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Let V =C" and W C GL(V) a finite group. Let SV be the
symmetric algebra of V' (a polynomial algebra). It is the algebra of
V in terms of algebraic geometry: V = Spec SV.

SVW is the algebra of the quotient space V/W.

Theorem
SV /W is a smooth variety if and only W is a complex reflection
groups. Then SV /W ~ V, thus SVW is a polynomial algebra.

In particular, if W is a complex reflection group, (SV)" is freely
generated by n polynomials. These polynomials are not unique, but
their degrees are unique. We write these degrees di < ... < d,,.

Proposition

\W| = dp - dp and |Ref(W)| = (dy — 1) + - + (dp — 1).

Further, if W is irreducible, the order of any eigenvalue of any
w € W on V divides one of the d;, and W is real iff d; = 2.
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Coxeter elements

Definition
w € W is (-regular if it has a eigenvector v € V (for the
eigenvalue () outside of all reflection hyperplanes.

If W is irreducible, (-regular elements form a single conjugacy
class of W, of elements which have same order as (..

Proposition

If W is irreducible and well-generated, then d, > d,_1. h=d, is
called the Coxeter number and there exist e2™/ h—regu/ar elements;

they are called Coxeter elements.
We have hn = |Ref (W)| + |Hyperplanes(W)|.

The theory of regular elements further describes the eigenvalues on
V of Coxeter elements. They are {€>™(1=%) /h};. In particular no
eigenvalue is 1.
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mov

For x € GL(V) we set mov(x) = image(x — 1). We have
dim(mov(x)) = codim(fix(x)). In particular dim(mov(x)) =1 for
a reflection.

Proposition (mov subadditive)
dim(mov(xy)) < dim(mov(x)) + dim(mov(y)) and there is
equality if and only if mov(xy) = mov(x) & mov(y);

Proof.

We have xy — 1 = (x — 1)y + y — 1 which implies that
mov(xy) € mov(x) + mov(y), which shows the proposition.

In particular dim(mov(x)) < Ir(x).
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Proposition

Let R = Ref(W), and let ¢ such that Iz(c) = n and
dimmov(c) = n. Then for any x <g c, we have
Ir(x) = dim mov(x).

Proof.

If x <g ¢, we have ¢ = xy where Ig(x) + Ir(y) =
proposition (mov subadditive) n = dim(mov(c)) <
dim(mov(x)) 4+ dim(mov(y)) < Ir(x) + Ir(y) = n
equality everywhere. O

n. But from

so there is

Note that a left divisor of such an element ¢ for <g is also a right
divisor since xy = y(y~1xy) and the lengths add also in the RHS
since dim(mov(y~!xy)) = dim(mov(x)) since dim(mov) is
invariant by conjugacy.

So an interval <g c is automatically balanced.
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Unitary and orthogonal group

If W is a finite subgroup of GL(V'), we can find a Hermitian scalar
product (, ) invariant by W: take any scalar product and average it
over W. This makes W a subgroup of the unitary group.

Such a product can be used to give a formula for a reflection with
reflecting hyperplane H and non-trivial eigenvalue (. Let r be a
vector orthogonal to H. Then (r, () define a reflection s by

(x.r) r.
(r.r)

A complex refection group defined over the reals (that is,

V = Vg ®r C and W is comes from an action on Wg) is the same
as a finite Coxeter group. In this case we can find on Vi an
invariant scalar product and this makes W a subgroup of the
orthogonal group.

s(x) =x—-(1-0)
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If V.=C" and W C GL(V) is an irreducible Coxeter group,
defined already on Vi, any element ¢ € W such that
dim(mov(c)) = n has Iz(c) = n.

Proof.

If dim(mov(c)) = n then 1 — c is surjective. Let s be a reflection

(of eigenvalue —1 since we are in a real group) defined by a root r

orthogonal to its hyperplane. There exists v such that

(1 — ¢)(v) = r. Since the scalar product on Vg is W-invariant we

have (v, v) = (c(v),c(v)) = (v + r,v + r) whence

(ryr)+(v,r)+(r,v) =0o0r 2((‘::)) = —1 so plugging into the
(x.r)

formula s(x) = x — 20y we get s(v)=v+rthuss(v+r)=v

and sc(v) = v. Thus sc lives in the parabolic subgroup fixing ¢
and by induction Ig(sc) < n — 1 thus Iz(c) = n. O

In V, the computation fails even for r a true reflection since
(v,r)+ (r,v) # 2(v,r). In fact all non-real groups have elements
c such that In(c) > n
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We have also seen in the proof that for real W and a reflection s,
we have Ig(sc) < n thus s <g c. For any non-real group and any
Coxeter element ¢ there are some reflections such that s £ c.

We have an action of the braid group B, on the decompositions of
an element: ¢ = s7...s,. We make o act by

O','((Sl, ey Sn)) = (S]_, ey Si—1, SI'S,'+1SI-_17 SiySi42y oy S,-,).

We still get a decomposition as reflections. It turns out that the
Hurwitz action is transitive on all such decompositions. This is a
fundamental fact which allows to compute all simples of the dual
monoid.
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The braid group

The following is easy for finite Coxeter groups but non-trivial for
non-real complex reflection groups.

(Steinberg) W' acts regularly on V"€ where V'€ =V — |, . Hs,
given this, we can define By = N;(V"€/W) and

1— My (V™) — By := My (V™E/W) — W — 1.

(Bessis 2001) By needs the same number of braid reflections to
generate as W needs reflections.

This comes from the equation for (J,.g Hs in V /W, the
discriminant.
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The discriminant

We have V"8 /W ~ C" — {A = 0} where the discriminant A is an
invariant equation of |J,.z Hr in V/W. To express the variety
U,cr Hr as the zeroes of an invariant polynomial, for each
reflecting hyperplane H choose a linear fom /Iy of kernel H. Then
A=y ILCW(HN is an invariant equation.

Theorem (Bessis)

If W is an irreducible well generated complex reflection group, we
have A = £ + Pa(fi, ..., fo1)f" "2+ ... + Pp(f1,..., fn_1) where
P; is weighted homogeneous of degree ih.

It follows that if we fix the values of f1,...,f,_1 and let f, vary in
the complex plane, the discriminant has generically n zeroes in that
plane
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Decomposition of lift of ¢

Since f, has degree h a loop in that plane maps to an element of
W with eigenvalue e2™/h. We get a decomposition ¢ =s1 ...s, as
braid reflections.
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The Birman-Ko-Lee monoid
For the symmetric group &, the reflections are the transpositions
(ff). For ¢ = (12...n) the simples dividing c correspond to
non-crossing partitions: the cycles correspond to non-crossing

9 1 2

polygons on the circle: 6 5 The picture corresponds
to (134)(5689). The least common multiple of two non-crossing
transposition is their product. If two transpositions cross:

6 5 their least common multiple is the cycle (1358).



