Complex Braid Groups

Ivan Marin, Université d'Amiens (UPJV)

Part 2 : Standard monoids Berlin, August-September 2021

Table of contents

(1) Definitions
(2) Standard monoid for $G(e, e, n)$
(3) Standard monoid for $G(d, 1, n)$

4 A word on exceptional groups

(1) Definitions

(2) Standard monoid for $G(e, e, n)$
(3) Standard monoid for $G(d, 1, n)$

4 A word on exceptional groups

Notations for complex reflection groups

Let $W<\mathrm{GL}(V)$ be a complex reflection group, $n=\operatorname{dim} V$

$$
W=\langle\mathcal{R}\rangle \mathcal{R}=\{s \in W ; \operatorname{dim} \operatorname{Ker}(s-1)=n-1\}
$$

The collection of its reflecting hyperplanes is the hyperplane arrangement

$$
\mathcal{A}=\{\operatorname{Ker}(s-1), s \in \mathcal{R}\}
$$

For $H \in \mathcal{A}, W_{H}=\left\{w \in W ; w_{\mid H}=\operatorname{Id}_{H}\right\}$ is cyclic, isomorphic to its image under det : $W_{H} \rightarrow \mathbb{C}^{\times}$.

The generator of W_{H} mapped to $\exp \left(2 \pi \mathrm{i} /\left|W_{H}\right|\right)$ is a reflection s_{H} called the distinguished reflection associated to H. The collection of all distinguished reflections is denoted \mathcal{R}^{*}.
\mathcal{R}^{*} is in 1-1 correspondence with \mathcal{A},

$$
s \mapsto \operatorname{Ker}(s-1), \quad H \mapsto s_{H}
$$

Classification of irreducible CRG's

The main series is made of the groups $W=G(d e, e, n)$ of

- $n \times n$ monomial matrices
- with nonzero entries inside $\mu_{r}, r=d e$
- whose product belongs to μ_{d}.

Of course $G(r, r, n)<G(d e, e, n)<G(r, 1, n)$.

- W contains diagonal reflections, of the form $\operatorname{diag}(1, \ldots, 1, \zeta, 1, \ldots)$ if and only if $d>1$.
- its non-diagonal reflections belong to $G(r, r, n)<W$ and have the form

$$
\operatorname{Id}_{u} \oplus\left(\begin{array}{cc}
0 & \zeta_{e}^{-k} \\
\zeta_{e}^{k} & 0
\end{array}\right) \oplus \operatorname{Id}_{n-2-u}
$$

In addition to these, there are 34 exceptional groups G_{4}, \ldots, G_{37}, half of them in rank 2.

Classification of irreducible CRG's

The main series is made of the groups $W=G(d e, e, n)$ of

- $n \times n$ monomial matrices
- with nonzero entries inside $\mu_{r}, r=d e$
- whose product belongs to μ_{d}.

Of course $G(r, r, n)<G(d e, e, n)<G(r, 1, n)$.

Their braid groups are

- the braid group \mathcal{B}_{n} for $G(1,1, n)$
- the punctured braid group \mathcal{B}_{n}^{*} for $G(r, 1, n)=G(d, 1, n)$ when $d>1$
- a finite index normal subgroup $\mathcal{B}_{n}^{*}(e)$ of \mathcal{B}_{n}^{*} when $d>1$ and $e>1$
- a quotient $\mathcal{B}_{n}(e)$ of $\mathcal{B}_{n}^{*}(e)$ for $G(e, e, n)=G(r, r, n)$.

Preliminaries ：Garside monoids

－A monoid is called cancellative if，for all $a, b, c \in M, a c=b c$ implies $a=b$ and $c a=c b$ implies $a=b$
－An element $a \in M$ left－divides $c \in M$ if $\exists b \in M a b=c$ ．Then，c is a right－multiple of a ，and one writes $a \prec c$ ．Similarly，a right－divides $c \in M$ if $\exists b \in M \quad b a=c$ and c is then a left－multiple of a ，and one writes $c \succ a$ ．
－Two elements a, b admit a right lowest common multiple（lcm）if they admit a right common multiple $c=\operatorname{lcm}_{R}(a, b)$ such that， $\forall m \in M a \prec m, b \prec m \Rightarrow c \prec m$ ．They admit a left lcm if they admit a left common multiple $c=\operatorname{lcm}_{L}(a, b)$ such that $\forall m \in M m \succ a, m \succ b \Rightarrow m \succ c$ ．
－Two elements a, b admit a left greatest common divisor（gcd）if they admit a left common divisor $c=\operatorname{gcd}_{L}(a, b)$ such that， $\forall m \in M m \prec a, m \prec b \Rightarrow m \prec c$ ．They admit a right gcd if they admit a right common divisor $c=\operatorname{gcd}_{R}(a, b)$ such that $\forall m \in M a \succ m, b \succ m \Rightarrow c \succ m$.

Preliminaries : Garside monoids

If $M^{\times}=1$ and M is cancellable, these Icm's and gcd's are uniquely defined.
An element $a \in M$ is called reducible if there exists $b, c \in M$ with $b, c \notin M^{\times}$such that $a=b c$. It is called irreducible if it is not invertible and not reducible.

Preliminaries : Garside monoids

If $M^{\times}=1$ and M is cancellable, these Icm's and gcd's are uniquely defined.
An element $a \in M$ is called reducible if there exists $b, c \in M$ with $b, c \notin M^{\times}$such that $a=b c$. It is called irreducible if it is not invertible and not reducible.

Definition

An homogeneous monoid is a monoid M together with a length function, that is a monoid morphism $\ell: M \rightarrow \mathbb{N}$, such that M is generated by the elements of length >0.

Preliminaries : Garside monoids

If $M^{\times}=1$ and M is cancellable, these Icm's and gcd's are uniquely defined.
An element $a \in M$ is called reducible if there exists $b, c \in M$ with $b, c \notin M^{\times}$such that $a=b c$. It is called irreducible if it is not invertible and not reducible.

Definition

An homogeneous monoid is a monoid M together with a length function, that is a monoid morphism $\ell: M \rightarrow \mathbb{N}$, such that M is generated by the elements of length >0.

Under these conditions, every element of M is a product of irreducible elements. They are called the atoms of the monoid M.

Preliminaries : Garside monoids

Definition

The group of fractions of M is by definition a group $\operatorname{Frac}(M)$ together with a morphism of monoids $M \rightarrow \operatorname{Frac}(M)$ such that every $M \rightarrow G$ for G a group factors

Preliminaries : Garside monoids

Definition

The group of fractions of M is by definition a group $\operatorname{Frac}(M)$ together with a morphism of monoids $M \rightarrow \operatorname{Frac}(M)$ such that every $M \rightarrow G$ for G a group factors

In particular, when M is an homogeneous monoid, its length function is a monoid homomorphism to the additive group \mathbb{Z}, and therefore induces a group homomorphism $\ell: \operatorname{Frac}(M) \rightarrow \mathbb{Z}$.

Preliminaries : Garside monoids

Definition

The group of fractions of M is by definition a group $\operatorname{Frac}(M)$ together with a morphism of monoids $M \rightarrow \operatorname{Frac}(M)$ such that every $M \rightarrow G$ for G a group factors

In particular, when M is an homogeneous monoid, its length function is a monoid homomorphism to the additive group \mathbb{Z}, and therefore induces a group homomorphism $\ell: \operatorname{Frac}(M) \rightarrow \mathbb{Z}$.
For S a set of generators and R a collection of relations, if M is presented as $\langle S \mid R\rangle^{+}$, then $\langle S \mid R\rangle$ is a presentation of $\operatorname{Frac}(M)$.

Preliminaries : Garside monoids

Definition

An element of a monoid M is said to be balanced if the sets of its left and right divisors are the same.

Definition

An homogeneous monoid M is said to have the Garside property, or to be a Garside monoid, if it is cancellable, and if it has the following properties

- any two elements of M admit $g c d$'s and Icm's on the right and on the left
- M admits a balanced element Δ whose set of divisors is finite and generates M.

The chosen element Δ is called a Garside element for M.

Preliminaries : Garside monoids

Preferred Garside element

When the Icm of the set of atoms is the same on the right and on the left and is balanced, one can choose this for Garside element.

Preliminaries : Garside monoids

Preferred Garside element

When the Icm of the set of atoms is the same on the right and on the left and is balanced, one can choose this for Garside element. We call it the preferred Garside element.

Preliminaries : Garside monoids

Preferred Garside element

When the Icm of the set of atoms is the same on the right and on the left and is balanced, one can choose this for Garside element. We call it the preferred Garside element.

For $m \in M$, we set

$$
\operatorname{Div}_{L}(m)=\{a \in M \mid a \prec m\} \operatorname{Div}_{R}(m)=\{a \in M \mid m \succ a\}
$$

and, if m is balanced $\operatorname{Div}(m)=\operatorname{Div}_{L}(m)=\operatorname{Div}_{R}(m)$.

Complex braid groups and Garside groups

If M is a (homogeneous) Garside monoid and $G=\operatorname{Frac}(M)$, with have $M \hookrightarrow \operatorname{Frac}(M)$ and

Complex braid groups and Garside groups

If M is a (homogeneous) Garside monoid and $G=\operatorname{Frac}(M)$, with have $M \hookrightarrow \operatorname{Frac}(M)$ and
(1) G is torsion-free

Complex braid groups and Garside groups

If M is a (homogeneous) Garside monoid and $G=\operatorname{Frac}(M)$, with have $M \hookrightarrow \operatorname{Frac}(M)$ and
(1) G is torsion-free
(2) There is a solution of the word problem for G

Complex braid groups and Garside groups

If M is a (homogeneous) Garside monoid and $G=\operatorname{Frac}(M)$, with have $M \hookrightarrow \operatorname{Frac}(M)$ and
(1) G is torsion-free
(2) There is a solution of the word problem for G
(3) There is a solution of the conjugacy problem for G

Complex braid groups and Garside groups

If M is a (homogeneous) Garside monoid and $G=\operatorname{Frac}(M)$, with have $M \hookrightarrow \operatorname{Frac}(M)$ and
(1) G is torsion-free
(2) There is a solution of the word problem for G
(3) There is a solution of the conjugacy problem for G
(4) There are algorithms for getting a finite set of generators for $C_{G}(x)$.

Complex braid groups and Garside groups

If M is a (homogeneous) Garside monoid and $G=\operatorname{Frac}(M)$, with have $M \hookrightarrow \operatorname{Frac}(M)$ and
(1) G is torsion-free
(2) There is a solution of the word problem for G
(3) There is a solution of the conjugacy problem for G
(4) There are algorithms for getting a finite set of generators for $C_{G}(x)$.

Theorem
 \mathcal{B}_{n}^{*} and $\mathcal{B}_{n}(e), e \geq 1$ are Garside groups.

Complex braid groups and Garside groups

If M is a (homogeneous) Garside monoid and $G=\operatorname{Frac}(M)$, with have $M \hookrightarrow \operatorname{Frac}(M)$ and
(1) G is torsion-free
(2) There is a solution of the word problem for G
(3) There is a solution of the conjugacy problem for G
(4) There are algorithms for getting a finite set of generators for $C_{G}(x)$.

Theorem

\mathcal{B}_{n}^{*} and $\mathcal{B}_{n}(e), e \geq 1$ are Garside groups.
How to deal with $\mathcal{B}_{n}^{*}(e)$?

Finite index normal subgroups of Garside groups

Reminder

$\mathcal{B}_{n}^{*}(e)$ is a finite index normal subgroup of \mathcal{B}_{n}^{*} (with cyclic quotient).

Finite index normal subgroups of Garside groups

Reminder

$\mathcal{B}_{n}^{*}(e)$ is a finite index normal subgroup of \mathcal{B}_{n}^{*} (with cyclic quotient).
Let $G=\operatorname{Frac}(M), \phi: G \rightarrow F$ with F finite, $H=\operatorname{Ker} \Phi$. Then :

Finite index normal subgroups of Garside groups

Reminder

$\mathcal{B}_{n}^{*}(e)$ is a finite index normal subgroup of \mathcal{B}_{n}^{*} (with cyclic quotient).
Let $G=\operatorname{Frac}(M), \Phi: G \rightarrow F$ with F finite, $H=\operatorname{Ker} \Phi$. Then :
(1) $H<G$ is torsion-free \checkmark

Finite index normal subgroups of Garside groups

Reminder

$\mathcal{B}_{n}^{*}(e)$ is a finite index normal subgroup of \mathcal{B}_{n}^{*} (with cyclic quotient).
Let $G=\operatorname{Frac}(M), \Phi: G \rightarrow F$ with F finite, $H=\operatorname{Ker} \Phi$. Then :
(1) $H<G$ is torsion-free \checkmark
(2) There is a solution of the word problem for $H<G$. \checkmark

Finite index normal subgroups of Garside groups

Reminder

$\mathcal{B}_{n}^{*}(e)$ is a finite index normal subgroup of \mathcal{B}_{n}^{*} (with cyclic quotient).
Let $G=\operatorname{Frac}(M), \Phi: G \rightarrow F$ with F finite, $H=\operatorname{Ker} \Phi$. Then :
(1) $H<G$ is torsion-free \checkmark
(2) There is a solution of the word problem for $H<G$. \checkmark
(3) Is there is a solution of the conjugacy problem for G ?

Finite index normal subgroups of Garside groups

Reminder

$\mathcal{B}_{n}^{*}(e)$ is a finite index normal subgroup of \mathcal{B}_{n}^{*} (with cyclic quotient).
Let $G=\operatorname{Frac}(M), \Phi: G \rightarrow F$ with F finite, $H=\operatorname{Ker} \Phi$. Then :
(1) $H<G$ is torsion-free \checkmark
(2) There is a solution of the word problem for $H<G$. \checkmark
(3) Is there is a solution of the conjugacy problem for G ?
(c) Are there are algorithms for getting a finite set of generators for $C_{H}(x)$?

Finite index normal subgroups of Garside groups

Reminder

$\mathcal{B}_{n}^{*}(e)$ is a finite index normal subgroup of \mathcal{B}_{n}^{*} (with cyclic quotient).
Let $G=\operatorname{Frac}(M), \Phi: G \rightarrow F$ with F finite, $H=\operatorname{Ker} \Phi$. Then :
(1) $H<G$ is torsion-free \checkmark
(2) There is a solution of the word problem for $H<G$. \checkmark
(3) Is there is a solution of the conjugacy problem for G ?
(c) Are there are algorithms for getting a finite set of generators for $C_{H}(x)$?

Finite index normal subgroups of Garside groups

Reminder

$\mathcal{B}_{n}^{*}(e)$ is a finite index normal subgroup of \mathcal{B}_{n}^{*} (with cyclic quotient).
Let $G=\operatorname{Frac}(M), \Phi: G \rightarrow F$ with F finite, $H=\operatorname{Ker} \Phi$. Then :
(1) $H<G$ is torsion-free \checkmark
(2) There is a solution of the word problem for $H<G$. \checkmark
(3) Is there is a solution of the conjugacy problem for G ?
(9) Are there are algorithms for getting a finite set of generators for $C_{H}(x)$?

We have $C_{H}(x)=C_{G}(x) \cap H=\operatorname{Ker}\left(\Phi_{C_{G}(x)}: C_{G}(x) \rightarrow F\right)$.

Finite index normal subgroups of Garside groups

Reminder

$\mathcal{B}_{n}^{*}(e)$ is a finite index normal subgroup of \mathcal{B}_{n}^{*} (with cyclic quotient).
Let $G=\operatorname{Frac}(M), \Phi: G \rightarrow F$ with F finite, $H=\operatorname{Ker} \Phi$. Then :
(1) $H<G$ is torsion-free \checkmark
(2) There is a solution of the word problem for $H<G$. \checkmark
(3) Is there is a solution of the conjugacy problem for G ?
(9) Are there are algorithms for getting a finite set of generators for $C_{H}(x)$?

4

We have $C_{H}(x)=C_{G}(x) \cap H=\operatorname{Ker}\left(\Phi_{C_{G}(x)}: C_{G}(x) \rightarrow F\right)$.
Since F is finite, from a finite set of generators of $C_{G}(x)$ one gets a finite set of generators of $\operatorname{Ker}\left(\Phi_{C_{G}(x)}\right)$ by Schreier's Lemma.

Finite index normal subgroups of Garside groups

Reminder

$\mathcal{B}_{n}^{*}(e)$ is a finite index normal subgroup of \mathcal{B}_{n}^{*} (with cyclic quotient).
Let $G=\operatorname{Frac}(M), \Phi: G \rightarrow F$ with F finite, $H=\operatorname{Ker} \Phi$. Then :
(1) $H<G$ is torsion-free \checkmark
(2) There is a solution of the word problem for $H<G$. \checkmark
(3) Is there is a solution of the conjugacy problem for G ?
(9) There are algorithms for getting a finite set of generators for $C_{G}(x) . \checkmark$

Finite index normal subgroups of Garside groups

Reminder

$\mathcal{B}_{n}^{*}(e)$ is a finite index normal subgroup of \mathcal{B}_{n}^{*} (with cyclic quotient).
Let $G=\operatorname{Frac}(M), \Phi: G \rightarrow F$ with F finite, $H=\operatorname{Ker} \Phi$. Then :
(1) $H<G$ is torsion-free \checkmark
(2) There is a solution of the word problem for $H<G$. \checkmark
(3) Is there is a solution of the conjugacy problem for G ?
(9) There are algorithms for getting a finite set of generators for $C_{G}(x) \cdot \checkmark$

3

Let $x, y \in H$.

Finite index normal subgroups of Garside groups

Reminder

$\mathcal{B}_{n}^{*}(e)$ is a finite index normal subgroup of \mathcal{B}_{n}^{*} (with cyclic quotient).
Let $G=\operatorname{Frac}(M), \Phi: G \rightarrow F$ with F finite, $H=\operatorname{Ker} \Phi$. Then :
(1) $H<G$ is torsion-free \checkmark
(2) There is a solution of the word problem for $H<G$. \checkmark
(3) Is there is a solution of the conjugacy problem for G ?
(9) There are algorithms for getting a finite set of generators for $C_{G}(x) \cdot \checkmark$

3

Let $x, y \in H$.If x, y are not conjugates in G we are done.

Finite index normal subgroups of Garside groups

Reminder

$\mathcal{B}_{n}^{*}(e)$ is a finite index normal subgroup of \mathcal{B}_{n}^{*} (with cyclic quotient).
Let $G=\operatorname{Frac}(M), \Phi: G \rightarrow F$ with F finite, $H=\operatorname{Ker} \Phi$. Then :
(1) $H<G$ is torsion-free \checkmark
(2) There is a solution of the word problem for $H<G$. \checkmark
(3) Is there is a solution of the conjugacy problem for G ?
(9) There are algorithms for getting a finite set of generators for $C_{G}(x) \cdot \checkmark$

3

Let $x, y \in H$. If x, y are not conjugates in G we are done. Otherwise, let $c \in G$ with $y=x^{c}$.

Finite index normal subgroups of Garside groups

Reminder

$\mathcal{B}_{n}^{*}(e)$ is a finite index normal subgroup of \mathcal{B}_{n}^{*} (with cyclic quotient).
Let $G=\operatorname{Frac}(M), \Phi: G \rightarrow F$ with F finite, $H=\operatorname{Ker} \Phi$. Then :
(1) $H<G$ is torsion-free \checkmark
(2) There is a solution of the word problem for $H<G$. \checkmark
(3) Is there is a solution of the conjugacy problem for G ?
(9) There are algorithms for getting a finite set of generators for $C_{G}(x) \cdot \checkmark$

3

Let $x, y \in H$. If x, y are not conjugates in G we are done.
Otherwise, let $c \in G$ with $y=x^{c}$. Then $y=x^{b}, b \in H \Leftrightarrow b c^{-1} \in C_{G}(x)$.

Finite index normal subgroups of Garside groups

Reminder

$\mathcal{B}_{n}^{*}(e)$ is a finite index normal subgroup of \mathcal{B}_{n}^{*} (with cyclic quotient).
Let $G=\operatorname{Frac}(M), \Phi: G \rightarrow F$ with F finite, $H=\operatorname{Ker} \Phi$. Then :
(1) $H<G$ is torsion-free \checkmark
(2) There is a solution of the word problem for $H<G$. \checkmark
(3) Is there is a solution of the conjugacy problem for G ?
(9) There are algorithms for getting a finite set of generators for $C_{G}(x) . \checkmark$

3

Let $x, y \in H$. If x, y are not conjugates in G we are done.
Otherwise, let $c \in G$ with $y=x^{c}$. Then $y=x^{b}, b \in H \Leftrightarrow b c^{-1} \in C_{G}(x)$. So : is there $b \in H$ with $b c^{-1} \in C_{G}(x)=\left\langle g_{1}, \ldots, g_{r}\right\rangle$?

Finite index normal subgroups of Garside groups

Reminder

$\mathcal{B}_{n}^{*}(e)$ is a finite index normal subgroup of \mathcal{B}_{n}^{*} (with cyclic quotient).
Let $G=\operatorname{Frac}(M), \Phi: G \rightarrow F$ with F finite, $H=\operatorname{Ker} \Phi$. Then :
(1) $H<G$ is torsion-free \checkmark
(2) There is a solution of the word problem for $H<G$. \checkmark
(3) Is there is a solution of the conjugacy problem for G ?
(9) There are algorithms for getting a finite set of generators for $C_{G}(x) . \checkmark$

3

Let $x, y \in H$. If x, y are not conjugates in G we are done.
Otherwise, let $c \in G$ with $y=x^{c}$. Then $y=x^{b}, b \in H \Leftrightarrow b c^{-1} \in C_{G}(x)$. So : is there $b \in H$ with $b c^{-1} \in C_{G}(x)=\left\langle g_{1}, \ldots, g_{r}\right\rangle$? Actually equivalent to checking whether $\Phi(c) \in\left\langle\Phi\left(g_{1}\right), \ldots, \Phi\left(g_{r}\right)\right\rangle<F$.

Preliminaries : Garside interval monoids

Let W be a group generated by a set S, and $\ell_{S}: S \rightarrow \mathbb{N}=\mathbb{Z}_{\geq 0}$ the length with respect to S.

Preliminaries : Garside interval monoids

Let W be a group generated by a set S, and $\ell_{S}: S \rightarrow \mathbb{N}=\mathbb{Z}_{\geq 0}$ the length with respect to S. In order to avoid confusions, for $a, b \in W$ we denote $a \cdot b$ the product inside W.

Preliminaries : Garside interval monoids

Let W be a group generated by a set S, and $\ell_{S}: S \rightarrow \mathbb{N}=\mathbb{Z}_{\geq 0}$ the length with respect to S. In order to avoid confusions, for $a, b \in W$ we denote $a \cdot b$ the product inside W.Then,

- $a \prec b$ means $\ell_{S}(b)=\ell_{S}(a)+\ell_{S}\left(a^{-1} \cdot b\right)$,
- $b \succ$ a means $\ell_{S}(b)=\ell_{S}\left(b \cdot a^{-1}\right)+\ell_{S}(a)$.

Preliminaries : Garside interval monoids

Let W be a group generated by a set S, and $\ell_{S}: S \rightarrow \mathbb{N}=\mathbb{Z}_{\geq 0}$ the length with respect to S. In order to avoid confusions, for $a, b \in W$ we denote $a \cdot b$ the product inside W.Then,

- $a \prec b$ means $\ell_{S}(b)=\ell_{S}(a)+\ell_{S}\left(a^{-1} \cdot b\right)$,
- $b \succ$ a means $\ell_{S}(b)=\ell_{S}\left(b \cdot a^{-1}\right)+\ell_{S}(a)$.

For $c \in W$,

$$
\operatorname{Div}_{L}(c)=\{a \in W \mid a \prec c\}, \operatorname{Div}_{R}(c)=\{a \in W \mid c \succ a\}
$$

and c is balanced if $\operatorname{Div}_{L}(c)=\operatorname{Div}_{R}(c)$.

Preliminaries : Garside interval monoids

Let W be a group generated by a set S, and $\ell_{S}: S \rightarrow \mathbb{N}=\mathbb{Z}_{\geq 0}$ the length with respect to S. In order to avoid confusions, for $a, b \in W$ we denote $a \cdot b$ the product inside W.Then,

- $a \prec b$ means $\ell_{S}(b)=\ell_{S}(a)+\ell_{S}\left(a^{-1} \cdot b\right)$,
- $b \succ$ a means $\ell_{S}(b)=\ell_{S}\left(b \cdot a^{-1}\right)+\ell_{S}(a)$.

For $c \in W$,

$$
\operatorname{Div}_{L}(c)=\{a \in W \mid a \prec c\}, \operatorname{Div}_{R}(c)=\{a \in W \mid c \succ a\}
$$

and c is balanced if $\operatorname{Div}_{L}(c)=\operatorname{Div}_{R}(c)$.
By definition, the interval monoid attached to (W, S, c) with c balanced is defined by generators and relations

$$
\left.M(c)=\langle\operatorname{Div}(c)| z=x y \text { if } z=x \cdot y \text { and } \ell_{S}(z)=\ell_{S}(x)+\ell_{S}(y)\right\rangle^{+}
$$

Preliminaries : Garside interval monoids

Theorem
If $(\operatorname{Div}(c), \prec)$ and $(\operatorname{Div}(c), \succ)$ are lattices, then $M(c)$ is Garside with Garside element c.

Moreover, the poset structures on $\operatorname{Div}(c)$ are the same inside W and inside $M(c)$.

Preliminaries : Garside interval monoids

Theorem
 If $(\operatorname{Div}(c), \prec)$ and $(\operatorname{Div}(c), \succ)$ are lattices, then $M(c)$ is Garside with Garside element c.

Moreover, the poset structures on $\operatorname{Div}(c)$ are the same inside W and inside $M(c)$.
The set of atoms of $M(c)$ is equal to $A=S \cap \operatorname{Div}(c)$.

Preliminaries : Garside interval monoids

Theorem

If $(\operatorname{Div}(c), \prec)$ and $(\operatorname{Div}(c), \succ)$ are lattices, then $M(c)$ is Garside with Garside element c.

Moreover, the poset structures on $\operatorname{Div}(c)$ are the same inside W and inside $M(c)$.
The set of atoms of $M(c)$ is equal to $A=S \cap \operatorname{Div}(c)$.

Theorem

(1) $\mathcal{B}_{n}(e)^{+}, e \geq 1$ is an interval monoid with respect to $G(e, e, n)$.

Preliminaries : Garside interval monoids

Theorem

If $(\operatorname{Div}(c), \prec)$ and $(\operatorname{Div}(c), \succ)$ are lattices, then $M(c)$ is Garside with Garside element c.

Moreover, the poset structures on $\operatorname{Div}(c)$ are the same inside W and inside $M(c)$.
The set of atoms of $M(c)$ is equal to $A=S \cap \operatorname{Div}(c)$.

Theorem

(1) $\mathcal{B}_{n}(e)^{+}, e \geq 1$ is an interval monoid with respect to $G(e, e, n)$.
(2) $\left(\mathcal{B}_{n}^{*}\right)^{+}$is an interval monoid with respect to every $G(d, 1, n), d \geq 2$.

Preliminaries : Garside interval monoids

Theorem

If $(\operatorname{Div}(c), \prec)$ and $(\operatorname{Div}(c), \succ)$ are lattices, then $M(c)$ is Garside with Garside element c.

Moreover, the poset structures on $\operatorname{Div}(c)$ are the same inside W and inside $M(c)$.
The set of atoms of $M(c)$ is equal to $A=S \cap \operatorname{Div}(c)$.

Theorem

(1) $\mathcal{B}_{n}(e)^{+}, e \geq 1$ is an interval monoid with respect to $G(e, e, n)$.
(2) $\left(\mathcal{B}_{n}^{*}\right)^{+}$is an interval monoid with respect to every $G(d, 1, n), d \geq 2$. and both of them are Garside, with a preferred Garside element.
(2) Standard monoid for $G(e, e, n)$

(3) Standard monoid for $G(d, 1, n)$

4 A word on exceptional groups

Standard monoid for $G(e, e, n)$

Standard monoid for $G(e, e, n)$

The presentation for B^{+}:

$$
\left\langle\begin{array}{l|l}
\sigma_{1, k}, k \in \mathbb{Z} / e \mathbb{Z} & \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{1, k} \sigma_{2}, \ldots, \sigma_{1, k}=\sigma_{2} \sigma_{1, k} \sigma_{2} \\
\sigma_{2}, \ldots, \sigma_{-1}
\end{array} \\
\sigma_{1, k} \sigma_{j}=\sigma_{j} \sigma_{1, k}, j \geq 3 \\
\sigma_{1, k} \sigma_{1, k+1}=\sigma_{1, k+1} \sigma_{1, k+2}, k \in \mathbb{Z} / \mathrm{e} \mathbb{Z}
\end{array}\right\rangle^{+}
$$

Standard monoid for $G(e, e, n)$

The presentation for B^{+}:

$$
\left\langle\begin{array}{l|l}
\sigma_{1, k}, k \in \mathbb{Z} / \boldsymbol{e} \mathbb{Z} & \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{1, k} \sigma_{2} \sigma_{1, k}=\sigma_{2} \sigma_{1, k} \sigma_{2} \\
\sigma_{2}, \ldots, \sigma_{n-1}
\end{array} \\
\sigma_{1, k} \sigma_{j}=\sigma_{j} \sigma_{1, k}, j \geq 3 \\
\sigma_{1, k} \sigma_{1, k+1}=\sigma_{1, k+1} \sigma_{1, k+2}, k \in \mathbb{Z} / e \mathbb{Z}
\end{array}\right\rangle+
$$

$\mathrm{N}^{\mathrm{AMA}}$ 를

Standard monoid for $G(e, e, n)$

The presentation for B^{+}:

$$
\left\langle\begin{array}{l|l}
\sigma_{1, k}, k \in \mathbb{Z} / e \mathbb{Z} & \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{1, k} \sigma_{2} \sigma_{1, k}=\sigma_{2} \sigma_{1, k} \sigma_{2} \\
\sigma_{2}, \ldots, \sigma_{n-1}
\end{array} \\
\sigma_{1, k} \sigma_{j}=\sigma_{j} \sigma_{1, k}, j \geq 3 \\
\sigma_{1, k} \sigma_{1, k+1}=\sigma_{1, k+1} \sigma_{1, k+2}, k \in \mathbb{Z} / e \mathbb{Z}
\end{array}\right\rangle+
$$

Special
case $: e=1, \mathcal{B}_{n}(e)=\mathcal{B}_{n}$.

Standard monoid for $G(e, e, n)$

The presentation for B^{+}:

$$
\left\langle\begin{array}{l|l}
\sigma_{1, k}, k \in \mathbb{Z} / e \mathbb{Z} & \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{1, k} \sigma_{2} \sigma_{1, k}=\sigma_{2} \sigma_{1, k} \sigma_{2} \\
\sigma_{2}, \ldots, \sigma_{n-1}
\end{array} \\
\sigma_{1, k} \sigma_{j}=\sigma_{j} \sigma_{1, k}, j \geq 3 \\
\sigma_{1, k} \sigma_{1, k+1}=\sigma_{1, k+1} \sigma_{1, k+2}, k \in \mathbb{Z} / e \mathbb{Z}
\end{array}\right\rangle+
$$

Special
case : $e=1, \mathcal{B}_{n}(e)=\mathcal{B}_{n}$. By convention we set $\sigma_{1}=\sigma_{1,0}$.

Standard monoid for $G(e, e, n)$

Let $S=\left\{s_{1, k}, k \in \mathbb{Z} / e \mathbb{Z}\right\} \cup\left\{s_{i}, 1 \leq i \leq n-1\right.$,

Standard monoid for $G(e, e, n)$

Let $S=\left\{s_{1, k}, k \in \mathbb{Z} / e \mathbb{Z}\right\} \cup\left\{s_{i}, 1 \leq i \leq n-1\right.$, with

$$
s_{1, k}=\left(\begin{array}{cc}
0 & \zeta_{e}^{-k} \\
\zeta_{e}^{k} & 0
\end{array}\right) \oplus \operatorname{Id}_{n-2} \quad s_{i}=(i, i+1) \in \mathrm{GL}_{n}(\mathbb{C})
$$

and $\zeta_{e}=\exp (2 \pi \mathrm{i} / e)$ (so that $s_{1}=s_{1,0}$).

Standard monoid for $G(e, e, n)$

Let $S=\left\{s_{1, k}, k \in \mathbb{Z} / e \mathbb{Z}\right\} \cup\left\{s_{i}, 1 \leq i \leq n-1\right.$, with

$$
s_{1, k}=\left(\begin{array}{cc}
0 & \zeta_{e}^{-k} \\
\zeta_{e}^{k} & 0
\end{array}\right) \oplus \operatorname{Id}_{n-2} \quad s_{i}=(i, i+1) \in \mathrm{GL}_{n}(\mathbb{C})
$$

and $\zeta_{e}=\exp (2 \pi \mathrm{i} / e)$ (so that $s_{1}=s_{1,0}$).

Theorem

For $e \geq 1$ and $W=G(e, e, n), B^{+}$is an interval Garside monoid for the group B, with respect to the set $S=\left\{s_{i}, i \geq 2\right\} \cup\left\{s_{1, k}, k \in \mathbb{Z} / e \mathbb{Z}\right\}$, identified with its set of atoms.

Standard monoid for $G(e, e, n)$

Let $S=\left\{s_{1, k}, k \in \mathbb{Z} / e \mathbb{Z}\right\} \cup\left\{s_{i}, 1 \leq i \leq n-1\right.$, with

$$
s_{1, k}=\left(\begin{array}{cc}
0 & \zeta_{e}^{-k} \\
\zeta_{e}^{k} & 0
\end{array}\right) \oplus \operatorname{Id}_{n-2} \quad s_{i}=(i, i+1) \in \mathrm{GL}_{n}(\mathbb{C})
$$

and $\zeta_{e}=\exp (2 \pi \mathrm{i} / e)$ (so that $s_{1}=s_{1,0}$).

Theorem

For $e \geq 1$ and $W=G(e, e, n), B^{+}$is an interval Garside monoid for the group B, with respect to the set $S=\left\{s_{i}, i \geq 2\right\} \cup\left\{s_{1, k}, k \in \mathbb{Z} / e \mathbb{Z}\right\}$, identified with its set of atoms. In case $e>1$, we have a preferred Garside element

$$
\Delta=\left(\sigma_{1,0} \sigma_{1,1}\right)\left(\sigma_{2} \sigma_{1,0} \sigma_{1,1} \sigma_{2}\right) \ldots\left(\sigma_{n-1} \ldots \sigma_{2} \sigma_{1,0} \sigma_{1,1} \sigma_{2} \ldots \sigma_{n-1}\right)
$$

Standard monoid for $G(e, e, n)$

Let $S=\left\{s_{1, k}, k \in \mathbb{Z} / e \mathbb{Z}\right\} \cup\left\{s_{i}, 1 \leq i \leq n-1\right.$, with

$$
s_{1, k}=\left(\begin{array}{cc}
0 & \zeta_{e}^{-k} \\
\zeta_{e}^{k} & 0
\end{array}\right) \oplus \operatorname{Id}_{n-2} \quad s_{i}=(i, i+1) \in \mathrm{GL}_{n}(\mathbb{C})
$$

and $\zeta_{e}=\exp (2 \pi \mathrm{i} / e)$ (so that $s_{1}=s_{1,0}$).

Theorem

For $e \geq 1$ and $W=G(e, e, n), B^{+}$is an interval Garside monoid for the group B, with respect to the set $S=\left\{s_{i}, i \geq 2\right\} \cup\left\{s_{1, k}, k \in \mathbb{Z} / e \mathbb{Z}\right\}$, identified with its set of atoms. In case $e>1$, we have a preferred Garside element

$$
\Delta=\left(\sigma_{1,0} \sigma_{1,1}\right)\left(\sigma_{2} \sigma_{1,0} \sigma_{1,1} \sigma_{2}\right) \ldots\left(\sigma_{n-1} \ldots \sigma_{2} \sigma_{1,0} \sigma_{1,1} \sigma_{2} \ldots \sigma_{n-1}\right)
$$

while for $e=1$ we have for preferred Garside element

$$
\Delta=\sigma_{1}\left(\sigma_{2} \sigma_{1}\right)\left(\sigma_{3} \sigma_{2} \sigma_{1}\right) \ldots\left(\sigma_{n-1} \sigma_{n-2} \ldots \sigma_{2} \sigma_{1}\right)
$$

Standard monoid for $G(e, e, n)$

Understanding and proving this theorem essentially amounts to

Standard monoid for $G(e, e, n)$

Understanding and proving this theorem essentially amounts to

- understanding the length function with respect to S.

Standard monoid for $G(e, e, n)$

Understanding and proving this theorem essentially amounts to

- understanding the length function with respect to S.
- understanding the divisors of a suitable c.

Standard monoid for $G(e, e, n)$

Understanding and proving this theorem essentially amounts to

- understanding the length function with respect to S.
- understanding the divisors of a suitable c.

For this we need to introduce the following remarkable elements, for

$$
\begin{aligned}
& 1 \leq i \leq j \\
& \bullet[j \cdots i]=(j, j-1, \ldots, i)=s_{j-1} \ldots s_{i+1} s_{i} \\
& \bullet[i \ldots j]=[j \cdots i]^{-1}=(i, i+1, \ldots, j)=s_{i} s_{i+1} \ldots s_{j-1}
\end{aligned}
$$

Standard monoid for $G(e, e, n)$

Understanding and proving this theorem essentially amounts to

- understanding the length function with respect to S.
- understanding the divisors of a suitable c.

For this we need to introduce the following remarkable elements, for

$$
1 \leq i \leq j
$$

- $[j \cdots i]=(j, j-1, \ldots, i)=s_{j-1} \ldots s_{i+1} s_{i}$
- $[i \cdots j]=[j \cdots i]^{-1}=(i, i+1, \ldots, j)=s_{i} s_{i+1} \ldots s_{j-1}$
and we set

$$
\begin{aligned}
{[\mathbf{j} \cdots \mathbf{i}] } & =\sigma_{j-1} \ldots \sigma_{i+1} \sigma_{i} \in \mathcal{M} \\
{[\mathbf{i} \cdots \mathbf{j}] } & =\sigma_{i} \sigma_{i+1} \cdots \sigma_{j-1} \in \mathcal{M}
\end{aligned}
$$

where \mathcal{M} is the free monoid on the atoms of B^{+}.

Neaime's algorithm for $G(e, e, n)$

The content of some row or column of a monomial matrix is its only nonzero entry.

Neaime's algorithm for $G(e, e, n)$

The content of some row or column of a monomial matrix is its only nonzero entry.

- Start by such a matrix $w \in W$, and consider its last row. Its content has the form ζ_{e}^{k} for $k \in \mathbb{Z} / e \mathbb{Z}$, and belongs to some column of index $j \leq n$.

Neaime's algorithm for $G(e, e, n)$

The content of some row or column of a monomial matrix is its only nonzero entry.

- Start by such a matrix $w \in W$, and consider its last row. Its content has the form ζ_{e}^{k} for $k \in \mathbb{Z} / e \mathbb{Z}$, and belongs to some column of index $j \leq n$.
- If $k=0$, then consider $w^{\prime}=w[j \cdots n]$; otherwise, consider $w^{\prime}=w[j \cdots 1] s_{1, k}[2 \cdots n]$.

Neaime's algorithm for $G(e, e, n)$

The content of some row or column of a monomial matrix is its only nonzero entry.

- Start by such a matrix $w \in W$, and consider its last row. Its content has the form ζ_{e}^{k} for $k \in \mathbb{Z} / e \mathbb{Z}$, and belongs to some column of index $j \leq n$.
- If $k=0$, then consider $w^{\prime}=w[j \cdots n]$; otherwise, consider $w^{\prime}=w[j \cdots 1] s_{1, k}[2 \cdots n]$.
- Then $w^{\prime} \in G(e, e, n-1)$ and we apply the same algorithm recursively to it, getting some $R\left(w^{\prime}\right)$.

Neaime's algorithm for $G(e, e, n)$

The content of some row or column of a monomial matrix is its only nonzero entry.

- Start by such a matrix $w \in W$, and consider its last row. Its content has the form ζ_{e}^{k} for $k \in \mathbb{Z} / e \mathbb{Z}$, and belongs to some column of index $j \leq n$.
- If $k=0$, then consider $w^{\prime}=w[j \cdots n]$; otherwise, consider $w^{\prime}=w[j \cdots 1] s_{1, k}[2 \cdots n]$.
- Then $w^{\prime} \in G(e, e, n-1)$ and we apply the same algorithm recursively to it, getting some $R\left(w^{\prime}\right)$.
- Then return $R(w)=R\left(w^{\prime}\right)[\mathbf{n} \cdots \mathbf{j}]$ in the first case $(k=0)$, and

$$
R(w)=R\left(w^{\prime}\right)[\mathbf{n} \cdots \mathbf{2}] \sigma_{1, k}[\mathbf{1} \cdots \mathbf{j}]
$$

in the second one $(k \neq 0)$.

Neaime's algorithm for $G(e, e, n)$

The content of some row or column of a monomial matrix is its only nonzero entry.

- Start by such a matrix $w \in W$, and consider its last row. Its content has the form ζ_{e}^{k} for $k \in \mathbb{Z} / e \mathbb{Z}$, and belongs to some column of index $j \leq n$.
- If $k=0$, then consider $w^{\prime}=w[j \cdots n]$; otherwise, consider $w^{\prime}=w[j \cdots 1] s_{1, k}[2 \cdots n]$.
- Then $w^{\prime} \in G(e, e, n-1)$ and we apply the same algorithm recursively to it, getting some $R\left(w^{\prime}\right)$.
- Then return $R(w)=R\left(w^{\prime}\right)[\mathbf{n} \cdots \mathbf{j}]$ in the first case $(k=0)$, and

$$
R(w)=R\left(w^{\prime}\right)[\mathbf{n} \cdots \mathbf{2}] \sigma_{1, k}[\mathbf{1} \cdots \mathbf{j}]
$$

in the second one $(k \neq 0)$.
The output $R(w)$ of the algorithm is then a word of the form $R_{2}(w) R_{3}(w) \ldots R_{n}(w)$ where $R_{i}(w)$ is computed inside $G(e, e, i)$.

Neaime's algorithm for $G(e, e, n)$: example.

$$
w=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & \zeta_{7}^{3} & 0 & 0 \\
0 & 0 & \zeta_{7}^{4} & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \in G(7,7,4) \rightsquigarrow R_{4}(w)=[\mathbf{4} \cdots \mathbf{1}]=\sigma_{3} \sigma_{2} \sigma_{1}
$$

Neaime's algorithm for $G(e, e, n)$: example.

$$
w=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & \zeta_{7}^{3} & 0 & 0 \\
0 & 0 & \zeta_{7}^{4} & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \in G(7,7,4) \rightsquigarrow R_{4}(w)=[\mathbf{4} \cdots \mathbf{1}]=\sigma_{3} \sigma_{2} \sigma_{1}
$$

and

$$
w^{\prime}=w[1 \cdots 4]=w s_{1} s_{2} s_{3}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
\zeta_{7}^{3} & 0 & 0 & 0 \\
0 & \zeta_{7}^{4} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \in G(7,7,3)<G(7,7,4)
$$

Neaime's algorithm for $G(e, e, n)$: example.

$$
w=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & \zeta_{7}^{3} & 0 & 0 \\
0 & 0 & \zeta_{7}^{4} & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \in G(7,7,4) \rightsquigarrow R_{4}(w)=[\mathbf{4} \cdots \mathbf{1}]=\sigma_{3} \sigma_{2} \sigma_{1}
$$

and

$$
\begin{aligned}
& w^{\prime}=w[1 \cdots 4]=w s_{1} s_{2} s_{3}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
\zeta_{7}^{3} & 0 & 0 & 0 \\
0 & \zeta_{7}^{4} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \in G(7,7,3)<G(7,7,4) \\
& \rightsquigarrow R_{3}(w)=[\mathbf{3} \cdots \mathbf{2}] \sigma_{1,4}[\mathbf{1} \cdots \mathbf{2}]=\sigma_{2} \sigma_{1,4} \sigma_{1} .
\end{aligned}
$$

Neaime's algorithm for $G(e, e, n)$: example.

$$
w=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & \zeta_{7}^{3} & 0 & 0 \\
0 & 0 & \zeta_{7}^{4} & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \in G(7,7,4) \rightsquigarrow R_{4}(w)=[\mathbf{4} \cdots \mathbf{1}]=\sigma_{3} \sigma_{2} \sigma_{1}
$$

and

$$
w^{\prime}=w[1 \cdots 4]=w s_{1} s_{2} s_{3}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
\zeta_{7}^{3} & 0 & 0 & 0 \\
0 & \zeta_{7}^{4} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \in G(7,7,3)<G(7,7,4)
$$

$$
\rightsquigarrow R_{3}(w)=[\mathbf{3} \cdots \mathbf{2}] \sigma_{1,4}[\mathbf{1} \cdots \mathbf{2}]=\sigma_{2} \sigma_{1,4} \sigma_{1} .
$$

Then the matrix obtained inside $G(7,7,2)$ is equal to s_{1} hence
$R_{2}(w)=\sigma_{1}$ and $R(w)=R_{2}(w) R_{3}(w) R_{4}(w)=\sigma_{1} \sigma_{2} \sigma_{1,4} \sigma_{1} \sigma_{3} \sigma_{2} \sigma_{1} . \quad$ M扁

Length for $G(e, e, n)$

Proposition

For every $w \in G(e, e, n)$, we have $\ell_{S}(w)=\ell(R(w))$.

Length for $G(e, e, n)$

Proposition

For every $w \in G(e, e, n)$, we have $\ell_{S}(w)=\ell(R(w))$.

Proposition

- The element $c=\operatorname{diag}\left(\zeta_{e}^{n-1}, \zeta_{e}^{-1}, \ldots, \zeta_{e}^{-1}\right)$ is balanced.

Length for $G(e, e, n)$

Proposition

For every $w \in G(e, e, n)$, we have $\ell_{S}(w)=\ell(R(w))$.

Proposition

- The element $c=\operatorname{diag}\left(\zeta_{e}^{n-1}, \zeta_{e}^{-1}, \ldots, \zeta_{e}^{-1}\right)$ is balanced.
- The antidiagonal permutation matrics J is balanced.

Length for $G(e, e, n)$

Proposition

For every $w \in G(e, e, n)$, we have $\ell_{S}(w)=\ell(R(w))$.

Proposition

- The element $c=\operatorname{diag}\left(\zeta_{e}^{n-1}, \zeta_{e}^{-1}, \ldots, \zeta_{e}^{-1}\right)$ is balanced.
- The antidiagonal permutation matrics J is balanced. and their posets of left and right divisors are lattices.

Length for $G(e, e, n)$

Proposition

For every $w \in G(e, e, n)$, we have $\ell_{S}(w)=\ell(R(w))$.

Proposition

- The element $c=\operatorname{diag}\left(\zeta_{e}^{n-1}, \zeta_{e}^{-1}, \ldots, \zeta_{e}^{-1}\right)$ is balanced.
- The antidiagonal permutation matrics J is balanced. and their posets of left and right divisors are lattices.

We have $\operatorname{Div}(J)=\mathfrak{S}_{n}<G(e, e, n)$.

Behavior of the length

Let $w \in G(e, e, n), 2 \leq r \leq n-1$, and \hat{w} the 2-rows monomial matrix made of the rows $r, r+1$ of w.

Behavior of the length

Let $w \in G(e, e, n), 2 \leq r \leq n-1$, and \hat{w} the 2-rows monomial matrix made of the rows $r, r+1$ of w.

Lemma

- If \hat{w} is diagonal, then $\ell\left(s_{r} w\right)=\ell(w)-1$ if and only if its bottom content is not 1 ;
- If \hat{w} is antidiagonal, then $\ell\left(s_{r} w\right)=\ell(w)-1$ if and only if its top content is 1 .

Behavior of the length

Let $w \in G(e, e, n), 2 \leq r \leq n-1$, and \hat{w} the 2-rows monomial matrix made of the rows $r, r+1$ of w.

Lemma

- If \hat{w} is diagonal, then $\ell\left(s_{r} w\right)=\ell(w)-1$ if and only if its bottom content is not 1 ;
- If \hat{w} is antidiagonal, then $\ell\left(s_{r} w\right)=\ell(w)-1$ if and only if its top content is 1 .

Lemma ($r=1$)

- If \hat{w} is diagonal, then $\ell\left(s_{1, k} w\right)=\ell(w)-1$ if and only if the bottom content of \hat{w} is not 1 ;
- If \hat{w} is antidiagonal, then $\ell\left(s_{1, k} w\right)=\ell(w)-1$ if and only if the top content of \hat{w} is ζ_{e}^{-k}.

2 Standard monoid for $G(e, e, n)$

(3) Standard monoid for $G(d, 1, n)$

(4) A word on exceptional groups

Standard monoid for \mathcal{B}_{n}^{*}

We consider the monoid B^{+}with presentation

$$
\left\langle\begin{array}{l|l}
\tau, \sigma_{1}, \ldots, \sigma_{n-1} & \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i},|i-j| \geq 2 \\
\sigma_{i} \tau=\tau \sigma_{i}, i>1 \\
\sigma_{1} \tau \sigma_{1} \tau=\tau \sigma_{1} \tau \sigma_{1}
\end{array} \tag{1}
\end{array}\right\rangle
$$

Standard monoid for \mathcal{B}_{n}^{*}

We consider the monoid B^{+}with presentation

$$
\left\langle\begin{array}{l|l}
\tau, \sigma_{1}, \ldots, \sigma_{n-1} & \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i},|i-j| \geq 2 \\
\sigma_{i} \tau=\tau \sigma_{i}, i>1 \\
\sigma_{1} \tau \sigma_{1} \tau=\tau \sigma_{1} \tau \sigma_{1}
\end{array} \tag{1}
\end{array}\right\rangle
$$

Theorem

For $W=G(d, 1, n)$ and $d \geq 2, n \geq 1$,

Standard monoid for \mathcal{B}_{n}^{*}

We consider the monoid B^{+}with presentation

$$
\left\langle\begin{array}{l|l}
\tau, \sigma_{1}, \ldots, \sigma_{n-1} & \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i},|i-j| \geq 2 \\
\sigma_{i} \tau=\tau \sigma_{i}, i>1 \\
\sigma_{1} \tau \sigma_{1} \tau=\tau \sigma_{1} \tau \sigma_{1}
\end{array} \tag{1}
\end{array}\right\rangle
$$

Theorem

For $W=G(d, 1, n)$ and $d \geq 2, n \geq 1, B^{+}$is a Garside interval monoid with respect to the set $S=\left\{t, s_{1}, s_{2}, \ldots, s_{n-1}\right\}$ with $c=\zeta_{d}^{-1} \mathrm{Id}$,

Standard monoid for \mathcal{B}_{n}^{*}

We consider the monoid B^{+}with presentation

$$
\left\langle\begin{array}{l|l}
\tau, \sigma_{1}, \ldots, \sigma_{n-1} & \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i},|i-j| \geq 2 \\
\sigma_{i} \tau=\tau \sigma_{i}, i>1 \\
\sigma_{1} \tau \sigma_{1} \tau=\tau \sigma_{1} \tau \sigma_{1}
\end{array} \tag{1}
\end{array}\right\rangle
$$

Theorem

For $W=G(d, 1, n)$ and $d \geq 2, n \geq 1, B^{+}$is a Garside interval monoid with respect to the set $S=\left\{t, s_{1}, s_{2}, \ldots, s_{n-1}\right\}$ with $c=\zeta_{d}^{-1}$ Id, and preferred Garside element

$$
\begin{aligned}
\Delta & =\tau\left(\sigma_{1} \tau \sigma_{1}\right)\left(\sigma_{2} \sigma_{1} \tau \sigma_{1} \sigma_{2}\right) \ldots\left(\sigma_{n-1} \sigma_{n-2} \ldots \sigma_{1} \tau \sigma_{1} \ldots \sigma_{n-2} \sigma_{n-1}\right) \\
& =\left(\tau \sigma_{1} \ldots \sigma_{n-1}\right)^{n}
\end{aligned}
$$

Standard monoid for \mathcal{B}_{n}^{*}

Theorem

For $W=G(d, 1, n)$ and $d \geq 2, n \geq 1, B^{+}$is a Garside interval monoid with respect to the set $S=\left\{t, s_{1}, s_{2}, \ldots, s_{n-1}\right\}$ with $c=\zeta_{d}^{-1} \mathrm{Id}$, and preferred Garside element

$$
\begin{aligned}
\Delta & =\tau\left(\sigma_{1} \tau \sigma_{1}\right)\left(\sigma_{2} \sigma_{1} \tau \sigma_{1} \sigma_{2}\right) \ldots\left(\sigma_{n-1} \sigma_{n-2} \ldots \sigma_{1} \tau \sigma_{1} \ldots \sigma_{n-2} \sigma_{n-1}\right) \\
& =\left(\tau \sigma_{1} \ldots \sigma_{n-1}\right)^{n}
\end{aligned}
$$

Standard monoid for \mathcal{B}_{n}^{*}

Theorem

For $W=G(d, 1, n)$ and $d \geq 2, n \geq 1, B^{+}$is a Garside interval monoid with respect to the set $S=\left\{t, s_{1}, s_{2}, \ldots, s_{n-1}\right\}$ with $c=\zeta_{d}^{-1} \mathrm{Id}$, and preferred Garside element

$$
\begin{aligned}
\Delta & =\tau\left(\sigma_{1} \tau \sigma_{1}\right)\left(\sigma_{2} \sigma_{1} \tau \sigma_{1} \sigma_{2}\right) \ldots\left(\sigma_{n-1} \sigma_{n-2} \ldots \sigma_{1} \tau \sigma_{1} \ldots \sigma_{n-2} \sigma_{n-1}\right) \\
& =\left(\tau \sigma_{1} \ldots \sigma_{n-1}\right)^{n}
\end{aligned}
$$

We denote

$$
\begin{aligned}
t & =\operatorname{diag}\left(\zeta_{d}^{-1}, 1, \ldots, 1\right) \\
s_{i} & =(i, i+1) \in \mathfrak{S}_{n}<W
\end{aligned}
$$

the images of τ and σ_{i} in W.

Neaime's algorithm for \mathcal{B}_{n}^{*}

Again: \mathcal{M} is the free monoid on the generators, $[i \cdots j],[\mathbf{i} \cdots \mathbf{j}]$ as before.

Neaime's algorithm for \mathcal{B}_{n}^{*}

Again : \mathcal{M} is the free monoid on the generators, $[i \cdots j],[i \cdots \mathbf{j}]$ as before.

- Start by $w \in W$. If $n=1, w=\zeta_{d}^{-k}$ for some k with $0 \leq k<d$; then output $\tau^{k} \in \mathcal{M}$.
- Otherwise, consider the last row. Its content is ζ_{d}^{-k} with $0 \leq k<d$, and belongs to some column of index $j \leq n$.
- If $k=0$, then consider $w^{\prime}=w[j \cdots n]$; otherwise, consider $w^{\prime}=w[j \cdots 1] t^{-k}[1 \cdots n]$.
- Then $w^{\prime} \in G(d, 1, n-1)$ and we apply the same algorithm recursively to it, getting some $R\left(w^{\prime}\right) \in \mathcal{M}$.
- Finally, return $R(w)=R\left(w^{\prime}\right)[\mathbf{n} \cdots \mathbf{j}]$ in the first case ($k=0$), and $R(w)=R\left(w^{\prime}\right)[\mathbf{n} \cdots \mathbf{1}] \tau^{k}[\mathbf{1} \cdots \mathbf{j}]$ in the second one.

Neaime's algorithm for \mathcal{B}_{n}^{*}

Again : \mathcal{M} is the free monoid on the generators, $[i \cdots j],[\mathbf{i} \cdots \mathbf{j}]$ as before.

- Start by $w \in W$. If $n=1, w=\zeta_{d}^{-k}$ for some k with $0 \leq k<d$; then output $\tau^{k} \in \mathcal{M}$.
- Otherwise, consider the last row. Its content is ζ_{d}^{-k} with $0 \leq k<d$, and belongs to some column of index $j \leq n$.
- If $k=0$, then consider $w^{\prime}=w[j \cdots n]$; otherwise, consider $w^{\prime}=w[j \cdots 1] t^{-k}[1 \cdots n]$.
- Then $w^{\prime} \in G(d, 1, n-1)$ and we apply the same algorithm recursively to it, getting some $R\left(w^{\prime}\right) \in \mathcal{M}$.
- Finally, return $R(w)=R\left(w^{\prime}\right)[\mathbf{n} \cdots \mathbf{j}]$ in the first case $(k=0)$, and $R(w)=R\left(w^{\prime}\right)[\mathbf{n} \cdots \mathbf{1}] \tau^{k}[\mathbf{1} \cdots \mathbf{j}]$ in the second one.
The output $R(w)$ of the algorithm is then a word of the form

$$
R_{1}(w) R_{2}(w) R_{3}(w) \ldots R_{n}(w)
$$

where $R_{i}(w)$ is computed inside $G(d, 1, i)$.

Neaime's algorithm for \mathcal{B}_{n}^{*}

Example

For

$$
w=\left(\begin{array}{ccc}
0 & 0 & \zeta_{7}^{-2} \\
\zeta_{7}^{-1} & 0 & 0 \\
0 & \zeta_{7}^{2} & 0
\end{array}\right) \in G(7,1,3)
$$

one gets

$$
\begin{aligned}
& R_{3}(w)=[\mathbf{3} \cdots \mathbf{1}] \tau^{5}[\mathbf{1} \cdots \mathbf{2}]=\sigma_{2} \sigma_{1} \tau^{5} \sigma_{1} \\
& R_{2}(w)=\tau \sigma_{1} \\
& R_{1}(w)=\tau^{2}
\end{aligned}
$$

hence

$$
R(w)=R_{1}(w) R_{2}(w) R_{3}(w)=\tau^{2} \cdot \tau \sigma_{1} \cdot \sigma_{1} \tau^{5} \sigma_{1} \sigma_{2}
$$

Neaime's algorithm for \mathcal{B}_{n}^{*}

$d>1$

Proposition

For every $w \in G(d, 1, n)$, we have $\ell_{S}(w)=\ell(R(w))$.

Neaime's algorithm for \mathcal{B}_{n}^{*}

$d>1$

Proposition

For every $w \in G(d, 1, n)$, we have $\ell_{S}(w)=\ell(R(w))$.

Proposition

- The element $\mathrm{c}=\zeta_{d}^{-1} \mathrm{Id}$ is balanced.

Neaime's algorithm for \mathcal{B}_{n}^{*}

$d>1$

Proposition

For every $w \in G(d, 1, n)$, we have $\ell_{S}(w)=\ell(R(w))$.

Proposition

- The element $c=\zeta_{d}^{-1} \mathrm{Id}$ is balanced.
- The antidiagonal permutation matrics J is balanced.

Neaime's algorithm for \mathcal{B}_{n}^{*}

$$
d>1
$$

Proposition

For every $w \in G(d, 1, n)$, we have $\ell_{S}(w)=\ell(R(w))$.

Proposition

- The element $c=\zeta_{d}^{-1} \mathrm{Id}$ is balanced.
- The antidiagonal permutation matrics J is balanced.
their posets of left and right divisors are lattices, and they are the join of their divisors.

Neaime's algorithm for \mathcal{B}_{n}^{*}

$$
d>1
$$

Proposition

For every $w \in G(d, 1, n)$, we have $\ell_{S}(w)=\ell(R(w))$.

Proposition

- The element $c=\zeta_{d}^{-1}$ Id is balanced.
- The antidiagonal permutation matrics J is balanced.
their posets of left and right divisors are lattices, and they are the join of their divisors.

We have $\operatorname{Div}(J)=\mathfrak{S}_{n}<G(e, e, n)$.

Neaime's algorithm for \mathcal{B}_{n}^{*}

$$
d>1
$$

Proposition

For every $w \in G(d, 1, n)$, we have $\ell_{S}(w)=\ell(R(w))$.

Proposition

- The element $c=\zeta_{d}^{-1}$ Id is balanced.
- The antidiagonal permutation matrics J is balanced.
their posets of left and right divisors are lattices, and they are the join of their divisors.

We have $\operatorname{Div}(J)=\mathfrak{S}_{n}<G(e, e, n)$.

The set $\operatorname{Div}(c)$ is made of the monomial matrices whose nonzero entries are either 1 or ζ_{d}^{-1}.

Connection with the 'real' theory

The groups $G(d e, e, n)$ which are 'real' are the following ones.

Connection with the 'real' theory

The groups $G(d e, e, n)$ which are 'real' are the following ones.

CRG	Coxeter type	standard monoid
$G(2,1, n)$	B_{n} / C_{n}	classic
$G(2,2, n)$	D_{n}	classic
$G(1,1, n)$	A_{n-1}	classic
$G(e, e, n)$	$I_{2}(e)$	dual

(2) Standard monoid for $G(e, e, n)$

(3) Standard monoid for $G(d, 1, n)$

(4) A word on exceptional groups

Elementary monoids

Definition

The monoid $M(r, s)$ is presented by generators $u_{1}, u_{2}, \ldots, u_{r}$ and relations

$$
\underbrace{u_{1} u_{2} u_{3} \ldots}_{s}=\underbrace{u_{2} u_{3} u_{4} \cdots}_{s}=\cdots=\underbrace{u_{r} u_{1} u_{2} \cdots}_{s}
$$

where $\underbrace{u_{1} u_{2} u_{3} \ldots}_{s}$ represents the unique subword of length s starting with u_{1} of the infinite word $\left(u_{1} u_{2} \ldots u_{r}\right)\left(u_{1} u_{2} \ldots u_{r}\right) \ldots$.

Elementary monoids

Definition

The monoid $M(r, s)$ is presented by generators $u_{1}, u_{2}, \ldots, u_{r}$ and relations

$$
\underbrace{u_{1} u_{2} u_{3} \cdots}_{s}=\underbrace{u_{2} u_{3} u_{4} \cdots}_{s}=\cdots=\underbrace{u_{r} u_{1} u_{2} \cdots}_{s}
$$

where $\underbrace{u_{1} u_{2} u_{3} \ldots}_{s}$ represents the unique subword of length s starting with u_{1} of the infinite word $\left(u_{1} u_{2} \ldots u_{r}\right)\left(u_{1} u_{2} \ldots u_{r}\right) \ldots$.
$M(r, s)$ is always a Garside monoid, with preferred

$$
\Delta=\underbrace{u_{1} u_{2} u_{3} \cdots}_{s}=\underbrace{u_{2} u_{3} u_{4} \cdots}_{s}=\cdots=\underbrace{u_{r} u_{1} u_{2} \cdots}_{s}
$$

Elementary monoids

Definition

The monoid $M(r, s)$ is presented by generators $u_{1}, u_{2}, \ldots, u_{r}$ and relations

$$
\underbrace{u_{1} u_{2} u_{3} \ldots}_{s}=\underbrace{u_{2} u_{3} u_{4} \cdots}_{s}=\cdots=\underbrace{u_{r} u_{1} u_{2} \cdots}_{s}
$$

where $\underbrace{u_{1} u_{2} u_{3} \ldots}_{s}$ represents the unique subword of length s starting with u_{1} of the infinite word $\left(u_{1} u_{2} \ldots u_{r}\right)\left(u_{1} u_{2} \ldots u_{r}\right) \ldots$.
$M(r, s)$ is always a Garside monoid, with preferred

$$
\Delta=\underbrace{u_{1} u_{2} u_{3} \ldots}_{s}=\underbrace{u_{2} u_{3} u_{4} \ldots}_{s}=\cdots=\underbrace{u_{r} u_{1} u_{2} \cdots}_{s}
$$

In the cases we are interested in, we shall check that these are actually Garside interval monoids.

Elementary monoids

- $W=G(e, e, 2)$ with $S=\{s, t\}$,

$$
s=(1,2) \quad t=\left(\begin{array}{cc}
0 & \zeta_{e} \\
\zeta_{e}^{-1} & 0
\end{array}\right)
$$

and $c=s t s \cdots=t s t \ldots$
Then $M(2, e)$ is an interval monoid for B.

Elementary monoids

- $W=G(e, e, 2)$ with $S=\{s, t\}$,

$$
s=(1,2) \quad t=\left(\begin{array}{cc}
0 & \zeta_{e} \\
\zeta_{e}^{-1} & 0
\end{array}\right)
$$

and $c=s t s \cdots=t s t \ldots$
Then $M(2, e)$ is an interval monoid for B.

- $W=G_{7}, G_{11}, G_{19}$ and $G(4,2,2): M(3,3)$.
- $W=G_{12}: M(3,4)$
- $W=G_{22}: M(3,5)$

Use of the 'real theory'

Use of the 'real theory'

- Obviously, some of the exceptional groups are 'real', so one can use Coxeter's theory and get an interval monoid for them

Use of the 'real theory'

- Obviously, some of the exceptional groups are 'real', so one can use Coxeter's theory and get an interval monoid for them
- Some of them are not, but share the same space X / W as a 'real' group W_{0}

Use of the 'real theory'

- Obviously, some of the exceptional groups are 'real', so one can use Coxeter's theory and get an interval monoid for them
- Some of them are not, but share the same space X / W as a 'real' group W_{0}
Let then B^{+}the corresponding Artin monoid with set of atoms S. It is an interval monoid w.r.t. W_{0}, with preferred Garside element Δ_{0}.

Theorem

- We have $B=\operatorname{Frac}\left(B^{+}\right)$, the atoms of B^{+}being mapped to braided reflections.
- Setting $|Z(W)|=m$, we have $B^{+}=M_{S}(c)$ where $c=\zeta_{m}^{-1} \mathrm{Id}$.

Use of the 'real theory'

W	$\|Z W\|$	$\|\operatorname{Div}(c)\|$	c	W_{0}	$\left\|Z W_{0}\right\|$
G_{4}	2	19	Δ_{0}^{2}	$I_{2}(3)$	1
G_{8}	4	19	Δ_{0}^{2}	$I_{2}(3)$	1
G_{16}	10	19	Δ_{0}^{2}	$I_{2}(3)$	1
G_{5}	6	8	Δ_{0}	$I_{2}(4)$	2
G_{10}	12	8	Δ_{0}	$I_{2}(4)$	2
G_{18}	30	8	Δ_{0}	$I_{2}(4)$	2
G_{20}	6	51	Δ_{0}^{2}	$I_{2}(5)$	1
G_{6}	4	12	Δ_{0}	$I_{2}(6)$	2
G_{9}	8	12	Δ_{0}	$I_{2}(6)$	2
G_{17}	20	12	Δ_{0}	$I_{2}(6)$	2
G_{21}	12	20	Δ_{0}	$I_{2}(10)$	2
G_{25}	3	211	Δ_{0}^{2}	A_{3}	1
G_{26}	6	48	Δ_{0}	B_{3}	2
G_{32}	6	3651	Δ_{0}^{2}	A_{4}	1

Bessis monoids

For the groups $G_{24}, G_{27}, G_{29}, G_{33}$ and G_{34}, none of this works, but Bessis constructed suitable monoids using the fact that they are 'well-generated' ${ }^{1}$.

The element c is a Springer regular element, the length is computed from all the reflections, but not all of them are atoms.

It is then a nontrivial task to get from this a 'short' presentation with geometric meaning.

For the last group G_{31}, one needs a Garside category to deal with a corresponding braid groupoid, and no Garside monoid is known for this case.

1. applied to the 'real' case, this yields the 'dual braid monoid'

Bessis monoids : example of G_{24}

For $W=G_{24}$, one gets that $M(c)$ is presented by generators b_{i}, $i=1, \ldots, 14$ such that $b_{i}=s_{i}$ for $i \leq 3$, and circular relations depicted as follows

representing the relations

$$
\begin{aligned}
& b_{1} b_{2}=b_{2} b_{4}=b_{4} b_{1} \\
& b_{6} b_{13}=b_{13} b_{10}=b_{10} b_{1}=b_{1} b_{6}
\end{aligned}
$$

$$
\ldots
$$

