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Overview

The general plan for this mini-course is to:

focus on finding minimal length reflection factorizations for
spherical and and Euclidean isometries (Day 1).
and then extend this (where possible) to isometries of
arbitrary metric vector spaces (Day 2).
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Connections to the other main speakers

This mini-course is closely related to the work of the other
mini-course speakers.

Luis Paris: Garside structures, general Artin group
theorems, and key open problems (with Eddy Godelle)
Jean Michel: Interval monoids and groups (which I learned
about via John Crisp)
François Digne: quasi-Garside structures on�An and �Cn
(which my coauthors and I tried to imitate)
Matthew Dyer: Hurwitz transitivity (with Barbara, Christian
and Patrick), which simplifies things, and finally
Ivan Marin and Gunter Malle: complex braid groups (which
highlight the possibilities and the limits of this approach)
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Coxeter groups and Artin groups

First, let’s talk about why we’re interested in such factorizations.
We’ve all seen the standard presentations. Here’s my notation.

Definition (Standard Presentations)
Let � be a Coxeter/Artin diagram with vertex set S.
Let W = COX(�) be the Coxeter group (generated by S).
Let A = ART(�) be the Artin group (also generated by S).
Let p∶ART(�)� COX(�) be the natural projection map,
sending S to S, whose kernel is the pure Artin group.
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Coxeter Elements

Definition (Coxeter elements)
Fix a linear ordering of S. The product of the elements in S, in
this order, is the Coxeter element w . And since we have a copy
of S ∈ ART(�), there is a natural copy of w ∈ ART(�) as well.

Remark (Conjugacy)
Different orders create different elements. If � is a tree (when
not drawing commutation relations) then all Coxeter elements
are conjugate. In general, the different Coxeter elements have
distinct properties and personalities.
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Reflections

Definition (Reflections)
The elements of S are simple reflections and their conjugates
in W = COX(�) are called reflections. Let T = T W be the set of
all reflections in COX(�).
Geometrically this makes sense. You can also mimic this
definition inside A = ART(�). These are also sometimes called
reflections, but the name no longer makes geometric sense.

Remark (Coxeter vs. Artin)
Be careful: the conjugates of S in ART(�) form a much larger
set T A. We have p(T A) = T W but T A ≠ p−1(T W ) in general.
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Dual Artin Groups

Definition (Dual Artin groups)
The dual Artin group ART∗(�,w) is the group defined by the
interval [1,w] constructed inside the Cayley graph of the group
W with respect to its expanded generating set T . The
generating set of ART∗(�,w) is a subset T0 of T , the set of
reflections that actually occur in some minimum length
factorization of w over T .

Remark
In all known worked examples, the group ART∗(�,w) is
isomorphic to the Artin group ART(�).
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Question: Why Coxeter factorizations?

Why are we looking at factorizations in W = COX(�)? All Artin
groups have internal dual presentations.

Proposition (Internal dual presentations)
Let [1,w]A be the interval defined in the Cayley graph of the
Artin group A = ART(�) with respect to the set T A of reflection
generators. For every � and every Coxeter element w, the
interval group this defines is naturally isomorphic to the Artin
group ART(�).
Remark

If we consider factorizations in ART(�), we get the right
group, but we can’t compute the interval.
If we consider factorizations in COX(�), we can compute
the interval*, but we may not get the right group.
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Answer: This is where the light is
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Reflection Factorizations

How do we find all the minimal length reflection factorizations of
of a Coxeter element in a Coxeter group?

Proposition (Getting started)
The reflection length of a Coxeter element w is the size of the
generating set S: `T (w) = �S�. In particular, the product defining
w is a minimum length reflection factorization of w.

Proposition (BDSW)
For every Coxeter group, the Hurwitz action is transitive on
minimal length factorizations of a Coxeter element.

When COX(�) is finite/spherical, we can compute, but in
general, this will run forever and we need a different idea.
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Motivating question: Loxodromic isometries

The Coxeter element in COX(�B3) is a loxodromic (screw-type)
motion in R3. Which rotations are “below” it? The answer
changes depending on which reflections you are allowed to
use. Let’s talk through some basic cases.
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Using all reflections

Remark
When Noel Brady and I tried to understand this situation, we
keep running up against the question “can we use this
reflection?”. We decided to use them all and postpone that
question to the end.
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General Strategy

Step 1: geometrically understand how to factor using all reflections.
Step 2: understand the restriction to Coxeter reflections.
Step 3: check to see if the interval defines the Artin group,
Step 4: check to see if the interval is a lattice,
Step 5: deal with any problems that arise.
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Classical Geometry

Remark
Everyone should learn classical geometry. It’s fun! (and useful)
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Two very good books
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First Exercises

Definition (Atoms and Basic isometries)
The atoms are the reflections, with reflection length 1. The
basic isometries are those with reflection length 2. These are
the simplest orientation-preserving isometries.

Exercise (A Basic Question)
When is the product of two basic isometries basic (i.e. when is
the product of two reflection length 2 elements also reflection
length 2)? Do this in S

2, S
n, E

2, E
n, H

2 and H
n.

Exercise (Bonus Question just for fun)
If you move only one vertex of a triangle and keep the area
constant, what curve do you trace out? You probably know the
answer in E

2, but what about S
2 and H

2?
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Factoring spherical isometries

Definition (Orthogonal transformations)
Let V = Rn be an n-dimensional real vector space with its
standard inner product and consider ISOM(V) = O(n,R).
These are the n × n matrices A with AT A = I.

Definition (Mixing operators)
Let T ∶V → V be an orthogonal transformation. We say T is a
mixing operator if the only point fixed by T is the origin.

Definition (Fixed-set and Move-set)
If T is an operator, FIX(T ) = ker(I −T ) and MOV(T ) = im(I −T ).
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Fix and Move

Proposition (Orthogonal decomposition)
The subspaces FIX(T )⊕MOV(T ) is an orthogonal
decomposition of V .

If T is mixing, MOV(T ) = Rn and FIX(T ) = R0

Proposition (Up and Down)
The dimension of FIX(T ) and MOV(T ) change by 1 when T is
multiplied by a reflection - and it’s easy to tell whether it goes up
or down.

So dim(MOV(T )) is a lower bound on reflection length.
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Flags and Factorizations

Definition (Flags)
A (maximal) flag is a nested chain of subspaces, one per
dimension. Every ordered Basis (v1,v2, . . . ,vn) determines a
maximum flag by letting Ri = SPAN({v1, . . . ,vi}).

{0} = R0 ⊂ R1 ⊂ R2 ⊂ � ⊂ Rn = V

Proposition
For every mixing operator T and for every maximal flag, there is
a reflection factorization of T so that the fixed spaces of the
prefixes are the subspaces in the flag.

Proof idea: simply use the only reflection that will work.
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Building a Flag
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Spherical Intervals

Spherical reflection factorizations are amazing!

Proposition (Wall, Brady-Watt)
Intervals in O(n,R) are equal to LIN(V), the poset of linear
subspaces under inclusion.

Actually, this is true more generally.

Proposition
Let T be a unitary mixing operator over Cn. There is a minimal
length complex reflection factorization for T corrsponding to
each maximal flag, and intervals are the poset of linear
subspaces.
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Orthogonal Groups

Remark
ISOM(V) = O(n,R) has an uncountably generated dual Coxeter
presentation. And there is corresponding continuous “Artin”
group (M - unpublished).

Look at O(2) = ISOM(S1) and an interval.
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Pulled apart orthogonal group
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Restricting and the Lattice Property

The next step is restricting to the allowed factorizations.

Remark (Lattice property)
For a spherical Coxeter group (or a finite complex reflection
group) you then need to restrict to those factorizations only
using the appropriate reflections. Even in these cases, proving
the lattice property for the restriction is still hard (Reading,
Brady-Watt).

Remark (Armstrong)
There are mixing operators in COX(D4) where the lattice
property fails.
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From spherical to Euclidean

Definition (Affine space)
Let V = Rn be real vector space with a well-defined origin. The
corresponding affine space is a set E with a simply transitive
V -action. You can think of E as a copy of V where we forget
the location of the origin. Elements of V are vectors. Elements
of E are points.

Remark (Coordinates)
When you need to work with E you pick an origin and fix
coordinates. But, as Petra mentioned in her talk, picking an
origin (and a corresponding semidirect produt structure) can
sometimes get in the way.
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Move-sets and Min-sets

Definition (Move-sets and Min-sets)
For every w ∈ ISOM(E) there are two affine subspaces:
MOV(w) ⊂ V and MIN(w) ⊂ E . The first records the motions of
elements under T , and the second is the elements moved a
minimal distance.

Theorem (Scherk ’50)
If T is a Euclidean isometry, its reflection length is
dim(MOV(T )) is MOV(T ) is a linear subspace of V and
dim(MOV(T )) + 2 if it is an affine subspace of V .

Remark
Once you restrict to Coxeter reflection length, this changes
drastically, but not inside the Coxeter element intervals.
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Example: Glide Reflection
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Multiplying by a reflection

We have that DIR(MOV(T )) and DIR(MIN(T )) orthogonally
decompose V , and it is easy to see how they change under
product with a reflection.
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Bipartite Coxeter Elements
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The Euclidean Coxeter Group COX(G̃2)
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Coarse Structure
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Bowties
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Thank You


