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Invariants of complex reflection groups

Let V = Cn and W ⊂ GL(V ) a finite group. Let SV be the
symmetric algebra of V (a polynomial algebra). It is the algebra of
V in terms of algebraic geometry: V = SpecSV .
SVW is the algebra of the quotient space V /W .

Theorem

SV /W is a smooth variety if and only W is a complex reflection
groups. Then SV /W ' V , thus SVW is a polynomial algebra.

In particular, if W is a complex reflection group, (SV )W is freely
generated by n polynomials. These polynomials are not unique, but
their degrees are unique. We write these degrees d1 ≤ . . . ≤ dn.

Proposition

|W | = d1 · · · dn and |Ref(W )| = (d1 − 1) + · · ·+ (dn − 1).

Further, if W is irreducible, the order of any eigenvalue of any
w ∈W on V divides one of the di , and W is real iff d1 = 2.
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Coxeter elements

Definition

w ∈W is ζ-regular if it has a eigenvector v ∈ V (for the
eigenvalue ζ) outside of all reflection hyperplanes.

If W is irreducible, ζ-regular elements form a single conjugacy
class of W , of elements which have same order as ζ..

Proposition

If W is irreducible and well-generated, then dn > dn−1. h = dn is
called the Coxeter number and there exist e2iπ/h-regular elements;
they are called Coxeter elements.
We have hn = |Ref (W )|+ |Hyperplanes(W )|.

The theory of regular elements further describes the eigenvalues on
V of Coxeter elements. They are {e2iπ(1−dj )/h}j . In particular no
eigenvalue is 1.
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mov

For x ∈ GL(V ) we set mov(x) = image(x − 1). We have
dim(mov(x)) = codim(f ix(x)). In particular dim(mov(x)) = 1 for
a reflection.

Proposition (mov subadditive)

dim(mov(xy)) ≤ dim(mov(x)) + dim(mov(y)) and there is
equality if and only if mov(xy) = mov(x)⊕mov(y);

Proof.

We have xy − 1 = (x − 1)y + y − 1 which implies that
mov(xy) ⊆ mov(x) + mov(y), which shows the proposition.

In particular dim(mov(x)) ≤ lR(x).
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Proposition

Let R = Ref(W ), and let c such that lR(c) = n and
dimmov(c) = n. Then for any x ≤R c, we have
lR(x) = dimmov(x).

Proof.

If x ≤R c , we have c = xy where lR(x) + lR(y) = n. But from
proposition (mov subadditive) n = dim(mov(c)) ≤
dim(mov(x)) + dim(mov(y)) ≤ lR(x) + lR(y) = n so there is
equality everywhere.

Note that a left divisor of such an element c for ≤R is also a right
divisor since xy = y(y−1xy) and the lengths add also in the RHS
since dim(mov(y−1xy)) = dim(mov(x)) since dim(mov) is
invariant by conjugacy.
So an interval ≤R c is automatically balanced.
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Unitary and orthogonal group

If W is a finite subgroup of GL(V ), we can find a Hermitian scalar
product (, ) invariant by W : take any scalar product and average it
over W . This makes W a subgroup of the unitary group.
Such a product can be used to give a formula for a reflection with
reflecting hyperplane H and non-trivial eigenvalue ζ. Let r be a
vector orthogonal to H. Then (r , ζ) define a reflection s by

s(x) = x − (1− ζ)
(x , r)

(r , r)
r .

A complex refection group defined over the reals (that is,
V = VR ⊗R C and W is comes from an action on VR) is the same
as a finite Coxeter group. In this case we can find on VR an
invariant scalar product and this makes W a subgroup of the
orthogonal group.
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Proposition (Carter)

If V = Cn and W ⊂ GL(V ) is an irreducible Coxeter group,
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If dim(mov(c)) = n then 1− c is surjective. Let s be a reflection
(of eigenvalue −1 since we are in a real group) defined by a root r
orthogonal to its hyperplane. There exists v such that
(1− c)(v) = r . Since the scalar product on VR is W -invariant we
have (v , v) = (c(v), c(v)) = (v + r , v + r) whence

(r , r) + (v , r) + (r , v) = 0 or 2 (v ,r)
(r ,r) = −1 so plugging into the

formula s(x) = x − 2 (x ,r)
(r ,r) r we get s(v) = v + r thus s(v + r) = v

and sc(v) = v . Thus sc lives in the parabolic subgroup fixing c
and by induction lR(sc) ≤ n − 1 thus lR(c) = n.

In V , the computation fails even for r a true reflection since
(v , r) + (r , v) 6= 2(v , r). In fact all non-real groups have elements
c such that lR(c) > n.
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We have also seen in the proof that for real W and a reflection s,
we have lR(sc) < n thus s ≤R c . For any non-real group and any
Coxeter element c there are some reflections such that s 6≤R c .

We have an action of the braid group Bn on the decompositions of
an element: c = s1 . . . sn. We make σi act by
σi ((s1, . . . , sn)) = (s1, . . . , si−1, si si+1s

−1
i , si , si+2, . . . , sn).

We still get a decomposition as reflections. It turns out that the
Hurwitz action is transitive on all such decompositions. This is a
fundamental fact which allows to compute all simples of the dual
monoid.
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The braid group

The following is easy for finite Coxeter groups but non-trivial for
non-real complex reflection groups.

(Steinberg) W acts regularly on V reg where V reg = V −
⋃

s∈R Hs ,

given this, we can define BW = Π1(V reg/W ) and

1→ Π1(V reg)→ BW := Π1(V reg/W )→W → 1.

(Bessis 2001) BW needs the same number of braid reflections to
generate as W needs reflections.

This comes from the equation for
⋃

s∈R Hs in V /W , the
discriminant.
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A braid reflection above a reflection s with non-trivial eigenvalue
ζ := e2iπ/e

0
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The discriminant

We have V reg/W ' Cn − {∆ = 0} where the discriminant ∆ is an
invariant equation of

⋃
r∈R Hr in V /W . To express the variety⋃

r∈R Hr as the zeroes of an invariant polynomial, for each
reflecting hyperplane H choose a linear fom lH of kernel H. Then

∆ =
∏

H l
|CW (H)|
H is an invariant equation.

Theorem (Bessis)

If W is an irreducible well generated complex reflection group, we
have ∆ = f nn + P2(f1, . . . , fn−1)f n−2n + . . .+ Pn(f1, . . . , fn−1) where
Pi is weighted homogeneous of degree ih.

It follows that if we fix the values of f1, . . . , fn−1 and let fn vary in
the complex plane, the discriminant has generically n zeroes in that
plane
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Decomposition of lift of c

Since fn has degree h a loop in that plane maps to an element of
W with eigenvalue e2iπ/h. We get a decomposition c = s1 . . . sn as
braid reflections.

y

x1

x2
. . .

xn

s1 s2

sn

c



The Birman-Ko-Lee monoid
For the symmetric group Sn the reflections are the transpositions
(ij). For c = (12 . . . n) the simples dividing c correspond to
non-crossing partitions: the cycles correspond to non-crossing

polygons on the circle:

1
2

3

4
56

7

8

9

The picture corresponds
to (134)(5689). The least common multiple of two non-crossing
transposition is their product. If two transpositions cross:

1
2

3

4
56

7

8

9

their least common multiple is the cycle (1358).
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