$. We want to prove that that they are isomorphisms, by induction on n.
We have a morphism $\tilde{\mathcal{B}}_{n}^{*} \rightarrow \tilde{\mathcal{B}}_{n}$, mapping $\sigma_{i} \mapsto \sigma_{i}, \tau \mapsto 1$. Define the τ_{i} as above. Then :

Proposition

$F_{n}=\operatorname{Ker}\left(\tilde{\mathcal{B}}_{n}^{*} \rightarrow \tilde{\mathcal{B}}_{n}\right)$ is a free group on $\tau_{1}, \ldots, \tau_{n}$.

Presentations for \mathcal{B}_{n} and \mathcal{B}_{n}^{*}

We have obvious morphisms $\tilde{\mathcal{B}}_{n} \rightarrow \mathcal{B}_{n}$ and $\tilde{\mathcal{B}}_{n}^{*} \rightarrow \mathcal{B}_{n}^{*}$. We want to prove that that they are isomorphisms, by induction on n.
We have a morphism $\tilde{\mathcal{B}}_{n}^{*} \rightarrow \tilde{\mathcal{B}}_{n}$, mapping $\sigma_{i} \mapsto \sigma_{i}, \tau \mapsto 1$. Define the τ_{i} as above. Then :

Proposition

$F_{n}=\operatorname{Ker}\left(\tilde{\mathcal{B}}_{n}^{*} \rightarrow \tilde{\mathcal{B}}_{n}\right)$ is a free group on $\tau_{1}, \ldots, \tau_{n}$.
From this proposition and the following diagram

Presentations for \mathcal{B}_{n} and \mathcal{B}_{n}^{*}

We have obvious morphisms $\tilde{\mathcal{B}}_{n} \rightarrow \mathcal{B}_{n}$ and $\tilde{\mathcal{B}}_{n}^{*} \rightarrow \mathcal{B}_{n}^{*}$. We want to prove that that they are isomorphisms, by induction on n.
We have a morphism $\tilde{\mathcal{B}}_{n}^{*} \rightarrow \tilde{\mathcal{B}}_{n}$, mapping $\sigma_{i} \mapsto \sigma_{i}, \tau \mapsto 1$. Define the τ_{i} as above. Then :

Proposition

$F_{n}=\operatorname{Ker}\left(\tilde{\mathcal{B}}_{n}^{*} \rightarrow \tilde{\mathcal{B}}_{n}\right)$ is a free group on $\tau_{1}, \ldots, \tau_{n}$.
From this proposition and the following diagram

one gets that $\tilde{\mathcal{B}}_{n} \simeq \mathcal{B}_{n}$ implies $\tilde{\mathcal{B}}_{n}^{*} \simeq \mathcal{B}_{n}^{*}$.

Presentations for \mathcal{B}_{n} and \mathcal{B}_{n}^{*}

On the other hand, since $\tilde{\mathcal{B}}_{n}^{*}$ and \mathcal{B}_{n}^{*} are finite index subgroups of $\tilde{\mathcal{B}}_{n+1}$ and \mathcal{B}_{n+1}, respectively,

Presentations for \mathcal{B}_{n} and \mathcal{B}_{n}^{*}

On the other hand, since $\tilde{\mathcal{B}}_{n}^{*}$ and \mathcal{B}_{n}^{*} are finite index subgroups of $\tilde{\mathcal{B}}_{n+1}$ and \mathcal{B}_{n+1}, respectively, from the following commutative diagrams

Presentations for \mathcal{B}_{n} and \mathcal{B}_{n}^{*}

On the other hand, since $\tilde{\mathcal{B}}_{n}^{*}$ and \mathcal{B}_{n}^{*} are finite index subgroups of $\tilde{\mathcal{B}}_{n+1}$ and \mathcal{B}_{n+1}, respectively, from the following commutative diagrams

one gets readily that $\tilde{\mathcal{B}}_{n}^{*} \simeq \mathcal{B}_{n}^{*}$ implies $\tilde{\mathcal{B}}_{n+1} \simeq \mathcal{B}_{n+1}$.

Presentations for \mathcal{B}_{n} and \mathcal{B}_{n}^{*}

On the other hand, since $\tilde{\mathcal{B}}_{n}^{*}$ and \mathcal{B}_{n}^{*} are finite index subgroups of $\tilde{\mathcal{B}}_{n+1}$ and \mathcal{B}_{n+1}, respectively, from the following commutative diagrams

one gets readily that $\tilde{\mathcal{B}}_{n}^{*} \simeq \mathcal{B}_{n}^{*}$ implies $\tilde{\mathcal{B}}_{n+1} \simeq \mathcal{B}_{n+1}$.
It is then sufficient to check that $\mathcal{B}_{2}=\left\langle\sigma_{1}\right\rangle \simeq \mathbb{Z} \simeq \tilde{\mathcal{B}}_{2}$ to prove by induction that the presentations are correct.

(2) Braids

(3) Braid groups of $G(d e, e, n)$

4 A few words about exceptional groups

Braid groups of CRG

- $W=\langle\mathcal{R}\rangle$ complex reflection group
- $B=\pi_{1}(X / W)$ its braid group

Braid groups of CRG

- $W=\langle\mathcal{R}\rangle$
complex reflection group
- $B=\pi_{1}(X / W)$ its braid group

Braided reflections

$\sim^{A M A}$

Braid groups of CRG

- $W=\langle\mathcal{R}\rangle$
complex reflection group
- $B=\pi_{1}(X / W)$ its braid group

Braided reflections

$$
B=\langle\sigma| \sigma \in B \text { braided reflection }\rangle
$$

Braid groups of $G(r, 1, n)$

Every $G(d e, e, n)$ is a subgroup of $G(r, 1, n)$ for $r=d e$. So we start exploring the braid group of $W=G(r, 1, n)$.

Braid groups of $G(r, 1, n)$

Every $G(d e, e, n)$ is a subgroup of $G(r, 1, n)$ for $r=d e$. So we start exploring the braid group of $W=G(r, 1, n)$.

$$
\begin{aligned}
& r=1 \\
& X=\left\{\underline{z} \in \mathbb{C} \mid z_{i} \neq z_{j}\right\}, \text { and } X / W=X / \mathfrak{S}_{n}=\mathcal{C}_{n}(\mathbb{C}) \text { whence }
\end{aligned}
$$

Braid groups of $G(r, 1, n)$

Every $G(d e, e, n)$ is a subgroup of $G(r, 1, n)$ for $r=d e$. So we start exploring the braid group of $W=G(r, 1, n)$.

$$
\begin{aligned}
& r=1 \\
& X=\left\{\underline{z} \in \mathbb{C} \mid z_{i} \neq z_{j}\right\}, \text { and } X / W=X / \mathfrak{S}_{n}=\mathcal{C}_{n}(\mathbb{C}) \text { whence } \\
& B \simeq \mathcal{B}_{n} \quad \text { and } z_{B}=\left(\sigma_{1} \sigma_{2} \ldots \sigma_{n-1}\right)^{n}
\end{aligned}
$$

Braid groups of $G(r, 1, n)$

Every $G(d e, e, n)$ is a subgroup of $G(r, 1, n)$ for $r=d e$. So we start exploring the braid group of $W=G(r, 1, n)$.

$$
\begin{aligned}
& r=1 \\
& X=\left\{\underline{z} \in \mathbb{C} \mid z_{i} \neq z_{j}\right\}, \text { and } X / W=X / \mathscr{S}_{n}=\mathcal{C}_{n}(\mathbb{C}) \text { whence } \\
& B \simeq \mathcal{B}_{n} \quad \text { and } z_{B}=\left(\sigma_{1} \sigma_{2} \ldots \sigma_{n-1}\right)^{n}
\end{aligned}
$$

$$
r>1
$$

$$
X=\left\{\underline{z} \in \mathbb{C}^{n} \mid z_{i} \neq 0, z_{i} / z_{j} \notin \mu_{r}\right\}=\left\{\underline{z} \in \mathbb{C}^{n} \mid z_{i} \neq 0, z_{i}^{r} \neq z_{j}^{r}\right\}
$$

and $G(r, 1, n)=\mu_{r}^{n} \rtimes \mathfrak{S}_{n}$.

Braid groups of $G(r, 1, n)$

Every $G(d e, e, n)$ is a subgroup of $G(r, 1, n)$ for $r=d e$. So we start exploring the braid group of $W=G(r, 1, n)$.
$r=1$
$X=\left\{\underline{z} \in \mathbb{C} \mid z_{i} \neq z_{j}\right\}$, and $X / W=X / \mathfrak{S}_{n}=\mathcal{C}_{n}(\mathbb{C})$ whence

$$
B \simeq \mathcal{B}_{n} \quad \text { and } z_{B}=\left(\sigma_{1} \sigma_{2} \ldots \sigma_{n-1}\right)^{n}
$$

$r>1$

$$
X=\left\{\underline{z} \in \mathbb{C}^{n} \mid z_{i} \neq 0, z_{i} / z_{j} \notin \mu_{r}\right\}=\left\{\underline{z} \in \mathbb{C}^{n} \mid z_{i} \neq 0, z_{i}^{r} \neq z_{j}^{r}\right\}
$$

and $G(r, 1, n)=\mu_{r}^{n} \rtimes \mathfrak{S}_{n}$. Therefore $\underline{z} \mapsto\left\{z_{1}^{r}, \ldots, z_{n}^{r}\right\}$ identifies X / W with $\mathcal{C}_{n}\left(\mathbb{C}^{\times}\right)$

Braid groups of $G(r, 1, n)$

Every $G(d e, e, n)$ is a subgroup of $G(r, 1, n)$ for $r=d e$. So we start exploring the braid group of $W=G(r, 1, n)$.
$r=1$
$X=\left\{\underline{z} \in \mathbb{C} \mid z_{i} \neq z_{j}\right\}$, and $X / W=X / \mathfrak{S}_{n}=\mathcal{C}_{n}(\mathbb{C})$ whence

$$
B \simeq \mathcal{B}_{n} \quad \text { and } z_{B}=\left(\sigma_{1} \sigma_{2} \ldots \sigma_{n-1}\right)^{n}
$$

$r>1$

$$
X=\left\{\underline{z} \in \mathbb{C}^{n} \mid z_{i} \neq 0, z_{i} / z_{j} \notin \mu_{r}\right\}=\left\{\underline{z} \in \mathbb{C}^{n} \mid z_{i} \neq 0, z_{i}^{r} \neq z_{j}^{r}\right\}
$$

and $G(r, 1, n)=\mu_{r}^{n} \rtimes \mathfrak{S}_{n}$. Therefore $\underline{z} \mapsto\left\{z_{1}^{r}, \ldots, z_{n}^{r}\right\}$ identifies X / W with $\mathcal{C}_{n}\left(\mathbb{C}^{\times}\right)$whence

$$
B \simeq \mathcal{B}_{n}^{*} \quad \text { and } z_{B}=\left(\tau \sigma_{2} \ldots \sigma_{n-1}\right)^{n}
$$

Braid groups of $G(r, 1, n)$

Every $G(d e, e, n)$ is a subgroup of $G(r, 1, n)$ for $r=d e$. So we start exploring the braid group of $W=G(r, 1, n)$.
$r=1$
$X=\left\{\underline{z} \in \mathbb{C} \mid z_{i} \neq z_{j}\right\}$, and $X / W=X / \mathfrak{S}_{n}=\mathcal{C}_{n}(\mathbb{C})$ whence

$$
B \simeq \mathcal{B}_{n} \quad \text { and } z_{B}=\left(\sigma_{1} \sigma_{2} \ldots \sigma_{n-1}\right)^{n}
$$

$r>1$

$$
X=\left\{\underline{z} \in \mathbb{C}^{n} \mid z_{i} \neq 0, z_{i} / z_{j} \notin \mu_{r}\right\}=\left\{\underline{z} \in \mathbb{C}^{n} \mid z_{i} \neq 0, z_{i}^{r} \neq z_{j}^{r}\right\}
$$

and $G(r, 1, n)=\mu_{r}^{n} \rtimes \mathfrak{S}_{n}$. Therefore $\underline{z} \mapsto\left\{z_{1}^{r}, \ldots, z_{n}^{r}\right\}$ identifies X / W with $\mathcal{C}_{n}\left(\mathbb{C}^{\times}\right)$whence

$$
B \simeq \mathcal{B}_{n}^{*} \quad \text { and } z_{B}=\left(\tau \sigma_{2} \ldots \sigma_{n-1}\right)^{n}
$$

So we already have presentations for them.

Braid groups of $G(d e, e, n), d>1$

Let $W=G(d e, e, n), d>1$.

Braid groups of $G(d e, e, n), d>1$

Let $W=G(d e, e, n), d>1$.In this case, W contains diagonal reflections.

Braid groups of $G(d e, e, n), d>1$

Let $W=G(d e, e, n), d>1$. In this case, W contains diagonal reflections.From this one gets that the hyperplane complement is the same as for $G(r, 1, n), r=d e$, namely

$$
X=\left\{\underline{z} \in \mathbb{C}^{n} \mid z_{i} \neq 0, z_{i} / z_{j} \notin \mu_{r}\right\}
$$

Braid groups of $G(d e, e, n), d>1$

Let $W=G(d e, e, n), d>1$.In this case, W contains diagonal reflections.From this one gets that the hyperplane complement is the same as for $G(r, 1, n), r=d e$, namely

$$
X=\left\{\underline{z} \in \mathbb{C}^{n} \mid z_{i} \neq 0, z_{i} / z_{j} \notin \mu_{r}\right\}
$$

From this one gets a covering map $X / W \rightarrow X / G(r, 1, n)$.

Braid groups of $G(d e, e, n), d>1$

Let $W=G(d e, e, n), d>1$. In this case, W contains diagonal reflections.From this one gets that the hyperplane complement is the same as for $G(r, 1, n), r=d e$, namely

$$
X=\left\{\underline{z} \in \mathbb{C}^{n} \mid z_{i} \neq 0, z_{i} / z_{j} \notin \mu_{r}\right\}
$$

From this one gets a covering map $X / W \rightarrow X / G(r, 1, n)$.

Definition

Let $\mathcal{B}_{n}^{*}(e)$ be the kernel of the $\operatorname{map} \mathcal{B}_{n}^{*} \rightarrow \mathbb{Z} / e \mathbb{Z}$,

$$
\tau \mapsto 1, \sigma_{i} \mapsto 0
$$

Braid groups of $G(d e, e, n), d>1$

Let $W=G(d e, e, n), d>1$. In this case, W contains diagonal reflections.From this one gets that the hyperplane complement is the same as for $G(r, 1, n), r=d e$, namely

$$
X=\left\{\underline{z} \in \mathbb{C}^{n} \mid z_{i} \neq 0, z_{i} / z_{j} \notin \mu_{r}\right\}
$$

From this one gets a covering map $X / W \rightarrow X / G(r, 1, n)$.

Definition

Let $\mathcal{B}_{n}^{*}(e)$ be the kernel of the $\operatorname{map} \mathcal{B}_{n}^{*} \rightarrow \mathbb{Z} / e \mathbb{Z}$,

$$
\tau \mapsto 1, \sigma_{i} \mapsto 0
$$

Proposition

If $d>1$, then $B \simeq \mathcal{B}_{n}^{*}(e)$ is a normal subgroup of \mathcal{B}_{n}^{*} with quotient $\mathbb{Z} / e \mathbb{Z}$.

Braid groups of $G(d e, e, n), d>1$

Proposition
 If $d>1$, then $B \simeq \mathcal{B}_{n}^{*}(e)$ is a normal subgroup of \mathcal{B}_{n}^{*} with quotient $\mathbb{Z} / e \mathbb{Z}$.

Braid groups of $G(d e, e, n), d>1$

Proposition

If $d>1$, then $B \simeq \mathcal{B}_{n}^{*}(e)$ is a normal subgroup of \mathcal{B}_{n}^{*} with quotient $\mathbb{Z} / e \mathbb{Z}$.

This statement says that 'every' problem in this case can be reduced to a problem for \mathcal{B}_{n}^{*}.

Braid groups of $G(d e, e, n), d>1$

Proposition

If $d>1$, then $B \simeq \mathcal{B}_{n}^{*}(e)$ is a normal subgroup of \mathcal{B}_{n}^{*} with quotient $\mathbb{Z} / e \mathbb{Z}$.

This statement says that 'every' problem in this case can be reduced to a problem for \mathcal{B}_{n}^{*}.

This includes

- the word problem
- the conjugacy problem
- the determination of centralizers.
as we shall see in Part 2.

Braid groups of $G(d e, e, n), d>1$

Proposition

If $d>1$, then $B \simeq \mathcal{B}_{n}^{*}(e)$ is a normal subgroup of \mathcal{B}_{n}^{*} with quotient $\mathbb{Z} / e \mathbb{Z}$.

This statement says that 'every' problem in this case can be reduced to a problem for \mathcal{B}_{n}^{*}.

This includes

- the word problem
- the conjugacy problem
- the determination of centralizers.
as we shall see in Part 2.
Moreover, the Reidemeister-Schreier method provides a presentation for this group.

Braid groups of $G(d e, e, n), d>1$

We start from the known presentation for $\tilde{\mathcal{B}}_{n}^{*}$ (with some shift of indices).

$$
\left\langle\begin{array}{l|l}
\tau, \sigma_{1}, \ldots, \sigma_{n-1} & \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i},|i-j| \geq 2 \\
\sigma_{i} \tau=\tau \sigma_{i}, i>1 \\
\sigma_{1} \tau \sigma_{1} \tau=\tau \sigma_{1} \tau \sigma_{1}
\end{array} \tag{2}
\end{array}\right\rangle
$$

Braid groups of $G(d e, e, n), d>1$

We start from the known presentation for $\tilde{\mathcal{B}}_{n}^{*}$ (with some shift of indices).

$$
\left\langle\tau, \sigma_{1}, \ldots, \sigma_{n-1} \left\lvert\, \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \tag{2}\\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i},|i-j| \geq 2 \\
\sigma_{i} \tau=\tau \sigma_{i}, i>1 \\
\sigma_{1} \tau \sigma_{1} \tau=\tau \sigma_{1} \tau \sigma_{1}
\end{array}\right.\right\rangle
$$

From the Schreier transversal $T=\left\{1, \tau, \tau^{2}, \ldots, \tau^{e-1}\right\}$, setting $\tau=\tau^{e}$,

Braid groups of $G(d e, e, n), d>1$

We start from the known presentation for $\tilde{\mathcal{B}}_{n}^{*}$ (with some shift of indices).

$$
\left\langle\tau, \sigma_{1}, \ldots, \sigma_{n-1} \left\lvert\, \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \tag{2}\\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i},|i-j| \geq 2 \\
\sigma_{i} \tau=\tau \sigma_{i}, i>1 \\
\sigma_{1} \tau \sigma_{1} \tau=\tau \sigma_{1} \tau \sigma_{1}
\end{array}\right.\right\rangle
$$

From the Schreier transversal $T=\left\{1, \tau, \tau^{2}, \ldots, \tau^{e-1}\right\}$, setting $\tau=\tau^{e}$, we get the presentation

$$
\left\langle\begin{array}{l|l}
\sigma_{1,0}, \ldots, \sigma_{1, e-1} & \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\tau, \sigma_{2}, \ldots, \sigma_{n-1} \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i},|i-j| \geq 2 \\
\sigma_{i} \tau=\tau \sigma_{i}, i \geq 2 \\
\sigma_{1, k} \sigma_{2} \sigma_{1, k}=\sigma_{2} \sigma_{1, k} \sigma_{2} \\
\sigma_{1, k} \sigma_{j}=\sigma_{j} \sigma_{1, k}, j \geq 3 \\
\sigma_{1, k} \sigma_{1, k+1}=\sigma_{1, k+1} \sigma_{1, k+2,0} \leq k \leq e-3 \\
\sigma_{1, e-2} \sigma_{1, e-1}=\sigma_{1, e-1} \cdot \tau \sigma_{1,0} \tau^{-1} \\
\boldsymbol{\tau}^{-1} \sigma_{1, e-1} \tau \sigma_{1,0}=\sigma_{1,0} \sigma_{1,1}
\end{array} \tag{3}\\
\hline
\end{array}\right.
$$

Braid groups of $G(d e, e, n), d=1$

Braid groups of $G(d e, e, n), d=1$

In the case $W=G(e, e, n)$, we call $\mathcal{B}_{n}(e)$ its braid group.

Braid groups of $G(d e, e, n), d=1$

In the case $W=G(e, e, n)$, we call $\mathcal{B}_{n}(e)$ its braid group. We assume $e>1$, the case $e=1$ being known, $\mathcal{B}_{n}(1)=1$.

Braid groups of $G(d e, e, n), d=1$

In the case $W=G(e, e, n)$, we call $\mathcal{B}_{n}(e)$ its braid group. We assume $e>1$, the case $e=1$ being known, $\mathcal{B}_{n}(1)=1$. The group W does not contain any diagonal reflection.

Braid groups of $G(d e, e, n), d=1$

In the case $W=G(e, e, n)$, we call $\mathcal{B}_{n}(e)$ its braid group. We assume $e>1$, the case $e=1$ being known, $\mathcal{B}_{n}(1)=1$.
The group W does not contain any diagonal reflection.Therefore

$$
X=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid z_{i} \notin z_{j} \mu_{e}\right\}
$$

contains the hyperplane complement previously used, namely

$$
X^{\#}=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid z_{i} \neq 0, \quad z_{i} \notin \mu_{e} z_{j}\right\}
$$

Braid groups of $G(d e, e, n), d=1$

In the case $W=G(e, e, n)$, we call $\mathcal{B}_{n}(e)$ its braid group. We assume $e>1$, the case $e=1$ being known, $\mathcal{B}_{n}(1)=1$.
The group W does not contain any diagonal reflection.Therefore

$$
X=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid z_{i} \notin z_{j} \mu_{e}\right\}
$$

contains the hyperplane complement previously used, namely

$$
X^{\#}=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid z_{i} \neq 0, \quad z_{i} \notin \mu_{e} z_{j}\right\}
$$

and we have a natural inclusion map $X^{\#} \rightarrow X$. From it one gets

$$
\mathcal{B}_{n}^{*}(e)=\pi_{1}\left(X^{\#} / W\right) \rightarrow \pi_{1}(X / W)=\mathcal{B}_{n}(e)
$$

Braid groups of $G(d e, e, n), d=1$

In the case $W=G(e, e, n)$, we call $\mathcal{B}_{n}(e)$ its braid group. We assume $e>1$, the case $e=1$ being known, $\mathcal{B}_{n}(1)=1$.
The group W does not contain any diagonal reflection.Therefore

$$
X=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid z_{i} \notin z_{j} \mu_{e}\right\}
$$

contains the hyperplane complement previously used, namely

$$
X^{\#}=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid z_{i} \neq 0, \quad z_{i} \notin \mu_{e} z_{j}\right\}
$$

and we have a natural inclusion map $X^{\#} \rightarrow X$. From it one gets

$$
\mathcal{B}_{n}^{*}(e)=\pi_{1}\left(X^{\#} / W\right) \rightarrow \pi_{1}(X / W)=\mathcal{B}_{n}(e)
$$

and topological results on hypersurface complements imply that $\mathcal{B}_{n}^{*}(e) \rightarrow \mathcal{B}_{n}(e)$

Braid groups of $G(d e, e, n), d=1$

In the case $W=G(e, e, n)$, we call $\mathcal{B}_{n}(e)$ its braid group. We assume $e>1$, the case $e=1$ being known, $\mathcal{B}_{n}(1)=1$.
The group W does not contain any diagonal reflection.Therefore

$$
X=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid z_{i} \notin z_{j} \mu_{e}\right\}
$$

contains the hyperplane complement previously used, namely

$$
X^{\#}=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid z_{i} \neq 0, \quad z_{i} \notin \mu_{e} z_{j}\right\}
$$

and we have a natural inclusion map $X^{\#} \rightarrow X$. From it one gets

$$
\mathcal{B}_{n}^{*}(e)=\pi_{1}\left(X^{\#} / W\right) \rightarrow \pi_{1}(X / W)=\mathcal{B}_{n}(e)
$$

and topological results on hypersurface complements imply that $\mathcal{B}_{n}^{*}(e) \rightarrow \mathcal{B}_{n}(e)$ with kernel normally generated by τ.

Braid groups of $G(d e, e, n), d=1$

Proposition

$\operatorname{Ker}\left(\mathcal{B}_{n}^{*}(e) \rightarrow \mathcal{B}_{n}(e)\right)$ is normally generated by τ.

Braid groups of $G(d e, e, n), d=1$

Proposition

$\operatorname{Ker}\left(\mathcal{B}_{n}^{*}(e) \rightarrow \mathcal{B}_{n}(e)\right)$ is normally generated by τ.
This yields the following presentation for $\mathcal{B}_{n}(e)$.

$$
\left\langle\begin{array}{l|l}
\sigma_{1, k}, k \in \mathbb{Z} / \mathrm{e} \mathbb{Z} & \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{j} \sigma_{i+1} \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i},|i-j| \geq 2 \\
\sigma_{2}, \ldots, \sigma_{n-1}
\end{array} \tag{4}\\
\sigma_{1, k} \sigma_{2} \sigma_{1, k}=\sigma_{2} \sigma_{1, k} \sigma_{2} \\
\sigma_{1, k} \sigma_{j}=\sigma_{j} \sigma_{1, k}, j \geq 3 \\
\sigma_{1, k} \sigma_{1, k+1}=\sigma_{1, k+1} \sigma_{1, k+2}, k \in \mathbb{Z} / e \mathbb{Z}
\end{array}\right\rangle
$$

Standard diagrams for complex braid groups

For the groups $W=G(e, e, n), e \geq 1, B=\mathcal{B}_{n}(e)$:

Standard diagrams for complex braid groups

For the groups $W=G(e, e, n), e \geq 1, B=\mathcal{B}_{n}(e)$:

For the groups $W=G(r, 1, n), r>1, B=\mathcal{B}_{n}^{*}$:

Standard diagrams for complex braid groups

For the groups $W=G(e, e, n), e \geq 1, B=\mathcal{B}_{n}(e)$:

For the groups $W=G(r, 1, n), r>1, B=\mathcal{B}_{n}^{*}$:

For the groups $W=G(d e, e, n), d>1, B=\mathcal{B}_{n}^{*}(e)$ is a nice subgroup of \mathcal{B}_{n}^{*}.

$$
\sim^{N M A}
$$

Circular presentations for $\mathcal{B}_{n}^{*}(e)$

We set $\rho=\tau \sigma_{1} \sigma_{2} \ldots \sigma_{n-1}$.

Circular presentations for $\mathcal{B}_{n}^{*}(e)$

We set $\rho=\tau \sigma_{1} \sigma_{2} \ldots \sigma_{n-1}$. Then $\rho^{n}=z_{P}$ is central and

$$
\mathcal{B}_{n}^{*}=\left\langle\begin{array}{l|l}
\rho, \sigma_{i}, i \in \mathbb{Z} / n \mathbb{Z} & \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, i-j \neq \pm 1 \\
\rho \sigma_{i} \rho^{-1}=\sigma_{i+1}
\end{array} \tag{5}
\end{array}\right\rangle
$$

Circular presentations for $\mathcal{B}_{n}^{*}(e)$

We set $\rho=\tau \sigma_{1} \sigma_{2} \ldots \sigma_{n-1}$. Then $\rho^{n}=z_{P}$ is central and

$$
\mathcal{B}_{n}^{*}=\left\langle\begin{array}{l|l}
\rho, \sigma_{i}, i \in \mathbb{Z} / n \mathbb{Z} & \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, i-j \neq \pm 1 \\
\rho \sigma_{i} \rho^{-1}=\sigma_{i+1}
\end{array} \tag{5}
\end{array}\right\rangle
$$

Setting $\rho=\rho^{e} \in \mathcal{B}_{n}^{*}(e)$, one gets

Circular presentations for $\mathcal{B}_{n}^{*}(e)$

We set $\rho=\tau \sigma_{1} \sigma_{2} \ldots \sigma_{n-1}$. Then $\rho^{n}=z_{P}$ is central and

$$
\mathcal{B}_{n}^{*}=\left\langle\begin{array}{l|l}
\rho, \sigma_{i}, i \in \mathbb{Z} / n \mathbb{Z} & \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, i-j \neq \pm 1 \\
\rho \sigma_{i} \rho^{-1}=\sigma_{i+1}
\end{array} \tag{5}
\end{array}\right\rangle
$$

Setting $\rho=\rho^{e} \in \mathcal{B}_{n}^{*}(e)$, one gets

$$
\mathcal{B}_{n}^{*}(e)=\left\langle\begin{array}{l|l}
\rho, \sigma_{i}, i \in \mathbb{Z} / n \mathbb{Z} & \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, i-j \neq \pm 1 \\
\rho \sigma_{i} \rho^{-1}=\sigma_{i+e}
\end{array} \tag{6}
\end{array}\right\rangle
$$

Circular presentations for $\mathcal{B}_{n}^{*}(e)$

We set $\rho=\tau \sigma_{1} \sigma_{2} \ldots \sigma_{n-1}$. Then $\rho^{n}=z_{P}$ is central and

$$
\mathcal{B}_{n}^{*}=\left\langle\begin{array}{l|l}
\rho, \sigma_{i}, i \in \mathbb{Z} / n \mathbb{Z} & \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, i-j \neq \pm 1 \\
\rho \sigma_{i} \rho^{-1}=\sigma_{i+1}
\end{array} \tag{5}
\end{array}\right\rangle
$$

Setting $\rho=\rho^{e} \in \mathcal{B}_{n}^{*}(e)$, one gets

$$
\mathcal{B}_{n}^{*}(e)=\left\langle\boldsymbol{\rho}, \sigma_{i}, i \in \mathbb{Z} / n \mathbb{Z} \left\lvert\, \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \tag{6}\\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, i-j \neq \pm 1 \\
\rho \sigma_{i} \rho^{-1}=\sigma_{i+e}
\end{array}\right.\right\rangle
$$

Proposition

If $e^{\prime} \equiv \pm e \bmod n$, then $\mathcal{B}_{n}^{*}\left(e^{\prime}\right) \simeq \mathcal{B}_{n}^{*}(e)$. Also, $\mathcal{B}_{2}^{*}(e) \simeq \mathbb{Z} \times F_{2}$ for every $e \geq 2$.

Circular presentations for $\mathcal{B}_{n}^{*}(e)$

We set $\rho=\tau \sigma_{1} \sigma_{2} \ldots \sigma_{n-1}$. Then $\rho^{n}=z_{P}$ is central and

$$
\mathcal{B}_{n}^{*}=\left\langle\begin{array}{l|l}
\rho, \sigma_{i}, i \in \mathbb{Z} / n \mathbb{Z} & \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, i-j \neq \pm 1 \\
\rho \sigma_{i} \rho^{-1}=\sigma_{i+1}
\end{array} \tag{5}
\end{array}\right\rangle
$$

Setting $\rho=\rho^{e} \in \mathcal{B}_{n}^{*}(e)$, one gets

$$
\mathcal{B}_{n}^{*}(e)=\left\langle\begin{array}{l|l}
\rho, \sigma_{i}, i \in \mathbb{Z} / n \mathbb{Z} & \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, i-j \neq \pm 1 \\
\rho \sigma_{i} \rho^{-1}=\sigma_{i+e}
\end{array} \tag{6}
\end{array}\right\rangle
$$

Proposition

If $e^{\prime} \equiv \pm e \bmod n$, then $\mathcal{B}_{n}^{*}\left(e^{\prime}\right) \simeq \mathcal{B}_{n}^{*}(e)$. Also, $\mathcal{B}_{2}^{*}(e) \simeq \mathbb{Z} \times F_{2}$ for every $e \geq 2$.

One can prove $\mathcal{B}_{n}^{*}\left(e^{\prime}\right) \simeq \mathcal{B}_{n}^{*}(e) \Rightarrow e \wedge n=e^{\prime} \wedge n$,

Circular presentations for $\mathcal{B}_{n}^{*}(e)$

We set $\rho=\tau \sigma_{1} \sigma_{2} \ldots \sigma_{n-1}$. Then $\rho^{n}=z_{P}$ is central and

$$
\mathcal{B}_{n}^{*}=\left\langle\begin{array}{l|l}
\rho, \sigma_{i}, i \in \mathbb{Z} / n \mathbb{Z} & \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, i-j \neq \pm 1 \\
\rho \sigma_{i} \rho^{-1}=\sigma_{i+1}
\end{array} \tag{5}
\end{array}\right\rangle
$$

Setting $\rho=\rho^{e} \in \mathcal{B}_{n}^{*}(e)$, one gets

$$
\mathcal{B}_{n}^{*}(e)=\left\langle\begin{array}{l|l}
\rho, \sigma_{i}, i \in \mathbb{Z} / n \mathbb{Z} & \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, i-j \neq \pm 1 \\
\rho \sigma_{i} \rho^{-1}=\sigma_{i+e}
\end{array} \tag{6}
\end{array}\right\rangle
$$

Proposition

If $e^{\prime} \equiv \pm e \bmod n$, then $\mathcal{B}_{n}^{*}\left(e^{\prime}\right) \simeq \mathcal{B}_{n}^{*}(e)$. Also, $\mathcal{B}_{2}^{*}(e) \simeq \mathbb{Z} \times F_{2}$ for every $e \geq 2$.

One can prove $\mathcal{B}_{n}^{*}\left(e^{\prime}\right) \simeq \mathcal{B}_{n}^{*}(e) \Rightarrow e \wedge n=e^{\prime} \wedge n$,but a necessary and ${ }_{\sim}$ sufficient condition so that $\mathcal{B}_{n}^{*}\left(e^{\prime}\right) \simeq \mathcal{B}_{n}^{*}(e)$ is not known.

(3) Braid groups of $G(d e, e, n)$

(4) A few words about exceptional groups

The discriminantal viewpoint

General theorems tell us that

$$
\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{W} \simeq \mathbb{C}\left[f_{1}, \ldots, f_{n}\right]
$$

for some homogeneous f_{1}, \ldots, f_{n}

The discriminantal viewpoint

General theorems tell us that

$$
\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{W} \simeq \mathbb{C}\left[f_{1}, \ldots, f_{n}\right]
$$

for some homogeneous f_{1}, \ldots, f_{n} and the map

$$
\underline{z}=\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(f_{1}(\underline{z}), f_{2}(\underline{z}), \ldots, f_{n}(\underline{z})\right)
$$

provides an homeomorphism $\mathbb{C}^{n} / W \rightarrow \mathbb{C}^{n}$, and from this identifies X / W with the complement $\mathcal{C}(Q)$ inside \mathbb{C}^{n} of some hypersurface $Q=0$.

The discriminantal viewpoint

General theorems tell us that

$$
\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{W} \simeq \mathbb{C}\left[f_{1}, \ldots, f_{n}\right]
$$

for some homogeneous f_{1}, \ldots, f_{n} and the map

$$
\underline{z}=\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(f_{1}(\underline{z}), f_{2}(\underline{z}), \ldots, f_{n}(\underline{z})\right)
$$

provides an homeomorphism $\mathbb{C}^{n} / W \rightarrow \mathbb{C}^{n}$, and from this identifies X / W with the complement $\mathcal{C}(Q)$ inside \mathbb{C}^{n} of some hypersurface
$Q=0$.

Example

For $W=\mathfrak{S}_{n}$, take for f_{i} the elementary symmetric functions.

The discriminantal viewpoint

General theorems tell us that

$$
\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{W} \simeq \mathbb{C}\left[f_{1}, \ldots, f_{n}\right]
$$

for some homogeneous f_{1}, \ldots, f_{n} and the map

$$
\underline{z}=\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(f_{1}(\underline{z}), f_{2}(\underline{z}), \ldots, f_{n}(\underline{z})\right)
$$

provides an homeomorphism $\mathbb{C}^{n} / W \rightarrow \mathbb{C}^{n}$, and from this identifies X / W with the complement $\mathcal{C}(Q)$ inside \mathbb{C}^{n} of some hypersurface
$Q=0$.

Example

For $W=\mathfrak{S}_{n}$, take for f_{i} the elementary symmetric functions. Then Q is the discriminant of the polynomial

$$
\left(X-z_{1}\right)\left(X-z_{2}\right) \ldots\left(X-z_{n}\right)=X^{n}-f_{1} X^{n-1}+\cdots+(-1)^{n} f_{n}
$$

expressed as a polynomial in the f_{i} 's

Case 1 : groups of rank 2

W is G_{4}, \ldots, G_{22}.

Case 1 : groups of rank 2

W is G_{4}, \ldots, G_{22}.

In that case $Q=Q(x, y)$, and explicit computations provide a description of all possible groups.

Case 1 : groups of rank 2

W is G_{4}, \ldots, G_{22}.
In that case $Q=Q(x, y)$, and explicit computations provide a description of all possible groups.

However, most of the time these groups are more easily dealt using the fact that
$P=\pi_{1}\left(\mathbb{C}^{2} \backslash \bigcup \mathcal{A}\right) \simeq \pi_{1}\left(\mathbb{C}^{\times}\right) \times \pi_{1}(\mathbb{C} \backslash\{|\mathcal{A}|-1$ points $\}) \simeq \mathbb{Z} \times F_{|\mathcal{A}|-1}$

Case 2.a : Shephard groups of rank ≥ 3

Case 2.a : Shephard groups of rank ≥ 3

For some of the exceptional groups W of rank ≥ 3, we have

$$
X / W \equiv X^{\prime} / W^{\prime} \text { for some } W^{\prime}=G(r, 1, n), r \geq 1
$$

Case 2.a : Shephard groups of rank ≥ 3

For some of the exceptional groups W of rank ≥ 3, we have

$$
X / W \equiv X^{\prime} / W^{\prime} \text { for some } W^{\prime}=G(r, 1, n), r \geq 1
$$

This is a very strange and still essentially unexplained phenomenon.

Case 2.a : Shephard groups of rank ≥ 3

For some of the exceptional groups W of rank ≥ 3, we have

$$
X / W \equiv X^{\prime} / W^{\prime} \text { for some } W^{\prime}=G(r, 1, n), r \geq 1
$$

This is a very strange and still essentially unexplained phenomenon.

W	B
G_{25}	\mathcal{B}_{4}
G_{26}	\mathcal{B}_{3}^{*}
G_{32}	\mathcal{B}_{5}

Case 2.a : Shephard groups of rank ≥ 3

For some of the exceptional groups W of rank ≥ 3, we have

$$
X / W \equiv X^{\prime} / W^{\prime} \text { for some } W^{\prime}=G(r, 1, n), r \geq 1
$$

This is a very strange and still essentially unexplained phenomenon.

W	B
G_{25}	\mathcal{B}_{4}
G_{26}	\mathcal{B}_{3}^{*}
G_{32}	\mathcal{B}_{5}

and this yields

$$
\begin{aligned}
G_{25} & =\mathcal{B}_{4} / \sigma_{i}^{3} \\
G_{26} & =\mathcal{B}_{3}^{*} /\left\langle\tau^{2}, \sigma_{i}^{3}\right\rangle \\
G_{32} & =\mathcal{B}_{5} / \sigma_{i}^{3}
\end{aligned}
$$

Case 2.b : other groups of rank ≥ 3

Beyond the scope of this minicourse.

Case 2.b : other groups of rank ≥ 3

Beyond the scope of this minicourse.
(1) Use the 'real' (Coxeter) theory, if possible

Case 2.b : other groups of rank ≥ 3

Beyond the scope of this minicourse.
(1) Use the 'real' (Coxeter) theory, if possible
(2) If not, try to find a suitable complex plane U so that $\pi_{1}(U \cap \mathcal{C}(Q)) \rightarrow \pi_{1}(\mathcal{C}(Q))$ is an isomorphism, and compute $\pi_{1}(U \cap \mathcal{C}(Q))$.

Case 2.b : other groups of rank ≥ 3

Beyond the scope of this minicourse.
(1) Use the 'real' (Coxeter) theory, if possible
(2) If not, try to find a suitable complex plane U so that $\pi_{1}(U \cap \mathcal{C}(Q)) \rightarrow \pi_{1}(\mathcal{C}(Q))$ is an isomorphism, and compute $\pi_{1}(U \cap \mathcal{C}(Q))$.
(3) or use the fact that they are 'well-generated', so that one can build an analogue of the dual braid monoid of the 'real' theory.

Case 2.b : other groups of rank ≥ 3

Beyond the scope of this minicourse.
(1) Use the 'real' (Coxeter) theory, if possible
(2) If not, try to find a suitable complex plane U so that $\pi_{1}(U \cap \mathcal{C}(Q)) \rightarrow \pi_{1}(\mathcal{C}(Q))$ is an isomorphism, and compute $\pi_{1}(U \cap \mathcal{C}(Q))$.
(3) or use the fact that they are 'well-generated', so that one can build an analogue of the dual braid monoid of the 'real' theory. And then try to get a shorter presentation from Tietze transformations.

Case 2.b : other groups of rank ≥ 3

Beyond the scope of this minicourse.
(1) Use the 'real' (Coxeter) theory, if possible
(2) If not, try to find a suitable complex plane U so that $\pi_{1}(U \cap \mathcal{C}(Q)) \rightarrow \pi_{1}(\mathcal{C}(Q))$ is an isomorphism, and compute $\pi_{1}(U \cap \mathcal{C}(Q))$.
(3) or use the fact that they are 'well-generated', so that one can build an analogue of the dual braid monoid of the 'real' theory. And then try to get a shorter presentation from Tietze transformations.
(0) or....

