Complex Braid Groups

Ivan Marin, Université d'Amiens (UPJV)

Part 1 : Presentations Berlin, August-September 2021

Ivan Marin, Université d'Amiens (UPJV)

Complex Braid Groups

Part 1 : Presentations Berlin, August-Septe

-

3 Braid groups of *G*(*de*, *e*, *n*)

→[▲]Mを > < 団 > < 主 > < 主 > 、 主 つ < で 3/40

Let W < GL(V) be a complex reflection group, $n = \dim V$

 $W = \langle \mathcal{R} \rangle \ \mathcal{R} = \{ s \in W; \dim \operatorname{Ker}(s-1) = n-1 \}$

Let W < GL(V) be a complex reflection group, $n = \dim V$

$$W = \langle \mathcal{R} \rangle \ \mathcal{R} = \{ s \in W; \dim \operatorname{Ker}(s-1) = n-1 \}$$

The collection of its *reflecting hyperplanes* is the *hyperplane arrangement*

 $\mathcal{A} = {\operatorname{Ker}(s-1), s \in \mathcal{R}}$

Let W < GL(V) be a complex reflection group, $n = \dim V$

$$W = \langle \mathcal{R} \rangle \ \mathcal{R} = \{ s \in W; \dim \operatorname{Ker}(s-1) = n-1 \}$$

The collection of its *reflecting hyperplanes* is the *hyperplane arrangement*

$$\mathcal{A} = \{\operatorname{Ker}(s - 1), s \in \mathcal{R}\}$$

For $H \in \mathcal{A}$, $W_H = \{ w \in W; w_{|H} = \mathrm{Id}_H \}$ is cyclic, isomorphic to its image under det : $W_H \to \mathbb{C}^{\times}$.

Let W < GL(V) be a complex reflection group, $n = \dim V$

$$W = \langle \mathcal{R} \rangle \ \mathcal{R} = \{ s \in W; \dim \operatorname{Ker}(s-1) = n-1 \}$$

The collection of its *reflecting hyperplanes* is the *hyperplane arrangement*

$$\mathcal{A} = \{\operatorname{Ker}(s-1), s \in \mathcal{R}\}$$

For $H \in \mathcal{A}$, $W_H = \{ w \in W; w_{|H} = \mathrm{Id}_H \}$ is cyclic, isomorphic to its image under det : $W_H \to \mathbb{C}^{\times}$.

The generator of W_H mapped to $\exp(2\pi i/|W_H|)$ is a reflection s_H called the *distinguished reflection* associated to *H*. The collection of all distinguished reflections is denoted \mathcal{R}^* .

< D > < A > < B >

Let W < GL(V) be a complex reflection group, $n = \dim V$

$$W = \langle \mathcal{R} \rangle \ \mathcal{R} = \{ s \in W; \dim \operatorname{Ker}(s-1) = n-1 \}$$

The collection of its *reflecting hyperplanes* is the *hyperplane arrangement*

$$\mathcal{A} = \{\operatorname{Ker}(s-1), s \in \mathcal{R}\}$$

For $H \in \mathcal{A}$, $W_H = \{ w \in W; w_{|H} = \mathrm{Id}_H \}$ is cyclic, isomorphic to its image under det : $W_H \to \mathbb{C}^{\times}$.

The generator of W_H mapped to $\exp(2\pi i/|W_H|)$ is a reflection s_H called the *distinguished reflection* associated to *H*. The collection of all distinguished reflections is denoted \mathcal{R}^* .

 \mathcal{R}^* is in 1-1 correspondence with \mathcal{A} ,

$$s\mapsto \operatorname{Ker}(s-1), \ H\mapsto s_{H^{\square}}$$

The main series is made of the groups G(de, e, n) of

- $n \times n$ monomial matrices
- with nonzero entries inside μ_r , r = de
- whose product belongs to μ_d .

- (E)

The main series is made of the groups G(de, e, n) of

- $n \times n$ monomial matrices
- with nonzero entries inside μ_r , r = de
- whose product belongs to μ_d .

Of course W = G(de, e, n) < G(r, 1, n).

4 王

The main series is made of the groups G(de, e, n) of

- $n \times n$ monomial matrices
- with nonzero entries inside μ_r , r = de
- whose product belongs to μ_d .

Of course W = G(de, e, n) < G(r, 1, n).

W contains diagonal reflections, of the form diag(1,..., 1, ζ, 1,...) if and only if d > 1.

The main series is made of the groups G(de, e, n) of

- $n \times n$ monomial matrices
- with nonzero entries inside μ_r , r = de
- whose product belongs to μ_d .

Of course W = G(de, e, n) < G(r, 1, n).

- *W* contains diagonal reflections, of the form $diag(1, ..., 1, \zeta, 1, ...)$ if and only if d > 1.
- its non-diagonal reflections belong to G(r, r, n) < W and have the form

$$\mathrm{Id}_{u} \oplus \begin{pmatrix} \mathsf{0} & \zeta_{e}^{-k} \\ \zeta_{e}^{k} & \mathsf{0} \end{pmatrix} \oplus \mathrm{Id}_{n-2-u}$$

In addition to these, there are 34 exceptional groups G_4, \ldots, G_{37} , half of them in rank 2.

W = ⟨*R*⟩ = ⟨*R**⟩ complex reflection group *X* = ℂⁿ \ ∪ *A*

- $W = \langle \mathcal{R} \rangle = \langle \mathcal{R}^* \rangle$ complex reflection group
- $X = \mathbb{C}^n \setminus \bigcup \mathcal{A}$
- $X \rightarrow X/W$ is a Galois covering

MA

《口》《聞》《臣》《臣》

- $W = \langle \mathcal{R} \rangle = \langle \mathcal{R}^* \rangle$ complex reflection group
- $X = \mathbb{C}^n \setminus \bigcup \mathcal{A}$
- $X \rightarrow X/W$ is a Galois covering
- $B = \pi_1(X/W)$ its braid group

- $W = \langle \mathcal{R} \rangle = \langle \mathcal{R}^* \rangle$ complex reflection group
- $X = \mathbb{C}^n \setminus \bigcup \mathcal{A}$
- $X \rightarrow X/W$ is a Galois covering
- $B = \pi_1(X/W)$ its braid group fits into a short exact sequence

$$1 \rightarrow P \rightarrow B \rightarrow W \rightarrow 1$$

where
$$P = \pi_1(X) = \operatorname{Ker}(B \twoheadrightarrow W)$$
.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- $W = \langle \mathcal{R} \rangle = \langle \mathcal{R}^* \rangle$ complex reflection group
- $X = \mathbb{C}^n \setminus \bigcup \mathcal{A}$
- $X \rightarrow X/W$ is a Galois covering
- $B = \pi_1(X/W)$ its braid group fits into a short exact sequence

$$1 \rightarrow P \rightarrow B \rightarrow W \rightarrow 1$$

where
$$P = \pi_1(X) = \operatorname{Ker}(B \twoheadrightarrow W)$$
.

A nontrivial theorem, obtained using the classification, is the following one.

< ロ > < 同 > < 回 > < 回 >

- $W = \langle \mathcal{R} \rangle = \langle \mathcal{R}^* \rangle$ complex reflection group
- $X = \mathbb{C}^n \setminus \bigcup \mathcal{A}$
- $X \rightarrow X/W$ is a Galois covering
- $B = \pi_1(X/W)$ its braid group fits into a short exact sequence

$$1 \rightarrow P \rightarrow B \rightarrow W \rightarrow 1$$

where
$$P = \pi_1(X) = \operatorname{Ker}(B \twoheadrightarrow W)$$
.

A nontrivial theorem, obtained using the classification, is the following one.

Theorem

B is torsion-free.

< ロ > < 同 > < 回 > < 回 >

- $W = \langle \mathcal{R} \rangle = \langle \mathcal{R}^* \rangle$ complex reflection group
- $X = \mathbb{C}^n \setminus \bigcup \mathcal{A}$
- $X \rightarrow X/W$ is a Galois covering
- $B = \pi_1(X/W)$ its braid group fits into a short exact sequence

$$1 \rightarrow P \rightarrow B \rightarrow W \rightarrow 1$$

where
$$P = \pi_1(X) = \operatorname{Ker}(B \twoheadrightarrow W)$$
.

A nontrivial theorem, obtained using the classification, is the following one.

Theorem

B is torsion-free.

In particular the short exact sequence $1 \rightarrow P \rightarrow B \rightarrow W \rightarrow 1$ is not split, and P is also torsion-free.

Ivan Marin, Université d'Amiens (UPJV)

- $W = \langle \mathcal{R} \rangle = \langle \mathcal{R}^* \rangle$ complex reflection group
- $B = \pi_1(X/W)$ its braid group,

MA

- $W = \langle \mathcal{R} \rangle = \langle \mathcal{R}^* \rangle$ complex reflection group
- $B = \pi_1(X/W)$ its braid group,

 $B = \langle \sigma \mid \sigma \in B \text{ braided reflection } \rangle$

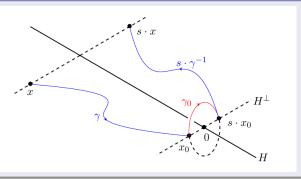
MA

《口》《聞》《臣》《臣》

- $W = \langle \mathcal{R} \rangle = \langle \mathcal{R}^* \rangle$ complex reflection group
- $B = \pi_1(X/W)$ its braid group,

$$\pmb{B} = \langle \sigma \mid \sigma \in \pmb{B} ext{ braided reflection }
angle$$

Braided reflections



MA <ロ> <同> <同> < 同> < 同> 8/40

Ivan Marin, Université d'Amiens (UPJV)

Every reflecting hyperplane $H \in A$ can be defined as the kernel of some linear form α_H .

Every reflecting hyperplane $H \in A$ can be defined as the kernel of some linear form α_{H} . Then the map

$$\prod_{H} \alpha_{H}^{|W_{H}|} : X \to \mathbb{C}^{\times}$$

is W-invariant,

- ₹ ⊒ →

Every reflecting hyperplane $H \in A$ can be defined as the kernel of some linear form α_{H} . Then the map

$$\prod_{H} \alpha_{H}^{|W_{H}|} : X \to \mathbb{C}^{\times}$$

is *W*-invariant,hence induces a continuous map $X/W \to \mathbb{C}^{\times}$.

Every reflecting hyperplane $H \in A$ can be defined as the kernel of some linear form α_H . Then the map

$$\prod_{H} \alpha_{H}^{|W_{H}|} : X \to \mathbb{C}^{\times}$$

is *W*-invariant,hence induces a continuous map $X/W \to \mathbb{C}^{\times}$.

Definition

The *length morphism* $\ell : B \to \mathbb{Z}$ is the induced morphism $B = \pi_1(X/W) \to \pi_1(\mathbb{C}^{\times}) = \mathbb{Z}.$

< ロ > < 同 > < 三 > < 三)

Every reflecting hyperplane $H \in A$ can be defined as the kernel of some linear form α_H . Then the map

$$\prod_{H} \alpha_{H}^{|W_{H}|} : X \to \mathbb{C}^{\times}$$

is *W*-invariant,hence induces a continuous map $X/W \to \mathbb{C}^{\times}$.

Definition

The *length morphism* $\ell : B \to \mathbb{Z}$ is the induced morphism $B = \pi_1(X/W) \to \pi_1(\mathbb{C}^{\times}) = \mathbb{Z}.$

The following is easy to prove

Proposition

For every braided reflection σ , we have $\ell(\sigma) = 1$.

< ロ > < 同 > < 回 > < 回 >

Braided reflections and presentations of B

For each braided reflection σ , let us denote $m(\sigma)$ the order of the corresponding reflection.

MA

< E

Braided reflections and presentations of *B*

For each braided reflection σ , let us denote $m(\sigma)$ the order of the corresponding reflection.

Proposition

The kernel of $B \rightarrow W$ is (normally) generated by the $\sigma^{m(\sigma)}$, for σ running among the collection of all braided reflections.

Braided reflections and presentations of B

For each braided reflection σ , let us denote $m(\sigma)$ the order of the corresponding reflection.

Proposition

The kernel of $B \rightarrow W$ is (normally) generated by the $\sigma^{m(\sigma)}$, for σ running among the collection of all braided reflections.

As a consequence, any presentation of B with generators braided reflections will provide a presentation of W, as soon as the set of generators contains representatives for every conjugacy class of reflections.

Lemma

Two braided reflections are conjugates inside B if and only if their images are conjugates inside W.

< D > < A > < B >

3

MA <ロ> <同> <同> < 同> < 同> 10/40

Ivan Marin, Université d'Amiens (UPJV)

For $* \in X$ the chosen basepoint, the map $t \mapsto \exp(2\pi i t) \cdot *$ is a loop inside *X*. Its image inside $P = \pi_1(X) = \operatorname{Ker}(B \twoheadrightarrow W)$ is denoted z_P .

- (E)

Ivan Marin, Université d'Amiens (UPJV)

For $* \in X$ the chosen basepoint, the map $t \mapsto \exp(2\pi i t) \cdot *$ is a loop inside *X*. Its image inside $P = \pi_1(X) = \operatorname{Ker}(B \twoheadrightarrow W)$ is denoted z_P .

Lemma $z_P \in Z(P).$

< D > < A </p>

For $* \in X$ the chosen basepoint, the map $t \mapsto \exp(2\pi i t) \cdot *$ is a loop inside *X*. Its image inside $P = \pi_1(X) = \operatorname{Ker}(B \twoheadrightarrow W)$ is denoted z_P .

Lemma

 $z_P \in Z(P).$

Let us assume that W is irreducible. Then by Schur's Lemma

$$Z(W) = \mu_m \text{Id for } m = |Z(W)|$$

For $* \in X$ the chosen basepoint, the map $t \mapsto \exp(2\pi i t) \cdot *$ is a loop inside *X*. Its image inside $P = \pi_1(X) = \operatorname{Ker}(B \twoheadrightarrow W)$ is denoted z_P .

Lemma

 $z_P \in Z(P).$

Let us assume that W is irreducible. Then by Schur's Lemma

$$Z(W) = \mu_m \text{Id for } m = |Z(W)|$$

and the map $t \mapsto \exp(2\pi i t/|Z(W)|)$.* is a path inside X whose image in X/W is a *loop*.

Central elements in complex braid groups

For $* \in X$ the chosen basepoint, the map $t \mapsto \exp(2\pi i t) \cdot *$ is a loop inside *X*. Its image inside $P = \pi_1(X) = \operatorname{Ker}(B \twoheadrightarrow W)$ is denoted z_P .

Lemma

 $z_P \in Z(P).$

Let us assume that W is irreducible. Then by Schur's Lemma

$$Z(W) = \mu_m \text{Id for } m = |Z(W)|$$

and the map $t \mapsto \exp(2\pi i t/|Z(W)|)$.* is a path inside X whose image in X/W is a *loop*. Its image inside $B = \pi_1(X/W)$ is denoted z_B .

Lemma

$$z_B \in Z(B)$$
 and $z_B^{|Z(W)|} = z_P$.

3 Braid groups of *G*(*de*, *e*, *n*)

Ivan Marin, Université d'Amiens (UPJV)

Braid groups of surfaces

Let Σ be a connected, orientable surface.

Let Σ be a connected, orientable surface.

Definition

The braid group on *n* strands $\mathcal{B}_n(\Sigma)$ of the surface Σ is the fundamental group of the configuration space $\mathcal{C}_n(\Sigma)$ of sets of *n* points inside Σ .

Let Σ be a connected, orientable surface.

Definition

The braid group on *n* strands $\mathcal{B}_n(\Sigma)$ of the surface Σ is the fundamental group of the configuration space $C_n(\Sigma)$ of sets of *n* points inside Σ .

More precisely, a topology on $C_n(\Sigma)$ can be defined as the restriction of the Hausdorff metric between compact subsets of Σ , and $C_n(\Sigma)$ is easily checked to be always path connected. Then $\mathcal{B}_n(\Sigma) = \pi_1(\mathcal{C}_n(\Sigma))$.

Let Σ be a connected, orientable surface.

Definition

The braid group on *n* strands $\mathcal{B}_n(\Sigma)$ of the surface Σ is the fundamental group of the configuration space $\mathcal{C}_n(\Sigma)$ of sets of *n* points inside Σ .

More precisely, a topology on $C_n(\Sigma)$ can be defined as the restriction of the Hausdorff metric between compact subsets of Σ , and $C_n(\Sigma)$ is easily checked to be always path connected. Then $\mathcal{B}_n(\Sigma) = \pi_1(\mathcal{C}_n(\Sigma))$. Alternatively $C_n(\Sigma)$ can be defined as a quotient space of

$$\{\underline{z} = (z_1, \ldots, z_n) \in \Sigma^n \mid i \neq j \Rightarrow z_i \neq z_j\}$$

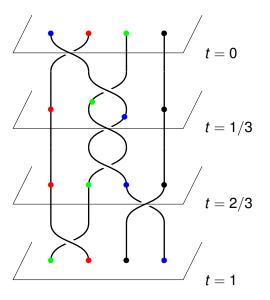
by the action of \mathfrak{S}_n by permutation of the coordinates.

The usual braid group : $\mathcal{B}_n = \mathcal{B}(\Sigma), \Sigma = \mathbb{C}$

→Mみ < □ > < @ > < ミ > < ミ > ミ シ へへ 13/40

Ivan Marin, Université d'Amiens (UPJV)

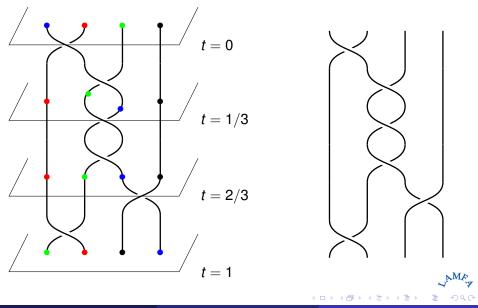
The usual braid group : $\mathcal{B}_n = \mathcal{B}(\Sigma), \Sigma = \mathbb{C}$



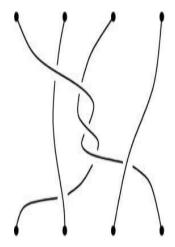
MA

(I)

The usual braid group : $\mathcal{B}_n = \mathcal{B}(\Sigma), \Sigma = \mathbb{C}$



Braid groups



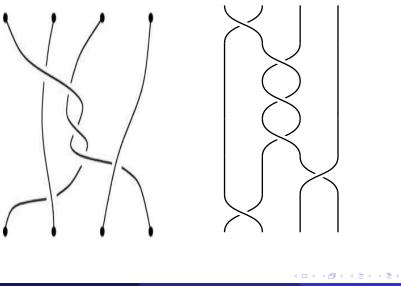
Complex Braid Groups

MA

<ロ> <同> <同> <同> < 同> < 同>

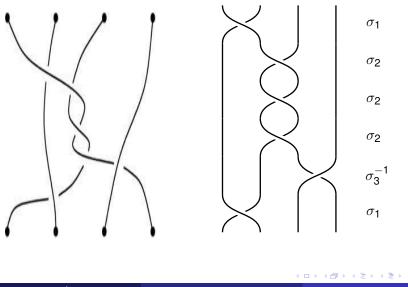
Ivan Marin, Université d'Amiens (UPJV)

Braid groups



Ivan Marin, Université d'Amiens (UPJV)

MA

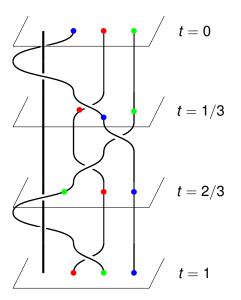


MA

æ

MA <ロ> <同> <同> < 同> < 同>

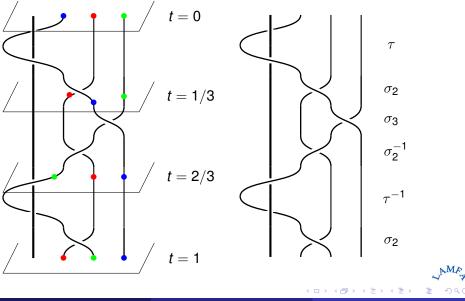
Ivan Marin, Université d'Amiens (UPJV)



MA

(I)

Ivan Marin, Université d'Amiens (UPJV)



From the projection map $\pi : \mathcal{B}_{n+1} \twoheadrightarrow \mathfrak{S}_{n+1}$, and taking for $\Sigma = \mathbb{C} \setminus \{1\}$, we get that

 \mathcal{B}_n^* can be identified with the collection of braids leaving the first strand unpermuted.

프 () () ()

From the projection map $\pi : \mathcal{B}_{n+1} \twoheadrightarrow \mathfrak{S}_{n+1}$, and taking for $\Sigma = \mathbb{C} \setminus \{1\}$, we get that

 \mathcal{B}_n^* can be identified with the collection of braids leaving the first strand unpermuted.

that is

$$\mathcal{B}_n^* = \pi^{-1} \left(\mathfrak{S}_{n+1}^{(1)} \right), \quad \mathfrak{S}_{n+1}^{(1)} = \{ w \in \mathfrak{S}_{n+1} \mid w(1) = 1 \}$$

프 () () ()

From the projection map $\pi : \mathcal{B}_{n+1} \twoheadrightarrow \mathfrak{S}_{n+1}$, and taking for $\Sigma = \mathbb{C} \setminus \{1\}$, we get that

 \mathcal{B}_n^* can be identified with the collection of braids leaving the first strand unpermuted.

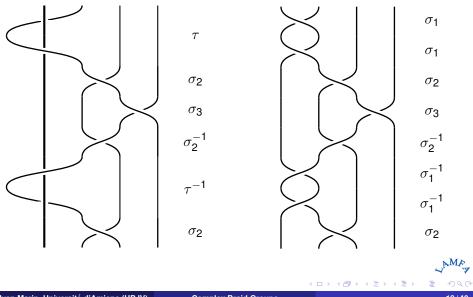
that is

$$\mathcal{B}_n^* = \pi^{-1} \left(\mathfrak{S}_{n+1}^{(1)} \right), \quad \mathfrak{S}_{n+1}^{(1)} = \{ w \in \mathfrak{S}_{n+1} \mid w(1) = 1 \}$$

It follows that \mathcal{B}_n^* is a (*non* normal) finite index subgroup of \mathcal{B}_n of index n + 1.

$$\mathcal{B}_n^* \hookrightarrow \mathcal{B}_{n+1}$$

 $\mathcal{B}_n^* \hookrightarrow \mathcal{B}_{n+1}$



Ivan Marin, Université d'Amiens (UPJV)

Complex Braid Groups

18/40

\mathcal{B}_n^* and \mathcal{B}_n

From the projection map $\pi : \mathcal{B}_{n+1} \twoheadrightarrow \mathfrak{S}_{n+1}$, and taking for $\Sigma = \mathbb{C} \setminus \{1\}$, we have

$$\mathcal{B}_n^* = \pi^{-1} \left(\mathfrak{S}_{n+1}^{(1)} \right), \quad \mathfrak{S}_{n+1}^{(1)} = \{ w \in \mathfrak{S}_{n+1} \mid w(1) = 1 \}$$

It follows that \mathcal{B}_n^* is a (*non* normal) finite index subgroup of \mathcal{B}_n of index *n*.

$$\mathcal{B}_n^* \hookrightarrow \mathcal{B}_{n+1}$$

\mathcal{B}_n^* and \mathcal{B}_n

From the projection map $\pi : \mathcal{B}_{n+1} \twoheadrightarrow \mathfrak{S}_{n+1}$, and taking for $\Sigma = \mathbb{C} \setminus \{1\}$, we have

$$\mathcal{B}_n^* = \pi^{-1} \left(\mathfrak{S}_{n+1}^{(1)} \right), \quad \mathfrak{S}_{n+1}^{(1)} = \{ w \in \mathfrak{S}_{n+1} \mid w(1) = 1 \}$$

It follows that \mathcal{B}_n^* is a (*non* normal) finite index subgroup of \mathcal{B}_n of index *n*.

$$\mathcal{B}_n^* \hookrightarrow \mathcal{B}_{n+1}$$

On the other hand, the inclusion map $\mathbb{C}^{\times} \to \mathbb{C}$ induces a morphism

$$\mathcal{B}_n^* = \mathcal{B}_n(\mathbb{C}^{\times}) \to \mathcal{B}_n(\mathbb{C}) = \mathcal{B}_n$$

\mathcal{B}_n^* and \mathcal{B}_n

From the projection map $\pi : \mathcal{B}_{n+1} \twoheadrightarrow \mathfrak{S}_{n+1}$, and taking for $\Sigma = \mathbb{C} \setminus \{1\}$, we have

$$\mathcal{B}_n^* = \pi^{-1} \left(\mathfrak{S}_{n+1}^{(1)} \right), \quad \mathfrak{S}_{n+1}^{(1)} = \{ w \in \mathfrak{S}_{n+1} \mid w(1) = 1 \}$$

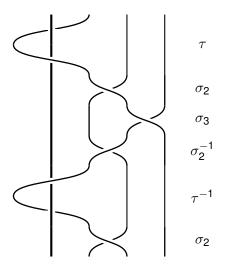
It follows that \mathcal{B}_n^* is a (*non* normal) finite index subgroup of \mathcal{B}_n of index *n*.

$$\mathcal{B}_n^* \hookrightarrow \mathcal{B}_{n+1}$$

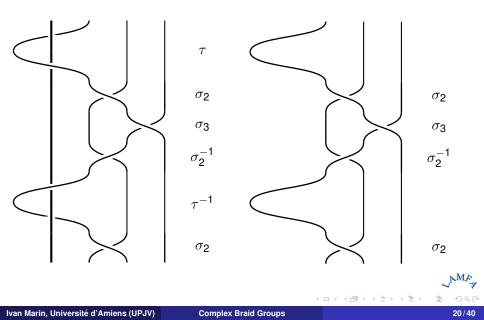
On the other hand, the inclusion map $\mathbb{C}^{\times} \to \mathbb{C}$ induces a morphism

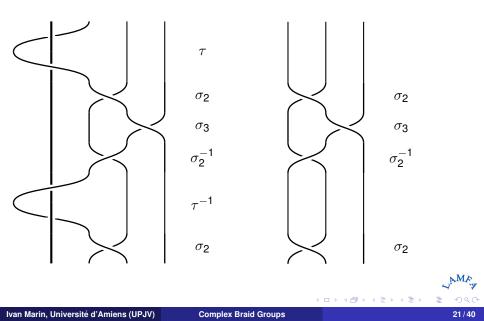
$$\mathcal{B}_n^* = \mathcal{B}_n(\mathbb{C}^{\times}) \to \mathcal{B}_n(\mathbb{C}) = \mathcal{B}_n$$

It can be illustrated as follows.



MA





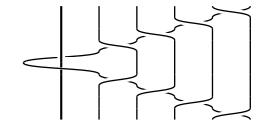
The kernel of $\mathcal{B}_n^* \to \overline{\mathcal{B}_n}$

MA 22/40

Ivan Marin, Université d'Amiens (UPJV)

The kernel of $\overline{\mathcal{B}_n^*} \to \overline{\mathcal{B}_n}$

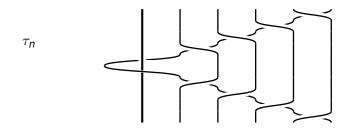
 au_{n}



₹ ₩ ₹ ₽ ₽ ₽ ₽ 8

Ivan Marin, Université d'Amiens (UPJV)

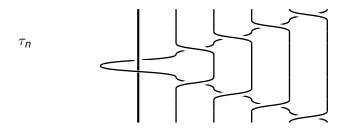
The kernel of $\mathcal{B}_n^* \to \mathcal{B}_n$



Proposition

 $\mathcal{F}_n = \langle \tau_1 = \tau, \tau_2, \dots, \tau_n \rangle$ is a free group on the *n* generators τ_1, \dots, τ_n .

The kernel of $\mathcal{B}_n^* \to \mathcal{B}_n$



Proposition

 $\mathcal{F}_n = \langle \tau_1 = \tau, \tau_2, \dots, \tau_n \rangle$ is a free group on the n generators τ_1, \dots, τ_n .

Proposition

 $\mathcal{F}_n = \operatorname{Ker}(\mathcal{B}_n^* \twoheadrightarrow \mathcal{B}_n)$ and

$$\mathcal{B}_n^* \simeq \mathcal{B}_n \ltimes \mathcal{F}_n$$

Ivan Marin, Université d'Amiens (UPJV)

э

A presentation of \mathcal{B}_n and \mathcal{B}_n^* is obtained inductively from the properties above, as follows.

< E

A presentation of \mathcal{B}_n and \mathcal{B}_n^* is obtained inductively from the properties above, as follows.

Define a combinatorial braid group from the well-known presentation

$$\tilde{\mathcal{B}}_{n} = \left\langle \sigma_{1}, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_{i} \sigma_{i+1} \sigma_{i} = \sigma_{i+1} \sigma_{i} \sigma_{i+1} \\ \sigma_{i} \sigma_{j} = \sigma_{j} \sigma_{i}, |i-j| \geq 2 \end{array} \right\rangle$$

A presentation of \mathcal{B}_n and \mathcal{B}_n^* is obtained inductively from the properties above, as follows.

Define a combinatorial braid group from the well-known presentation

$$\tilde{\mathcal{B}}_{n} = \left\langle \sigma_{1}, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_{i} \sigma_{i+1} \sigma_{i} = \sigma_{i+1} \sigma_{i} \sigma_{i+1} \\ \sigma_{i} \sigma_{j} = \sigma_{j} \sigma_{i}, |i-j| \ge 2 \end{array} \right\rangle$$

and $\pi : \tilde{\mathcal{B}}_n \twoheadrightarrow \mathfrak{S}_n$ through $\sigma_i \mapsto (i, i+1)$.

A presentation of \mathcal{B}_n and \mathcal{B}_n^* is obtained inductively from the properties above, as follows.

Define a combinatorial braid group from the well-known presentation

$$\tilde{\mathcal{B}}_{n} = \left\langle \sigma_{1}, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_{i} \sigma_{i+1} \sigma_{i} = \sigma_{i+1} \sigma_{i} \sigma_{i+1} \\ \sigma_{i} \sigma_{j} = \sigma_{j} \sigma_{i}, |i-j| \geq 2 \end{array} \right\rangle$$

and $\pi : \tilde{\mathcal{B}}_n \twoheadrightarrow \mathfrak{S}_n$ through $\sigma_i \mapsto (i, i+1)$. Then a *combinatorial version* of the punctured braid group can be defined as $\tilde{\mathcal{B}}_{n-1}^* = \pi^{-1}(\mathfrak{S}_n^{(1)}) < \tilde{\mathcal{B}}_n$.

A presentation of \mathcal{B}_n and \mathcal{B}_n^* is obtained inductively from the properties above, as follows.

Define a combinatorial braid group from the well-known presentation

$$\tilde{\mathcal{B}}_{n} = \left\langle \sigma_{1}, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_{i} \sigma_{i+1} \sigma_{i} = \sigma_{i+1} \sigma_{i} \sigma_{i+1} \\ \sigma_{i} \sigma_{j} = \sigma_{j} \sigma_{i}, |i-j| \ge 2 \end{array} \right\rangle$$

and $\pi : \tilde{\mathcal{B}}_n \twoheadrightarrow \mathfrak{S}_n$ through $\sigma_i \mapsto (i, i+1)$.

Then a *combinatorial version* of the punctured braid group can be defined as $\tilde{\mathcal{B}}_{n-1}^* = \pi^{-1}(\mathfrak{S}_n^{(1)}) < \tilde{\mathcal{B}}_n$.

The Reidemeister-Schreier method yields a presentation

< ロ > < 団 > < 臣 > < 臣

A presentation of \mathcal{B}_n and \mathcal{B}_n^* is obtained inductively from the properties above, as follows.

Define a combinatorial braid group from the well-known presentation

$$\tilde{\mathcal{B}}_{n} = \left\langle \sigma_{1}, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_{i} \sigma_{i+1} \sigma_{i} = \sigma_{i+1} \sigma_{i} \sigma_{i+1} \\ \sigma_{i} \sigma_{j} = \sigma_{j} \sigma_{i}, |i-j| \geq 2 \end{array} \right\rangle$$

and $\pi : \tilde{\mathcal{B}}_n \twoheadrightarrow \mathfrak{S}_n$ through $\sigma_i \mapsto (i, i+1)$.

Then a *combinatorial version* of the punctured braid group can be defined as $\tilde{\mathcal{B}}_{n-1}^* = \pi^{-1}(\mathfrak{S}_n^{(1)}) < \tilde{\mathcal{B}}_n$.

The Reidemeister-Schreier method yields a presentation

$$\tilde{\mathcal{B}}_{n-1}^{*} = \left\langle \tau, \sigma_{2}, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \\ \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i}, |i-j| \ge 2 \\ \sigma_{i}\tau = \tau\sigma_{i}, i > 2 \\ \sigma_{2}\tau\sigma_{2}\tau = \tau\sigma_{2}\tau\sigma_{2} \end{array} \right\rangle$$
(1)

Presentations for \mathcal{B}_n and \mathcal{B}_n^*

We have obvious morphisms $\tilde{\mathcal{B}}_n \to \mathcal{B}_n$ and $\tilde{\mathcal{B}}_n^* \to \mathcal{B}_n^*$.

< □ > < 個 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > <

We have obvious morphisms $\tilde{\mathcal{B}}_n \to \mathcal{B}_n$ and $\tilde{\mathcal{B}}_n^* \to \mathcal{B}_n^*$. We want to prove that that they are isomorphisms, by induction on *n*.

Ivan Marin, Université d'Amiens (UPJV)

We have obvious morphisms $\tilde{\mathcal{B}}_n \to \mathcal{B}_n$ and $\tilde{\mathcal{B}}_n^* \to \mathcal{B}_n^*$. We want to prove that that they are isomorphisms, by induction on *n*. We have a morphism $\tilde{\mathcal{B}}_n^* \twoheadrightarrow \tilde{\mathcal{B}}_n$, mapping $\sigma_i \mapsto \sigma_i$, $\tau \mapsto 1$.

We have obvious morphisms $\tilde{\mathcal{B}}_n \to \mathcal{B}_n$ and $\tilde{\mathcal{B}}_n^* \to \mathcal{B}_n^*$. We want to prove that that they are isomorphisms, by induction on *n*. We have a morphism $\tilde{\mathcal{B}}_n^* \to \tilde{\mathcal{B}}_n$, mapping $\sigma_i \mapsto \sigma_i$, $\tau \mapsto 1$. Define the τ_i as above. Then :

Ivan Marin, Université d'Amiens (UPJV)

Complex Braid Groups

We have obvious morphisms $\tilde{\mathcal{B}}_n \to \mathcal{B}_n$ and $\tilde{\mathcal{B}}_n^* \to \mathcal{B}_n^*$. We want to prove that that they are isomorphisms, by induction on *n*. We have a morphism $\tilde{\mathcal{B}}_n^* \to \tilde{\mathcal{B}}_n$, mapping $\sigma_i \mapsto \sigma_i$, $\tau \mapsto 1$. Define the τ_i as above. Then :

Proposition

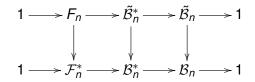
 $F_n = \operatorname{Ker}(\tilde{\mathcal{B}}_n^* \twoheadrightarrow \tilde{\mathcal{B}}_n)$ is a free group on τ_1, \ldots, τ_n .

We have obvious morphisms $\tilde{\mathcal{B}}_n \to \mathcal{B}_n$ and $\tilde{\mathcal{B}}_n^* \to \mathcal{B}_n^*$. We want to prove that that they are isomorphisms, by induction on *n*. We have a morphism $\tilde{\mathcal{B}}_n^* \to \tilde{\mathcal{B}}_n$, mapping $\sigma_i \mapsto \sigma_i$, $\tau \mapsto 1$. Define the τ_i as above. Then :

Proposition

 $F_n = \operatorname{Ker}(\tilde{\mathcal{B}}_n^* \twoheadrightarrow \tilde{\mathcal{B}}_n)$ is a free group on τ_1, \ldots, τ_n .

From this proposition and the following diagram

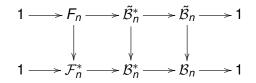


We have obvious morphisms $\tilde{\mathcal{B}}_n \to \mathcal{B}_n$ and $\tilde{\mathcal{B}}_n^* \to \mathcal{B}_n^*$. We want to prove that that they are isomorphisms, by induction on *n*. We have a morphism $\tilde{\mathcal{B}}_n^* \to \tilde{\mathcal{B}}_n$, mapping $\sigma_i \mapsto \sigma_i$, $\tau \mapsto 1$. Define the τ_i as above. Then :

Proposition

$$F_n = \operatorname{Ker}(\tilde{\mathcal{B}}_n^* \twoheadrightarrow \tilde{\mathcal{B}}_n)$$
 is a free group on τ_1, \ldots, τ_n .

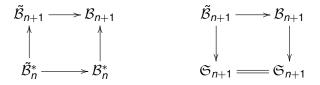
From this proposition and the following diagram



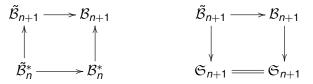
one gets that $\tilde{\mathcal{B}}_n \simeq \mathcal{B}_n$ implies $\tilde{\mathcal{B}}_n^* \simeq \mathcal{B}_n^*$.

On the other hand, since $\tilde{\mathcal{B}}_n^*$ and \mathcal{B}_n^* are finite index subgroups of $\tilde{\mathcal{B}}_{n+1}$ and \mathcal{B}_{n+1} , respectively,

On the other hand, since $\tilde{\mathcal{B}}_n^*$ and \mathcal{B}_n^* are finite index subgroups of $\tilde{\mathcal{B}}_{n+1}$ and \mathcal{B}_{n+1} , respectively, from the following commutative diagrams



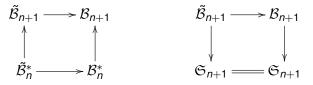
On the other hand, since $\tilde{\mathcal{B}}_n^*$ and \mathcal{B}_n^* are finite index subgroups of $\tilde{\mathcal{B}}_{n+1}$ and \mathcal{B}_{n+1} , respectively, from the following commutative diagrams



one gets readily that $\tilde{\mathcal{B}}_n^* \simeq \mathcal{B}_n^*$ implies $\tilde{\mathcal{B}}_{n+1} \simeq \mathcal{B}_{n+1}$.

<ロ> <同> <同> < 同> < 同>

On the other hand, since $\tilde{\mathcal{B}}_n^*$ and \mathcal{B}_n^* are finite index subgroups of $\tilde{\mathcal{B}}_{n+1}$ and \mathcal{B}_{n+1} , respectively, from the following commutative diagrams



one gets readily that $\tilde{\mathcal{B}}_n^* \simeq \mathcal{B}_n^*$ implies $\tilde{\mathcal{B}}_{n+1} \simeq \mathcal{B}_{n+1}$.

It is then sufficient to check that $\mathcal{B}_2 = \langle \sigma_1 \rangle \simeq \mathbb{Z} \simeq \tilde{\mathcal{B}}_2$ to prove by induction that the presentations are correct.

< ロ > < 同 > < 回 > < 回 > < 回 > <

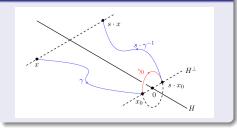
< A >

Ivan Marin, Université d'Amiens (UPJV)

- $W = \langle \mathcal{R} \rangle$ complex reflection group
- $B = \pi_1(X/W)$ its braid group

- *W* = ⟨*R*⟩ complex reflection group *B* = π₁(*X*/*W*)
 - its braid group

Braided reflections

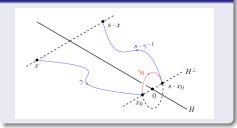


< D > < A > < B >

< E

W = ⟨R⟩ complex reflection group
B = π₁(X/W) its braid group

Braided reflections



< D > < A > < B >

< E

 $B = \langle \sigma \mid \sigma \in B \text{ braided reflection } \rangle$

Every G(de, e, n) is a subgroup of G(r, 1, n) for r = de. So we start exploring the braid group of W = G(r, 1, n).

< ロ > < 同 > < 回 > < 回 >

Every G(de, e, n) is a subgroup of G(r, 1, n) for r = de. So we start exploring the braid group of W = G(r, 1, n).

r = 1

 $X = \{\underline{z} \in \mathbb{C} \mid z_i \neq z_j\}$, and $X/W = X/\mathfrak{S}_n = \mathcal{C}_n(\mathbb{C})$ whence

NAMA

< ロ > < 同 > < 回 > < 回

Every G(de, e, n) is a subgroup of G(r, 1, n) for r = de. So we start exploring the braid group of W = G(r, 1, n).

r = 1 $X = \{\underline{z} \in \mathbb{C} \mid z_i \neq z_j\}, \text{ and } X/W = X/\mathfrak{S}_n = \mathcal{C}_n(\mathbb{C}) \text{ whence}$

$$B \simeq \mathcal{B}_n$$
 and $z_B = (\sigma_1 \sigma_2 \dots \sigma_{n-1})^n$

< ロ > < 同 > < 回 > < 回

Every G(de, e, n) is a subgroup of G(r, 1, n) for r = de. So we start exploring the braid group of W = G(r, 1, n).

$$\begin{array}{l} r = 1 \\ X = \{\underline{z} \in \mathbb{C} \mid z_i \neq z_j\}, \text{ and } X/W = X/\mathfrak{S}_n = \mathcal{C}_n(\mathbb{C}) \text{ whence} \\ B \simeq \mathcal{B}_n \quad \text{ and } z_B = (\sigma_1 \sigma_2 \dots \sigma_{n-1})^n \end{array}$$

r > 1

$$X = \{ \underline{z} \in \mathbb{C}^n \mid z_i \neq 0, z_i / z_j \notin \mu_r \} = \{ \underline{z} \in \mathbb{C}^n \mid z_i \neq 0, z_i^r \neq z_j^r \}$$

and $G(r, 1, n) = \mu_r^n \rtimes \mathfrak{S}_n$.

AIVL.

Every G(de, e, n) is a subgroup of G(r, 1, n) for r = de. So we start exploring the braid group of W = G(r, 1, n).

$$X = \{\underline{z} \in \mathbb{C} \mid z_i \neq z_j\}$$
, and $X/W = X/\mathfrak{S}_n = \mathcal{C}_n(\mathbb{C})$ whence

$$B \simeq \mathcal{B}_n$$
 and $z_B = (\sigma_1 \sigma_2 \dots \sigma_{n-1})^n$

r > 1

$$X = \{ \underline{z} \in \mathbb{C}^n \mid z_i \neq 0, z_i / z_j \notin \mu_r \} = \{ \underline{z} \in \mathbb{C}^n \mid z_i \neq 0, z_i^r \neq z_j^r \}$$

and $G(r, 1, n) = \mu_r^n \rtimes \mathfrak{S}_n$. Therefore $\underline{z} \mapsto \{z_1^r, \dots, z_n^r\}$ identifies X/W with $\mathcal{C}_n(\mathbb{C}^{\times})$

<ロ> (日) (日) (日) (日) (日)

Every G(de, e, n) is a subgroup of G(r, 1, n) for r = de. So we start exploring the braid group of W = G(r, 1, n).

$$X = \{\underline{z} \in \mathbb{C} \mid z_i \neq z_j\}$$
, and $X/W = X/\mathfrak{S}_n = \mathcal{C}_n(\mathbb{C})$ whence

$$B \simeq \mathcal{B}_n$$
 and $z_B = (\sigma_1 \sigma_2 \dots \sigma_{n-1})^n$

r > 1

r = 1

$$X = \{ \underline{z} \in \mathbb{C}^n \mid z_i \neq 0, z_i/z_j \notin \mu_r \} = \{ \underline{z} \in \mathbb{C}^n \mid z_i \neq 0, z_i^r \neq z_j^r \}$$

and $G(r, 1, n) = \mu_r^n \rtimes \mathfrak{S}_n$. Therefore $\underline{z} \mapsto \{z_1^r, \dots, z_n^r\}$ identifies X/W with $\mathcal{C}_n(\mathbb{C}^{\times})$ whence

$$B \simeq \mathcal{B}_n^*$$
 and $z_B = (\tau \sigma_2 \dots \sigma_{n-1})^n$

<ロ> (日) (日) (日) (日) (日)

Every G(de, e, n) is a subgroup of G(r, 1, n) for r = de. So we start exploring the braid group of W = G(r, 1, n).

$$X = \{\underline{z} \in \mathbb{C} \mid z_i \neq z_j\}$$
, and $X/W = X/\mathfrak{S}_n = \mathcal{C}_n(\mathbb{C})$ whence

$$B \simeq \mathcal{B}_n$$
 and $z_B = (\sigma_1 \sigma_2 \dots \sigma_{n-1})^n$

r > 1

r = 1

$$X = \{ \underline{z} \in \mathbb{C}^n \mid z_i \neq 0, z_i/z_j \notin \mu_r \} = \{ \underline{z} \in \mathbb{C}^n \mid z_i \neq 0, z_i^r \neq z_j^r \}$$

and $G(r, 1, n) = \mu_r^n \rtimes \mathfrak{S}_n$. Therefore $\underline{z} \mapsto \{z_1^r, \dots, z_n^r\}$ identifies X/W with $\mathcal{C}_n(\mathbb{C}^{\times})$ whence

$$B \simeq \mathcal{B}_n^*$$
 and $z_B = (\tau \sigma_2 \dots \sigma_{n-1})^n$

So we already have presentations for them.

Ivan Marin, Université d'Amiens (UPJV)

• • • • • • • • • • • •

Braid groups of $\overline{G(de, e, n)}$, d > 1

Let W = G(de, e, n), d > 1.

Ivan Marin, Université d'Amiens (UPJV)

Let W = G(de, e, n), d > 1. In this case, W contains diagonal reflections.

Let W = G(de, e, n), d > 1. In this case, W contains diagonal reflections. From this one gets that the hyperplane complement is the same as for G(r, 1, n), r = de, namely

$$X = \{ \underline{z} \in \mathbb{C}^n \mid z_i \neq 0, z_i / z_j \notin \mu_r \}$$

vor ≡ ∢≣≻∢≣≻∢⊡≻ vor

Let W = G(de, e, n), d > 1. In this case, W contains diagonal reflections. From this one gets that the hyperplane complement is the same as for G(r, 1, n), r = de, namely

$$X = \{ \underline{z} \in \mathbb{C}^n \mid z_i \neq 0, z_i/z_j \notin \mu_r \}$$

Complex Braid Groups

From this one gets a *covering map* $X/W \rightarrow X/G(r, 1, n)$.

Let W = G(de, e, n), d > 1. In this case, W contains diagonal reflections. From this one gets that the hyperplane complement is the same as for G(r, 1, n), r = de, namely

$$X = \{\underline{z} \in \mathbb{C}^n \mid z_i \neq 0, z_i/z_j \notin \mu_r\}$$

From this one gets a *covering map* $X/W \rightarrow X/G(r, 1, n)$.

Definition

Let $\mathcal{B}_n^*(e)$ be the kernel of the map $\mathcal{B}_n^* \twoheadrightarrow \mathbb{Z}/e\mathbb{Z}$,

 $\tau \mapsto \mathbf{1}, \sigma_i \mapsto \mathbf{0}$

Ivan Marin, Université d'Amiens (UPJV)

Let W = G(de, e, n), d > 1. In this case, W contains diagonal reflections. From this one gets that the hyperplane complement is the same as for G(r, 1, n), r = de, namely

$$X = \{ \underline{z} \in \mathbb{C}^n \mid z_i \neq 0, z_i/z_j \notin \mu_r \}$$

From this one gets a *covering map* $X/W \rightarrow X/G(r, 1, n)$.

Definition

Let $\mathcal{B}_n^*(e)$ be the kernel of the map $\mathcal{B}_n^* \twoheadrightarrow \mathbb{Z}/e\mathbb{Z}$,

$$\tau \mapsto \mathbf{1}, \sigma_i \mapsto \mathbf{0}$$

Proposition

If d > 1, then $B \simeq \mathcal{B}_n^*(e)$ is a normal subgroup of \mathcal{B}_n^* with quotient $\mathbb{Z}/e\mathbb{Z}$.

Ivan Marin, Université d'Amiens (UPJV)

ヘロン 人間 とくほ とくほう

Proposition

If d > 1, then $B \simeq \mathcal{B}_n^*(e)$ is a normal subgroup of \mathcal{B}_n^* with quotient $\mathbb{Z}/e\mathbb{Z}$.

Proposition

If d > 1, then $B \simeq \mathcal{B}_n^*(e)$ is a normal subgroup of \mathcal{B}_n^* with quotient $\mathbb{Z}/e\mathbb{Z}$.

This statement says that 'every' problem in this case can be reduced to a problem for \mathcal{B}_n^* .

< D > < A </p>

Proposition

If d > 1, then $B \simeq \mathcal{B}_n^*(e)$ is a normal subgroup of \mathcal{B}_n^* with quotient $\mathbb{Z}/e\mathbb{Z}$.

This statement says that 'every' problem in this case can be reduced to a problem for \mathcal{B}_n^* .

This includes

- the word problem
- the conjugacy problem
- the determination of centralizers.

as we shall see in Part 2.

Proposition

If d > 1, then $B \simeq \mathcal{B}_n^*(e)$ is a normal subgroup of \mathcal{B}_n^* with quotient $\mathbb{Z}/e\mathbb{Z}$.

This statement says that 'every' problem in this case can be reduced to a problem for \mathcal{B}_n^* .

- This includes
 - the word problem
 - the conjugacy problem
 - the determination of centralizers.

as we shall see in Part 2.

Moreover, the Reidemeister-Schreier method provides a presentation for this group. $\space{-1mu}$

We start from the known presentation for $\tilde{\mathcal{B}}_n^*$ (with some shift of indices).

$$\left\langle \tau, \sigma_1, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \\ \sigma_i \sigma_j = \sigma_j \sigma_i, |i-j| \ge 2 \\ \sigma_i \tau = \tau \sigma_i, i > 1 \\ \sigma_1 \tau \sigma_1 \tau = \tau \sigma_1 \tau \sigma_1 \end{array} \right\rangle$$

AMA

(2)

We start from the known presentation for $\tilde{\mathcal{B}}_n^*$ (with some shift of indices).

$$\left\langle \tau, \sigma_{1}, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \\ \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i}, |i-j| \ge 2 \\ \sigma_{i}\tau = \tau\sigma_{i}, i > 1 \\ \sigma_{1}\tau\sigma_{1}\tau = \tau\sigma_{1}\tau\sigma_{1} \end{array} \right\rangle$$

From the Schreier transversal $T = \{1, \tau, \tau^2, \dots, \tau^{e-1}\}$, setting $\tau = \tau^e$,

< ロ > < 同 > < 回 > < 回 > < 回 > <

(2)

We start from the known presentation for $\tilde{\mathcal{B}}_n^*$ (with some shift of indices).

$$\left\langle \tau, \sigma_{1}, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \\ \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i}, |i-j| \ge 2 \\ \sigma_{i}\tau = \tau\sigma_{i}, i > 1 \\ \sigma_{1}\tau\sigma_{1}\tau = \tau\sigma_{1}\tau\sigma_{1} \end{array} \right\rangle$$
(2)

From the Schreier transversal $T = \{1, \tau, \tau^2, \dots, \tau^{e-1}\}$, setting $\tau = \tau^e$, we get the presentation

$$\begin{pmatrix} \sigma_{1,0},\ldots,\sigma_{1,e-1} \\ \tau,\sigma_{2},\ldots,\sigma_{n-1} \end{pmatrix} \begin{pmatrix} \sigma_{i}\sigma_{i+1}\sigma_{i}\sigma_{j}\sigma_{i+1} \\ \sigma_{i}\sigma_{j}=\sigma_{j}\sigma_{i}, |i-j| \geq 2 \\ \sigma_{i}\tau=\tau\sigma_{i}, i \geq 2 \\ \sigma_{1,k}\sigma_{2}\sigma_{1,k}=\sigma_{2}\sigma_{1,k}\sigma_{2} \\ \sigma_{1,k}\sigma_{j}=\sigma_{j}\sigma_{1,k}, j \geq 3 \\ \sigma_{1,k}\sigma_{1,k+1}=\sigma_{1,k+1}\sigma_{1,k+2}, 0 \leq k \leq e-3 \\ \sigma_{1,e-2}\sigma_{1,e-1}=\sigma_{1,e-1}\cdot\tau\sigma_{1,0}\tau^{-1} \\ \tau^{-1}\sigma_{1,e-1}\tau\sigma_{1,0}=\sigma_{1,0}\sigma_{1,1} \end{pmatrix}$$
(3)

Ivan Marin, Université d'Amiens (UPJV)

MA ◆□ > ◆□ > ◆豆 > ◆豆 > 32/40

Ivan Marin, Université d'Amiens (UPJV)

In the case W = G(e, e, n), we call $\mathcal{B}_n(e)$ its braid group.

In the case W = G(e, e, n), we call $\mathcal{B}_n(e)$ its braid group. We assume e > 1, the case e = 1 being known, $\mathcal{B}_n(1) = 1$.

< ロ > < 同 > < 三 > < 三 >

In the case W = G(e, e, n), we call $\mathcal{B}_n(e)$ its braid group. We assume e > 1, the case e = 1 being known, $\mathcal{B}_n(1) = 1$.

The group *W* does not contain any diagonal reflection.

32/40

In the case W = G(e, e, n), we call $\mathcal{B}_n(e)$ its braid group. We assume e > 1, the case e = 1 being known, $\mathcal{B}_n(1) = 1$. The group W does not contain any diagonal reflection Therefore.

The group W does not contain any diagonal reflection. Therefore

$$X = \{(z_1, \ldots, z_n) \in \mathbb{C}^n \mid z_i \notin z_j \mu_e\}$$

contains the hyperplane complement previously used, namely

$$X^{\#} = \{ (z_1, \ldots, z_n) \in \mathbb{C}^n \mid z_i \neq 0, \ z_i \notin \mu_e z_j \}$$

In the case W = G(e, e, n), we call $\mathcal{B}_n(e)$ its braid group. We assume e > 1, the case e = 1 being known, $\mathcal{B}_n(1) = 1$. The group *W* does not contain any diagonal reflection. Therefore

$$X = \{(z_1, \ldots, z_n) \in \mathbb{C}^n \mid z_i \notin z_j \mu_e\}$$

contains the hyperplane complement previously used, namely

$$X^{\#} = \{(z_1,\ldots,z_n) \in \mathbb{C}^n \mid z_i \neq 0, \ z_i \notin \mu_e z_j\}$$

and we have a natural inclusion map $X^{\#} \rightarrow X$. From it one gets

$$\mathcal{B}_n^*(e) = \pi_1(X^{\#}/W) \rightarrow \pi_1(X/W) = \mathcal{B}_n(e)$$

Ivan Marin, Université d'Amiens (UPJV)

In the case W = G(e, e, n), we call $\mathcal{B}_n(e)$ its braid group. We assume e > 1, the case e = 1 being known, $\mathcal{B}_n(1) = 1$. The group *W* does not contain any diagonal reflection. Therefore

$$X = \{(z_1, \ldots, z_n) \in \mathbb{C}^n \mid z_i \notin z_j \mu_e\}$$

contains the hyperplane complement previously used, namely

$$X^{\#} = \{(z_1,\ldots,z_n) \in \mathbb{C}^n \mid z_i \neq 0, \ z_i \notin \mu_e z_j\}$$

and we have a natural inclusion map $X^{\#} \rightarrow X$. From it one gets

$$\mathcal{B}_n^*(\boldsymbol{e}) = \pi_1(X^{\#}/W) \rightarrow \pi_1(X/W) = \mathcal{B}_n(\boldsymbol{e})$$

and topological results on hypersurface complements imply that $\mathcal{B}_n^*(e) \twoheadrightarrow \mathcal{B}_n(e)$

< ロ > < 同 > < 回 > < 回 >

In the case W = G(e, e, n), we call $\mathcal{B}_n(e)$ its braid group. We assume e > 1, the case e = 1 being known, $\mathcal{B}_n(1) = 1$. The group *W* does not contain any diagonal reflection. Therefore

$$X = \{(z_1, \ldots, z_n) \in \mathbb{C}^n \mid z_i \notin z_j \mu_e\}$$

contains the hyperplane complement previously used, namely

$$X^{\#} = \{(z_1,\ldots,z_n) \in \mathbb{C}^n \mid z_i \neq 0, \ z_i \notin \mu_e z_j\}$$

and we have a natural inclusion map $X^{\#} \rightarrow X$. From it one gets

$$\mathcal{B}_n^*(\boldsymbol{e}) = \pi_1(X^{\#}/W) \rightarrow \pi_1(X/W) = \mathcal{B}_n(\boldsymbol{e})$$

and topological results on hypersurface complements imply that $\mathcal{B}_n^*(e) \twoheadrightarrow \mathcal{B}_n(e)$ with kernel normally generated by τ .

Proposition

 $\operatorname{Ker}(\mathcal{B}_n^*(e) \twoheadrightarrow \mathcal{B}_n(e))$ is normally generated by τ .

Proposition

 $\operatorname{Ker}(\mathcal{B}_n^*(e) \twoheadrightarrow \mathcal{B}_n(e))$ is normally generated by τ .

This yields the following presentation for $\mathcal{B}_n(e)$.

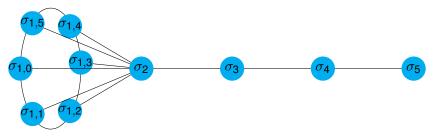
ı.

$$\left\langle\begin{array}{c}\sigma_{1,k}, k \in \mathbb{Z}/e\mathbb{Z} \\ \sigma_{2}, \dots, \sigma_{n-1}\end{array}\right| \left\langle\begin{array}{c}\sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \\ \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i}, |i-j| \geq 2 \\ \sigma_{1,k}\sigma_{2}\sigma_{1,k} = \sigma_{2}\sigma_{1,k}\sigma_{2} \\ \sigma_{1,k}\sigma_{j} = \sigma_{j}\sigma_{1,k}, j \geq 3 \\ \sigma_{1,k}\sigma_{1,k+1} = \sigma_{1,k+1}\sigma_{1,k+2}, k \in \mathbb{Z}/e\mathbb{Z}\end{array}\right\rangle$$
(4)

< ロ > < 同 > < 回 > < 回 >

Standard diagrams for complex braid groups

For the groups $W = G(e, e, n), e \ge 1, B = \mathcal{B}_n(e)$:

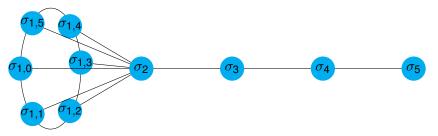


NAMA

< A >

Standard diagrams for complex braid groups

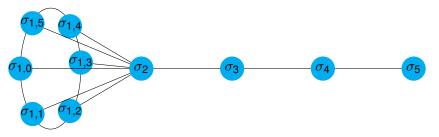
For the groups W = G(e, e, n), $e \ge 1$, $B = \mathcal{B}_n(e)$:



For the groups W = G(r, 1, n), r > 1, $B = \mathcal{B}_n^*$:

Standard diagrams for complex braid groups

For the groups W = G(e, e, n), $e \ge 1$, $B = \mathcal{B}_n(e)$:



For the groups W = G(r, 1, n), r > 1, $B = \mathcal{B}_n^*$:

For the groups W = G(de, e, n), d > 1, $B = \mathcal{B}_n^*(e)$ is a nice subgroup of \mathcal{B}_n^* .

We set $\rho = \tau \sigma_1 \sigma_2 \dots \sigma_{n-1}$.

Ivan Marin, Université d'Amiens (UPJV)

We set $\rho = \tau \sigma_1 \sigma_2 \dots \sigma_{n-1}$. Then $\rho^n = z_P$ is central and

$$\mathcal{B}_{n}^{*} = \left\langle \rho, \sigma_{i}, i \in \mathbb{Z}/n\mathbb{Z} \middle| \begin{array}{c} \sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \\ \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i}, i-j \neq \pm 1 \\ \rho\sigma_{i}\rho^{-1} = \sigma_{i+1} \end{array} \right\rangle$$
(5)

AMA DPC ≡ <≣ > <≣ > <≣ > <∎ >

We set $\rho = \tau \sigma_1 \sigma_2 \dots \sigma_{n-1}$. Then $\rho^n = z_P$ is central and

$$\mathcal{B}_{n}^{*} = \left\langle \rho, \sigma_{i}, i \in \mathbb{Z}/n\mathbb{Z} \middle| \begin{array}{c} \sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \\ \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i}, i-j \neq \pm 1 \\ \rho\sigma_{i}\rho^{-1} = \sigma_{i+1} \end{array} \right\rangle$$
(5)

Setting $\rho = \rho^e \in \mathcal{B}_n^*(e)$, one gets

35/40

We set $\rho = \tau \sigma_1 \sigma_2 \dots \sigma_{n-1}$. Then $\rho^n = z_P$ is central and

$$\mathcal{B}_{n}^{*} = \left\langle \rho, \sigma_{i}, i \in \mathbb{Z}/n\mathbb{Z} \middle| \begin{array}{c} \sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \\ \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i}, i-j \neq \pm 1 \\ \rho\sigma_{i}\rho^{-1} = \sigma_{i+1} \end{array} \right\rangle$$
(5)

Setting $\rho = \rho^e \in \mathcal{B}_n^*(e)$, one gets

$$\mathcal{B}_{n}^{*}(\boldsymbol{e}) = \left\langle \boldsymbol{\rho}, \sigma_{i}, i \in \mathbb{Z}/n\mathbb{Z} \middle| \begin{array}{c} \sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \\ \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i}, i-j \neq \pm 1 \\ \boldsymbol{\rho}\sigma_{i}\boldsymbol{\rho}^{-1} = \sigma_{i+e} \end{array} \right\rangle$$
(6)

< ロ > < 同 > < 回 > < 回 >

We set $\rho = \tau \sigma_1 \sigma_2 \dots \sigma_{n-1}$. Then $\rho^n = z_P$ is central and

$$\mathcal{B}_{n}^{*} = \left\langle \rho, \sigma_{i}, i \in \mathbb{Z}/n\mathbb{Z} \middle| \begin{array}{c} \sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \\ \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i}, i-j \neq \pm 1 \\ \rho\sigma_{i}\rho^{-1} = \sigma_{i+1} \end{array} \right\rangle$$
(5)

Setting $\rho = \rho^e \in \mathcal{B}_n^*(e)$, one gets

$$\mathcal{B}_{n}^{*}(\boldsymbol{e}) = \left\langle \boldsymbol{\rho}, \sigma_{i}, i \in \mathbb{Z}/n\mathbb{Z} \middle| \begin{array}{c} \sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \\ \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i}, i-j \neq \pm 1 \\ \boldsymbol{\rho}\sigma_{i}\boldsymbol{\rho}^{-1} = \sigma_{i+e} \end{array} \right\rangle$$
(6)

Proposition

If $e' \equiv \pm e \mod n$, then $\mathcal{B}_n^*(e') \simeq \mathcal{B}_n^*(e)$. Also, $\mathcal{B}_2^*(e) \simeq \mathbb{Z} \times F_2$ for every $e \ge 2$.

AMA

< ロ > < 同 > < 回 > < 回 >

We set $\rho = \tau \sigma_1 \sigma_2 \dots \sigma_{n-1}$. Then $\rho^n = z_P$ is central and

$$\mathcal{B}_{n}^{*} = \left\langle \rho, \sigma_{i}, i \in \mathbb{Z}/n\mathbb{Z} \middle| \begin{array}{c} \sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \\ \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i}, i-j \neq \pm 1 \\ \rho\sigma_{i}\rho^{-1} = \sigma_{i+1} \end{array} \right\rangle$$
(5)

Setting $\rho = \rho^e \in \mathcal{B}_n^*(e)$, one gets

$$\mathcal{B}_{n}^{*}(\boldsymbol{e}) = \left\langle \boldsymbol{\rho}, \sigma_{i}, i \in \mathbb{Z}/n\mathbb{Z} \middle| \begin{array}{c} \sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \\ \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i}, i-j \neq \pm 1 \\ \boldsymbol{\rho}\sigma_{i}\boldsymbol{\rho}^{-1} = \sigma_{i+e} \end{array} \right\rangle$$
(6)

Proposition

If $e' \equiv \pm e \mod n$, then $\mathcal{B}_n^*(e') \simeq \mathcal{B}_n^*(e)$. Also, $\mathcal{B}_2^*(e) \simeq \mathbb{Z} \times F_2$ for every $e \ge 2$.

One can prove $\mathcal{B}_n^*(e') \simeq \mathcal{B}_n^*(e) \Rightarrow e \land n = e' \land n$,

AMA

We set $\rho = \tau \sigma_1 \sigma_2 \dots \sigma_{n-1}$. Then $\rho^n = z_P$ is central and

$$\mathcal{B}_{n}^{*} = \left\langle \rho, \sigma_{i}, i \in \mathbb{Z}/n\mathbb{Z} \middle| \begin{array}{c} \sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \\ \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i}, i-j \neq \pm 1 \\ \rho\sigma_{i}\rho^{-1} = \sigma_{i+1} \end{array} \right\rangle$$
(5)

Setting $\rho = \rho^e \in \mathcal{B}_n^*(e)$, one gets

$$\mathcal{B}_{n}^{*}(\boldsymbol{e}) = \left\langle \boldsymbol{\rho}, \sigma_{i}, i \in \mathbb{Z}/n\mathbb{Z} \middle| \begin{array}{c} \sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \\ \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i}, i-j \neq \pm 1 \\ \boldsymbol{\rho}\sigma_{i}\boldsymbol{\rho}^{-1} = \sigma_{i+e} \end{array} \right\rangle$$
(6)

Proposition

If $e' \equiv \pm e \mod n$, then $\mathcal{B}_n^*(e') \simeq \mathcal{B}_n^*(e)$. Also, $\mathcal{B}_2^*(e) \simeq \mathbb{Z} \times F_2$ for every $e \ge 2$.

One can prove $\mathcal{B}_n^*(e') \simeq \mathcal{B}_n^*(e) \Rightarrow e \land n = e' \land n$, but a necessary and sufficient condition so that $\mathcal{B}_n^*(e') \simeq \mathcal{B}_n^*(e)$ is not known.

Ivan Marin, Université d'Amiens (UPJV)

Ivan Marin, Université d'Amiens (UPJV)

General theorems tell us that

$$\mathbb{C}[x_1,\ldots,x_n]^W\simeq\mathbb{C}[f_1,\ldots,f_n]$$

for some homogeneous f_1, \ldots, f_n

General theorems tell us that

$$\mathbb{C}[x_1,\ldots,x_n]^W\simeq\mathbb{C}[f_1,\ldots,f_n]$$

for some homogeneous f_1, \ldots, f_n and the map

$$\underline{z} = (z_1, \ldots, z_n) \mapsto (f_1(\underline{z}), f_2(\underline{z}), \ldots, f_n(\underline{z}))$$

provides an homeomorphism $\mathbb{C}^n/W \to \mathbb{C}^n$, and from this identifies X/W with the complement $\mathcal{C}(Q)$ inside \mathbb{C}^n of some hypersurface Q = 0.

General theorems tell us that

$$\mathbb{C}[x_1,\ldots,x_n]^W\simeq\mathbb{C}[f_1,\ldots,f_n]$$

for some homogeneous f_1, \ldots, f_n and the map

$$\underline{z} = (z_1, \ldots, z_n) \mapsto (f_1(\underline{z}), f_2(\underline{z}), \ldots, f_n(\underline{z}))$$

provides an homeomorphism $\mathbb{C}^n/W \to \mathbb{C}^n$, and from this identifies X/W with the complement $\mathcal{C}(Q)$ inside \mathbb{C}^n of some hypersurface Q = 0.

Example

For $W = \mathfrak{S}_n$, take for f_i the elementary symmetric functions.

General theorems tell us that

$$\mathbb{C}[x_1,\ldots,x_n]^W\simeq\mathbb{C}[f_1,\ldots,f_n]$$

for some homogeneous f_1, \ldots, f_n and the map

$$\underline{z} = (z_1, \ldots, z_n) \mapsto (f_1(\underline{z}), f_2(\underline{z}), \ldots, f_n(\underline{z}))$$

provides an homeomorphism $\mathbb{C}^n/W \to \mathbb{C}^n$, and from this identifies X/W with the complement $\mathcal{C}(Q)$ inside \mathbb{C}^n of some hypersurface Q = 0.

Example

For $W = \mathfrak{S}_n$, take for f_i the elementary symmetric functions. Then Q is the discriminant of the polynomial

$$(X-z_1)(X-z_2)\dots(X-z_n) = X^n - f_1X^{n-1} + \dots + (-1)^n f_n$$

expressed as a polynomial in the f_i 's

W is G_4, \ldots, G_{22} .

Ivan Marin, Université d'Amiens (UPJV)

W is G_4, \ldots, G_{22} .

In that case Q = Q(x, y), and explicit computations provide a description of all possible groups.

 $W \text{ is } G_4, \ldots, G_{22}.$

In that case Q = Q(x, y), and explicit computations provide a description of all possible groups.

However, most of the time these groups are more easily dealt using the fact that

$$\textit{P} = \pi_1(\mathbb{C}^2 \setminus \bigcup \mathcal{A}) \simeq \pi_1(\mathbb{C}^{\times}) \times \pi_1(\mathbb{C} \setminus \{|\mathcal{A}| - 1 \text{ points}\}) \simeq \mathbb{Z} \times \textit{F}_{|\mathcal{A}| - 1}$$

< ロ > < 同 > < 回 > < 回 >

MA <ロ> <同> <同> < 同> < 同>

Ivan Marin, Université d'Amiens (UPJV)

For some of the exceptional groups W of rank \geq 3, we have

 $X/W \equiv X'/W'$ for some $W' = G(r, 1, n), r \ge 1$

For some of the exceptional groups W of rank \geq 3, we have

$$X/W \equiv X'/W'$$
 for some $W' = G(r, 1, n), r \ge 1$

This is a very strange and still essentially unexplained phenomenon.

- < € > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E < < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E

For some of the exceptional groups W of rank \geq 3, we have

$$X/W \equiv X'/W'$$
 for some $W' = G(r, 1, n), r \ge 1$

This is a very strange and still essentially unexplained phenomenon.

W	В
G ₂₅	\mathcal{B}_4
G ₂₆	\mathcal{B}_3^*
G ₃₂	\mathcal{B}_5

Ivan Marin, Université d'Amiens (UPJV)

For some of the exceptional groups W of rank \geq 3, we have

$$X/W \equiv X'/W'$$
 for some $W' = G(r, 1, n), r \ge 1$

This is a very strange and still essentially unexplained phenomenon.

W	В
G ₂₅	\mathcal{B}_4
G ₂₆	\mathcal{B}_3^*
G ₃₂	\mathcal{B}_5

and this yields

$$egin{array}{rcl} G_{25} &=& \mathcal{B}_4/\sigma_i^3 \ G_{26} &=& \mathcal{B}_3^*/\langle au^2, \sigma_i^3
angle \ G_{32} &=& \mathcal{B}_5/\sigma_i^3 \end{array}$$

MA

프 () () ()

Use the 'real' (Coxeter) theory, if possible

AMA VOC E (E) (E) (B) (

- Use the 'real' (Coxeter) theory, if possible
- ② If not, try to find a suitable complex plane *U* so that $\pi_1(U \cap C(Q)) \rightarrow \pi_1(C(Q))$ is an isomorphism, and compute $\pi_1(U \cap C(Q))$.

- Use the 'real' (Coxeter) theory, if possible
- ② If not, try to find a suitable complex plane *U* so that $\pi_1(U \cap C(Q)) \rightarrow \pi_1(C(Q))$ is an isomorphism, and compute $\pi_1(U \cap C(Q))$.
- or use the fact that they are 'well-generated', so that one can build an analogue of the dual braid monoid of the 'real' theory.

- Use the 'real' (Coxeter) theory, if possible
- ② If not, try to find a suitable complex plane *U* so that $\pi_1(U \cap C(Q)) \rightarrow \pi_1(C(Q))$ is an isomorphism, and compute $\pi_1(U \cap C(Q))$.
- or use the fact that they are 'well-generated', so that one can build an analogue of the dual braid monoid of the 'real' theory. And then try to get a shorter presentation from Tietze transformations.

- Use the 'real' (Coxeter) theory, if possible
- ② If not, try to find a suitable complex plane *U* so that $\pi_1(U \cap C(Q)) \rightarrow \pi_1(C(Q))$ is an isomorphism, and compute $\pi_1(U \cap C(Q))$.
- or use the fact that they are 'well-generated', so that one can build an analogue of the dual braid monoid of the 'real' theory. And then try to get a shorter presentation from Tietze transformations.

🌗 or