The dual monoid

Jean Michel

University Paris Diderot

Berlin, tuesday 1st September 2021

Invariants of complex reflection groups

Let $V=\mathbb{C}^{n}$ and $W \subset \mathrm{GL}(V)$ a finite group. Let $S V$ be the symmetric algebra of V (a polynomial algebra).

Invariants of complex reflection groups

Let $V=\mathbb{C}^{n}$ and $W \subset \mathrm{GL}(V)$ a finite group. Let $S V$ be the symmetric algebra of V (a polynomial algebra). It is the algebra of V in terms of algebraic geometry: $V=\operatorname{Spec} S V$.

Invariants of complex reflection groups

Let $V=\mathbb{C}^{n}$ and $W \subset \mathrm{GL}(V)$ a finite group. Let $S V$ be the symmetric algebra of V (a polynomial algebra). It is the algebra of V in terms of algebraic geometry: $V=\operatorname{Spec} S V$. $S V^{W}$ is the algebra of the quotient space V / W.

Invariants of complex reflection groups

Let $V=\mathbb{C}^{n}$ and $W \subset \mathrm{GL}(V)$ a finite group. Let $S V$ be the symmetric algebra of V (a polynomial algebra). It is the algebra of V in terms of algebraic geometry: $V=\operatorname{Spec} S V$. $S V^{W}$ is the algebra of the quotient space V / W.

Theorem
SV/W is a smooth variety if and only W is a complex reflection groups.

Invariants of complex reflection groups

Let $V=\mathbb{C}^{n}$ and $W \subset \mathrm{GL}(V)$ a finite group. Let $S V$ be the symmetric algebra of V (a polynomial algebra). It is the algebra of V in terms of algebraic geometry: $V=\operatorname{Spec} S V$. $S V^{W}$ is the algebra of the quotient space V / W.

Theorem

SV/W is a smooth variety if and only W is a complex reflection groups. Then $S V / W \simeq V$, thus $S V^{W}$ is a polynomial algebra.

Invariants of complex reflection groups

Let $V=\mathbb{C}^{n}$ and $W \subset \mathrm{GL}(V)$ a finite group. Let $S V$ be the symmetric algebra of V (a polynomial algebra). It is the algebra of V in terms of algebraic geometry: $V=\operatorname{Spec} S V$. $S V^{W}$ is the algebra of the quotient space V / W.

Theorem

SV/W is a smooth variety if and only W is a complex reflection groups. Then $S V / W \simeq V$, thus $S V^{W}$ is a polynomial algebra.

In particular, if W is a complex reflection group, $(S V)^{W}$ is freely generated by n polynomials.

Invariants of complex reflection groups

Let $V=\mathbb{C}^{n}$ and $W \subset \mathrm{GL}(V)$ a finite group. Let $S V$ be the symmetric algebra of V (a polynomial algebra). It is the algebra of V in terms of algebraic geometry: $V=\operatorname{Spec} S V$. $S V^{W}$ is the algebra of the quotient space V / W.

Theorem

SV/W is a smooth variety if and only W is a complex reflection groups. Then $S V / W \simeq V$, thus $S V^{W}$ is a polynomial algebra.

In particular, if W is a complex reflection group, $(S V)^{W}$ is freely generated by n polynomials. These polynomials are not unique, but their degrees are unique.

Invariants of complex reflection groups

Let $V=\mathbb{C}^{n}$ and $W \subset \mathrm{GL}(V)$ a finite group. Let $S V$ be the symmetric algebra of V (a polynomial algebra). It is the algebra of V in terms of algebraic geometry: $V=\operatorname{Spec} S V$. $S V^{W}$ is the algebra of the quotient space V / W.

Theorem

SV/W is a smooth variety if and only W is a complex reflection groups. Then $S V / W \simeq V$, thus $S V^{W}$ is a polynomial algebra.

In particular, if W is a complex reflection group, $(S V)^{W}$ is freely generated by n polynomials. These polynomials are not unique, but their degrees are unique. We write these degrees $d_{1} \leq \ldots \leq d_{n}$.

Invariants of complex reflection groups

Let $V=\mathbb{C}^{n}$ and $W \subset \mathrm{GL}(V)$ a finite group. Let $S V$ be the symmetric algebra of V (a polynomial algebra). It is the algebra of V in terms of algebraic geometry: $V=\operatorname{Spec} S V$.
$S V^{W}$ is the algebra of the quotient space V / W.

Theorem

SV/W is a smooth variety if and only W is a complex reflection groups. Then $S V / W \simeq V$, thus $S V^{W}$ is a polynomial algebra.

In particular, if W is a complex reflection group, $(S V)^{W}$ is freely generated by n polynomials. These polynomials are not unique, but their degrees are unique. We write these degrees $d_{1} \leq \ldots \leq d_{n}$.

Proposition

$$
|W|=d_{1} \cdots d_{n} \text { and }|\operatorname{Ref}(W)|=\left(d_{1}-1\right)+\cdots+\left(d_{n}-1\right)
$$

Invariants of complex reflection groups

Let $V=\mathbb{C}^{n}$ and $W \subset \mathrm{GL}(V)$ a finite group. Let $S V$ be the symmetric algebra of V (a polynomial algebra). It is the algebra of V in terms of algebraic geometry: $V=\operatorname{Spec} S V$. $S V^{W}$ is the algebra of the quotient space V / W.

Theorem

SV/W is a smooth variety if and only W is a complex reflection groups. Then $S V / W \simeq V$, thus $S V^{W}$ is a polynomial algebra.

In particular, if W is a complex reflection group, $(S V)^{W}$ is freely generated by n polynomials. These polynomials are not unique, but their degrees are unique. We write these degrees $d_{1} \leq \ldots \leq d_{n}$.

Proposition

$$
|W|=d_{1} \cdots d_{n} \text { and }|\operatorname{Ref}(W)|=\left(d_{1}-1\right)+\cdots+\left(d_{n}-1\right)
$$

Further, if W is irreducible, the order of any eigenvalue of any $w \in W$ on V divides one of the d_{i}, and W is real iff $d_{1}=2$.

Coxeter elements

Definition

$w \in W$ is ζ-regular if it has a eigenvector $v \in V$ (for the eigenvalue ζ) outside of all reflection hyperplanes.

Coxeter elements

Definition

$w \in W$ is ζ-regular if it has a eigenvector $v \in V$ (for the eigenvalue ζ) outside of all reflection hyperplanes.

If W is irreducible, ζ-regular elements form a single conjugacy class of W, of elements which have same order as ζ..

Coxeter elements

Definition

$w \in W$ is ζ-regular if it has a eigenvector $v \in V$ (for the eigenvalue ζ) outside of all reflection hyperplanes.

If W is irreducible, ζ-regular elements form a single conjugacy class of W, of elements which have same order as ζ..

Proposition

If W is irreducible and well-generated, then $d_{n}>d_{n-1}$.

Coxeter elements

Definition

$w \in W$ is ζ-regular if it has a eigenvector $v \in V$ (for the eigenvalue ζ) outside of all reflection hyperplanes.

If W is irreducible, ζ-regular elements form a single conjugacy class of W, of elements which have same order as ζ..

Proposition

If W is irreducible and well-generated, then $d_{n}>d_{n-1} . h=d_{n}$ is called the Coxeter number

Coxeter elements

Definition

$w \in W$ is ζ-regular if it has a eigenvector $v \in V$ (for the eigenvalue ζ) outside of all reflection hyperplanes.

If W is irreducible, ζ-regular elements form a single conjugacy class of W, of elements which have same order as ζ..

Proposition

If W is irreducible and well-generated, then $d_{n}>d_{n-1} . h=d_{n}$ is called the Coxeter number and there exist $e^{2 i \pi / h}$-regular elements; they are called Coxeter elements.

Coxeter elements

Definition

$w \in W$ is ζ-regular if it has a eigenvector $v \in V$ (for the eigenvalue ζ) outside of all reflection hyperplanes.

If W is irreducible, ζ-regular elements form a single conjugacy class of W, of elements which have same order as ζ..

Proposition

If W is irreducible and well-generated, then $d_{n}>d_{n-1} . h=d_{n}$ is called the Coxeter number and there exist $e^{2 i \pi / h}$-regular elements; they are called Coxeter elements.
We have $h n=|\operatorname{Ref}(W)|+\mid$ Hyperplanes $(W) \mid$.

Coxeter elements

Definition

$w \in W$ is ζ-regular if it has a eigenvector $v \in V$ (for the eigenvalue ζ) outside of all reflection hyperplanes.

If W is irreducible, ζ-regular elements form a single conjugacy class of W, of elements which have same order as ζ..

Proposition

If W is irreducible and well-generated, then $d_{n}>d_{n-1} . h=d_{n}$ is called the Coxeter number and there exist $e^{2 i \pi / h}$-regular elements; they are called Coxeter elements.
We have $h n=|\operatorname{Ref}(W)|+\mid$ Hyperplanes $(W) \mid$.
The theory of regular elements further describes the eigenvalues on V of Coxeter elements.

Coxeter elements

Definition

$w \in W$ is ζ-regular if it has a eigenvector $v \in V$ (for the eigenvalue ζ) outside of all reflection hyperplanes.

If W is irreducible, ζ-regular elements form a single conjugacy class of W, of elements which have same order as ζ..

Proposition

If W is irreducible and well-generated, then $d_{n}>d_{n-1} . h=d_{n}$ is called the Coxeter number and there exist $e^{2 i \pi / h}$-regular elements; they are called Coxeter elements.
We have $h n=|\operatorname{Ref}(W)|+\mid$ Hyperplanes $(W) \mid$.
The theory of regular elements further describes the eigenvalues on V of Coxeter elements. They are $\left\{e^{2 i \pi\left(1-d_{j}\right)} / h\right\}_{j}$. In particular no eigenvalue is 1 .

mov

For $x \in \operatorname{GL}(V)$ we set $\operatorname{mov}(x)=\operatorname{image}(x-1)$.

mov

For $x \in \mathrm{GL}(V)$ we set $\operatorname{mov}(x)=\operatorname{image}(x-1)$. We have $\operatorname{dim}(\operatorname{mov}(x))=\operatorname{codim}(\operatorname{fix}(x))$.

Proposition (mov subadditive)
$\operatorname{dim}(\operatorname{mov}(x, 1))<\operatorname{dim}(\operatorname{mov}(v))+\operatorname{din}(m o v(y))$ and there is equality if and only if $\operatorname{mov}(x y)=\operatorname{mov}(x) \oplus \operatorname{mov}(y)$;

mov

For $x \in \mathrm{GL}(V)$ we set $\operatorname{mov}(x)=\operatorname{image}(x-1)$. We have $\operatorname{dim}(\operatorname{mov}(x))=\operatorname{codim}(\operatorname{fix}(x))$. In particular $\operatorname{dim}(\operatorname{mov}(x))=1$ for a reflection.

Proposition (mov subadditive)
$\operatorname{dim}(\operatorname{mov}(x y)) \leq \operatorname{dim}(\operatorname{mov}(x))+\operatorname{dim}(\operatorname{mov}(y))$ and there is equality if and only if $\operatorname{mov}(x y)=\operatorname{mov}(x) \oplus \operatorname{mov}(v)$.

For $x \in \mathrm{GL}(V)$ we set $\operatorname{mov}(x)=\operatorname{image}(x-1)$. We have $\operatorname{dim}(\operatorname{mov}(x))=\operatorname{codim}(\operatorname{fix}(x))$. In particular $\operatorname{dim}(\operatorname{mov}(x))=1$ for a reflection.

Proposition (mov subadditive)
$\operatorname{dim}(\operatorname{mov}(x y)) \leq \operatorname{dim}(\operatorname{mov}(x))+\operatorname{dim}(\operatorname{mov}(y))$ and there is equality if and only if $\operatorname{mov}(x y)=\operatorname{mov}(x) \oplus \operatorname{mov}(y)$;

For $x \in \mathrm{GL}(V)$ we set $\operatorname{mov}(x)=\operatorname{image}(x-1)$. We have $\operatorname{dim}(\operatorname{mov}(x))=\operatorname{codim}(\operatorname{fix}(x))$. In particular $\operatorname{dim}(\operatorname{mov}(x))=1$ for a reflection.

Proposition (mov subadditive)
$\operatorname{dim}(\operatorname{mov}(x y)) \leq \operatorname{dim}(\operatorname{mov}(x))+\operatorname{dim}(\operatorname{mov}(y))$ and there is equality if and only if $\operatorname{mov}(x y)=\operatorname{mov}(x) \oplus \operatorname{mov}(y)$;

Proof.
We have $x y-1=(x-1) y+y-1$ which implies that $\operatorname{mov}(x y) \subseteq \operatorname{mov}(x)+\operatorname{mov}(y)$, which shows the proposition.

In particular $\operatorname{dim}(\operatorname{mov}(x)) \leq I_{R}(x)$.

Proposition

Let $R=\operatorname{Ref}(W)$, and let c such that $I_{R}(c)=n$ and $\operatorname{dim} \operatorname{mov}(c)=n$.

Proposition

Let $R=\operatorname{Ref}(W)$, and let c such that $I_{R}(c)=n$ and $\operatorname{dim} \operatorname{mov}(c)=n$. Then for any $x \leq_{R} c$, we have $I_{R}(x)=\operatorname{dim} \operatorname{mov}(x)$.

Proposition

Let $R=\operatorname{Ref}(W)$, and let c such that $I_{R}(c)=n$ and $\operatorname{dim} \operatorname{mov}(c)=n$. Then for any $x \leq_{R} c$, we have $I_{R}(x)=\operatorname{dim} \operatorname{mov}(x)$.

Proof.

If $x \leq_{R} c$, we have $c=x y$ where $I_{R}(x)+I_{R}(y)=n$.

Proposition

Let $R=\operatorname{Ref}(W)$, and let c such that $I_{R}(c)=n$ and $\operatorname{dim} \operatorname{mov}(c)=n$. Then for any $x \leq_{R} c$, we have $I_{R}(x)=\operatorname{dim} \operatorname{mov}(x)$.

Proof.

If $x \leq_{R} c$, we have $c=x y$ where $I_{R}(x)+I_{R}(y)=n$. But from proposition (mov subadditive) $n=\operatorname{dim}(\operatorname{mov}(c)) \leq$ $\operatorname{dim}(\operatorname{mov}(x))+\operatorname{dim}(\operatorname{mov}(y)) \leq I_{R}(x)+I_{R}(y)=n$ so there is equality everywhere.

Proposition

Let $R=\operatorname{Ref}(W)$, and let c such that $I_{R}(c)=n$ and $\operatorname{dim} \operatorname{mov}(c)=n$. Then for any $x \leq_{R} c$, we have $I_{R}(x)=\operatorname{dim} \operatorname{mov}(x)$.

Proof.

If $x \leq_{R} c$, we have $c=x y$ where $I_{R}(x)+I_{R}(y)=n$. But from proposition (mov subadditive) $n=\operatorname{dim}(\operatorname{mov}(c)) \leq$ $\operatorname{dim}(\operatorname{mov}(x))+\operatorname{dim}(\operatorname{mov}(y)) \leq I_{R}(x)+I_{R}(y)=n$ so there is equality everywhere.

Note that a left divisor of such an element c for \leq_{R} is also a right divisor since $x y=y\left(y^{-1} x y\right)$ and the lengths add also in the RHS since $\operatorname{dim}\left(\operatorname{mov}\left(y^{-1} x y\right)\right)=\operatorname{dim}(\operatorname{mov}(x))$ since $\operatorname{dim}(\operatorname{mov})$ is invariant by conjugacy.

Proposition

Let $R=\operatorname{Ref}(W)$, and let c such that $I_{R}(c)=n$ and $\operatorname{dim} \operatorname{mov}(c)=n$. Then for any $x \leq_{R} c$, we have $I_{R}(x)=\operatorname{dim} \operatorname{mov}(x)$.

Proof.

If $x \leq_{R} c$, we have $c=x y$ where $I_{R}(x)+I_{R}(y)=n$. But from proposition (mov subadditive) $n=\operatorname{dim}(\operatorname{mov}(c)) \leq$ $\operatorname{dim}(\operatorname{mov}(x))+\operatorname{dim}(\operatorname{mov}(y)) \leq I_{R}(x)+I_{R}(y)=n$ so there is equality everywhere.

Note that a left divisor of such an element c for \leq_{R} is also a right divisor since $x y=y\left(y^{-1} x y\right)$ and the lengths add also in the RHS since $\operatorname{dim}\left(\operatorname{mov}\left(y^{-1} x y\right)\right)=\operatorname{dim}(\operatorname{mov}(x))$ since $\operatorname{dim}(\operatorname{mov})$ is invariant by conjugacy.
So an interval $\leq_{R} c$ is automatically balanced.

Unitary and orthogonal group

If W is a finite subgroup of $\mathrm{GL}(V)$, we can find a Hermitian scalar product (,) invariant by W :

Unitary and orthogonal group

If W is a finite subgroup of $\mathrm{GL}(V)$, we can find a Hermitian scalar product (,) invariant by W : take any scalar product and average it over W.

Unitary and orthogonal group

If W is a finite subgroup of $\mathrm{GL}(V)$, we can find a Hermitian scalar product (,) invariant by W : take any scalar product and average it over W. This makes W a subgroup of the unitary group.

Unitary and orthogonal group

If W is a finite subgroup of $\mathrm{GL}(V)$, we can find a Hermitian scalar product (,) invariant by W : take any scalar product and average it over W. This makes W a subgroup of the unitary group.
Such a product can be used to give a formula for a reflection with reflecting hyperplane H and non-trivial eigenvalue ζ.

Unitary and orthogonal group

If W is a finite subgroup of $\mathrm{GL}(V)$, we can find a Hermitian scalar product (,) invariant by W : take any scalar product and average it over W. This makes W a subgroup of the unitary group.
Such a product can be used to give a formula for a reflection with reflecting hyperplane H and non-trivial eigenvalue ζ. Let r be a vector orthogonal to H.

Unitary and orthogonal group

If W is a finite subgroup of $\mathrm{GL}(V)$, we can find a Hermitian scalar product (,) invariant by W : take any scalar product and average it over W. This makes W a subgroup of the unitary group.
Such a product can be used to give a formula for a reflection with reflecting hyperplane H and non-trivial eigenvalue ζ. Let r be a vector orthogonal to H. Then (r, ζ) define a reflection s by

$$
s(x)=x-(1-\zeta) \frac{(x, r)}{(r, r)} r
$$

A conplex refection group defined over the reals that is.

Unitary and orthogonal group

If W is a finite subgroup of $\mathrm{GL}(V)$, we can find a Hermitian scalar product (,) invariant by W : take any scalar product and average it over W. This makes W a subgroup of the unitary group.
Such a product can be used to give a formula for a reflection with reflecting hyperplane H and non-trivial eigenvalue ζ. Let r be a vector orthogonal to H. Then (r, ζ) define a reflection s by

$$
s(x)=x-(1-\zeta) \frac{(x, r)}{(r, r)} r
$$

A complex refection group defined over the reals (that is, $V=V_{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C}$ and W is comes from an action on $V_{\mathbb{R}}$) is the same as a finite Coxeter group.

Unitary and orthogonal group

If W is a finite subgroup of $\mathrm{GL}(V)$, we can find a Hermitian scalar product (,) invariant by W : take any scalar product and average it over W. This makes W a subgroup of the unitary group.
Such a product can be used to give a formula for a reflection with reflecting hyperplane H and non-trivial eigenvalue ζ. Let r be a vector orthogonal to H. Then (r, ζ) define a reflection s by

$$
s(x)=x-(1-\zeta) \frac{(x, r)}{(r, r)} r
$$

A complex refection group defined over the reals (that is, $V=V_{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C}$ and W is comes from an action on $V_{\mathbb{R}}$) is the same as a finite Coxeter group. In this case we can find on $V_{\mathbb{R}}$ an invariant scalar product and this makes W a subgroup of the orthogonal group.

Proposition (Carter)

If $V=\mathbb{C}^{n}$ and $W \subset \mathrm{GL}(V)$ is an irreducible Coxeter group, defined already on $V_{\mathbb{R}}$, any element $c \in W$ such that $\operatorname{dim}(\operatorname{mov}(c))=n$ has $I_{R}(c)=n$.

Proposition (Carter)

If $V=\mathbb{C}^{n}$ and $W \subset \mathrm{GL}(V)$ is an irreducible Coxeter group, defined already on $V_{\mathbb{R}}$, any element $c \in W$ such that $\operatorname{dim}(\operatorname{mov}(c))=n$ has $I_{R}(c)=n$.

Proof.
If $\operatorname{dim}(\operatorname{mov}(c))=n$ then $1-c$ is surjective.

Proposition (Carter)

If $V=\mathbb{C}^{n}$ and $W \subset \mathrm{GL}(V)$ is an irreducible Coxeter group, defined already on $V_{\mathbb{R}}$, any element $c \in W$ such that $\operatorname{dim}(\operatorname{mov}(c))=n$ has $I_{R}(c)=n$.

Proof.
If $\operatorname{dim}(\operatorname{mov}(c))=n$ then $1-c$ is surjective. Let s be a reflection (of eigenvalue -1 since we are in a real group) defined by a root r orthogonal to its hyperplane.

Proposition (Carter)

If $V=\mathbb{C}^{n}$ and $W \subset \mathrm{GL}(V)$ is an irreducible Coxeter group, defined already on $V_{\mathbb{R}}$, any element $c \in W$ such that $\operatorname{dim}(\operatorname{mov}(c))=n$ has $I_{R}(c)=n$.

Proof.

If $\operatorname{dim}(\operatorname{mov}(c))=n$ then $1-c$ is surjective. Let s be a reflection (of eigenvalue -1 since we are in a real group) defined by a root r orthogonal to its hyperplane. There exists v such that $(1-c)(v)=r$.

Proposition (Carter)

If $V=\mathbb{C}^{n}$ and $W \subset \mathrm{GL}(V)$ is an irreducible Coxeter group, defined already on $V_{\mathbb{R}}$, any element $c \in W$ such that $\operatorname{dim}(\operatorname{mov}(c))=n$ has $I_{R}(c)=n$.

Proof.

If $\operatorname{dim}(\operatorname{mov}(c))=n$ then $1-c$ is surjective. Let s be a reflection (of eigenvalue -1 since we are in a real group) defined by a root r orthogonal to its hyperplane. There exists v such that $(1-c)(v)=r$. Since the scalar product on $V_{\mathbb{R}}$ is W-invariant we have $(v, v)=(c(v), c(v))=(v+r, v+r)$ whence
$(r, r)+(v, r)+(r, v)=0$ or $2 \frac{(v, r)}{(r, r)}=-1$

Proposition (Carter)

If $V=\mathbb{C}^{n}$ and $W \subset \mathrm{GL}(V)$ is an irreducible Coxeter group, defined already on $V_{\mathbb{R}}$, any element $c \in W$ such that $\operatorname{dim}(\operatorname{mov}(c))=n$ has $I_{R}(c)=n$.

Proof.

If $\operatorname{dim}(\operatorname{mov}(c))=n$ then $1-c$ is surjective. Let s be a reflection (of eigenvalue -1 since we are in a real group) defined by a root r orthogonal to its hyperplane. There exists v such that $(1-c)(v)=r$. Since the scalar product on $V_{\mathbb{R}}$ is W-invariant we have $(v, v)=(c(v), c(v))=(v+r, v+r)$ whence $(r, r)+(v, r)+(r, v)=0$ or $2 \frac{(v, r)}{(r, r)}=-1$ so plugging into the formula $s(x)=x-2 \frac{(x, r)}{(r, r)} r$ we get $s(v)=v+r$ thus $s(v+r)=v$ and $s c(v)=v$.

Proposition (Carter)

If $V=\mathbb{C}^{n}$ and $W \subset \mathrm{GL}(V)$ is an irreducible Coxeter group, defined already on $V_{\mathbb{R}}$, any element $c \in W$ such that $\operatorname{dim}(\operatorname{mov}(c))=n$ has $I_{R}(c)=n$.

Proof.

If $\operatorname{dim}(\operatorname{mov}(c))=n$ then $1-c$ is surjective. Let s be a reflection (of eigenvalue -1 since we are in a real group) defined by a root r orthogonal to its hyperplane. There exists v such that $(1-c)(v)=r$. Since the scalar product on $V_{\mathbb{R}}$ is W-invariant we have $(v, v)=(c(v), c(v))=(v+r, v+r)$ whence $(r, r)+(v, r)+(r, v)=0$ or $2 \frac{(v, r)}{(r, r)}=-1$ so plugging into the formula $s(x)=x-2 \frac{(x, r)}{(r, r)} r$ we get $s(v)=v+r$ thus $s(v+r)=v$ and $s c(v)=v$. Thus $s c$ lives in the parabolic subgroup fixing c and by induction $I_{R}(s c) \leq n-1$ thus $I_{R}(c)=n$.

Proposition (Carter)

If $V=\mathbb{C}^{n}$ and $W \subset \mathrm{GL}(V)$ is an irreducible Coxeter group, defined already on $V_{\mathbb{R}}$, any element $c \in W$ such that $\operatorname{dim}(\operatorname{mov}(c))=n$ has $I_{R}(c)=n$.

Proof.

If $\operatorname{dim}(\operatorname{mov}(c))=n$ then $1-c$ is surjective. Let s be a reflection (of eigenvalue -1 since we are in a real group) defined by a root r orthogonal to its hyperplane. There exists v such that $(1-c)(v)=r$. Since the scalar product on $V_{\mathbb{R}}$ is W-invariant we have $(v, v)=(c(v), c(v))=(v+r, v+r)$ whence $(r, r)+(v, r)+(r, v)=0$ or $2 \frac{(v, r)}{(r, r)}=-1$ so plugging into the formula $s(x)=x-2 \frac{(x, r)}{(r, r)} r$ we get $s(v)=v+r$ thus $s(v+r)=v$ and $s c(v)=v$. Thus $s c$ lives in the parabolic subgroup fixing c and by induction $I_{R}(s c) \leq n-1$ thus $I_{R}(c)=n$.

In V, the computation fails even for r a true reflection since $(v, r)+(r, v) \neq 2(v, r)$.

Proposition (Carter)

If $V=\mathbb{C}^{n}$ and $W \subset \mathrm{GL}(V)$ is an irreducible Coxeter group, defined already on $V_{\mathbb{R}}$, any element $c \in W$ such that $\operatorname{dim}(\operatorname{mov}(c))=n$ has $I_{R}(c)=n$.

Proof.

If $\operatorname{dim}(\operatorname{mov}(c))=n$ then $1-c$ is surjective. Let s be a reflection (of eigenvalue -1 since we are in a real group) defined by a root r orthogonal to its hyperplane. There exists v such that $(1-c)(v)=r$. Since the scalar product on $V_{\mathbb{R}}$ is W-invariant we have $(v, v)=(c(v), c(v))=(v+r, v+r)$ whence $(r, r)+(v, r)+(r, v)=0$ or $2 \frac{(v, r)}{(r, r)}=-1$ so plugging into the formula $s(x)=x-2 \frac{(x, r)}{(r, r)} r$ we get $s(v)=v+r$ thus $s(v+r)=v$ and $s c(v)=v$. Thus $s c$ lives in the parabolic subgroup fixing c and by induction $I_{R}(s c) \leq n-1$ thus $I_{R}(c)=n$.

In V, the computation fails even for r a true reflection since $(v, r)+(r, v) \neq 2(v, r)$. In fact all non-real groups have elements c such that $I_{R}(c)>n$.

We have also seen in the proof that for real W and a reflection s, we have $I_{R}(s c)<n$ thus $s \leq_{R} c$.

We have also seen in the proof that for real W and a reflection s, we have $I_{R}(s c)<n$ thus $s \leq_{R} c$. For any non-real group and any Coxeter element c there are some reflections such that $s \not Z_{R} c$.

We have also seen in the proof that for real W and a reflection s, we have $I_{R}(s c)<n$ thus $s \leq_{R} c$. For any non-real group and any Coxeter element c there are some reflections such that $s \not \not_{R} c$.

We have an action of the braid group B_{n} on the decompositions of an element: $c=s_{1} \ldots s_{n}$.

We have also seen in the proof that for real W and a reflection s, we have $I_{R}(s c)<n$ thus $s \leq_{R} c$. For any non-real group and any Coxeter element c there are some reflections such that $s \not \not_{R} c$.

We have an action of the braid group B_{n} on the decompositions of an element: $c=s_{1} \ldots s_{n}$. We make σ_{i} act by
$\sigma_{i}\left(\left(s_{1}, \ldots, s_{n}\right)\right)=\left(s_{1}, \ldots, s_{i-1}, s_{i} s_{i+1} s_{i}^{-1}, s_{i}, s_{i+2}, \ldots, s_{n}\right)$.

We have also seen in the proof that for real W and a reflection s, we have $I_{R}(s c)<n$ thus $s \leq_{R} c$. For any non-real group and any Coxeter element c there are some reflections such that $s \not Z_{R} c$.

We have an action of the braid group B_{n} on the decompositions of an element: $c=s_{1} \ldots s_{n}$. We make σ_{i} act by
$\sigma_{i}\left(\left(s_{1}, \ldots, s_{n}\right)\right)=\left(s_{1}, \ldots, s_{i-1}, s_{i} s_{i+1} s_{i}^{-1}, s_{i}, s_{i+2}, \ldots, s_{n}\right)$.
We still get a decomposition as reflections.

We have also seen in the proof that for real W and a reflection s, we have $I_{R}(s c)<n$ thus $s \leq_{R} c$. For any non-real group and any Coxeter element c there are some reflections such that $s \not Z_{R} c$.

We have an action of the braid group B_{n} on the decompositions of an element: $c=s_{1} \ldots s_{n}$. We make σ_{i} act by
$\sigma_{i}\left(\left(s_{1}, \ldots, s_{n}\right)\right)=\left(s_{1}, \ldots, s_{i-1}, s_{i} s_{i+1} s_{i}^{-1}, s_{i}, s_{i+2}, \ldots, s_{n}\right)$.
We still get a decomposition as reflections. It turns out that the Hurwitz action is transitive on all such decompositions.

We have also seen in the proof that for real W and a reflection s, we have $I_{R}(s c)<n$ thus $s \leq_{R} c$. For any non-real group and any Coxeter element c there are some reflections such that $s \not Z_{R} c$.

We have an action of the braid group B_{n} on the decompositions of an element: $c=s_{1} \ldots s_{n}$. We make σ_{i} act by
$\sigma_{i}\left(\left(s_{1}, \ldots, s_{n}\right)\right)=\left(s_{1}, \ldots, s_{i-1}, s_{i} s_{i+1} s_{i}^{-1}, s_{i}, s_{i+2}, \ldots, s_{n}\right)$.
We still get a decomposition as reflections. It turns out that the Hurwitz action is transitive on all such decompositions. This is a fundamental fact which allows to compute all simples of the dual monoid.

The braid group

The following is easy for finite Coxeter groups but non-trivial for non-real complex reflection groups.
(Steinberg) W acts regularly on $V^{\text {reg }}$ where $V^{r e g}=V-\bigcup_{s \in R} H_{s}$,
given this, we can define $B_{W}=\Pi_{1}\left(V^{\text {reg }} / W\right)$ and
(Bessis 2001) B_{W} needs the same number of braid reflections to
generate as W needs reflections.

The braid group

The following is easy for finite Coxeter groups but non-trivial for non-real complex reflection groups.
(Steinberg) W acts regularly on $V^{\text {reg }}$ where $V^{r e g}=V-\bigcup_{s \in R} H_{s}$, given this, we can define $B_{W}=\Pi_{1}\left(V^{\text {reg }} / W\right)$ and

$$
1 \rightarrow \Pi_{1}\left(V^{\mathrm{reg}}\right) \rightarrow B_{W}:=\Pi_{1}\left(V^{\mathrm{reg}} / W\right) \rightarrow W \rightarrow 1
$$

The braid group

The following is easy for finite Coxeter groups but non-trivial for non-real complex reflection groups.
(Steinberg) W acts regularly on $V^{\text {reg }}$ where $V^{r e g}=V-\bigcup_{s \in R} H_{s}$, given this, we can define $B_{W}=\Pi_{1}\left(V^{\text {reg }} / W\right)$ and

$$
1 \rightarrow \Pi_{1}\left(V^{\mathrm{reg}}\right) \rightarrow B_{W}:=\Pi_{1}\left(V^{\mathrm{reg}} / W\right) \rightarrow W \rightarrow 1
$$

(Bessis 2001) B_{W} needs the same number of braid reflections to generate as W needs reflections.
discriminant.

The braid group

The following is easy for finite Coxeter groups but non-trivial for non-real complex reflection groups.
(Steinberg) W acts regularly on $V^{\text {reg }}$ where $V^{\text {reg }}=V-\bigcup_{s \in R} H_{s}$, given this, we can define $B_{W}=\Pi_{1}\left(V^{\text {reg }} / W\right)$ and

$$
1 \rightarrow \Pi_{1}\left(V^{\mathrm{reg}}\right) \rightarrow B_{W}:=\Pi_{1}\left(V^{\mathrm{reg}} / W\right) \rightarrow W \rightarrow 1
$$

(Bessis 2001) B_{W} needs the same number of braid reflections to generate as W needs reflections.

This comes from the equation for $\bigcup_{s \in R} H_{s}$ in V / W, the discriminant.

Braid reflections

A braid reflection above a reflection s with non-trivial eigenvalue $\zeta:=e^{2 i \pi / e}$

- 0
- x_{0}

Braid reflections

A braid reflection above a reflection s with non-trivial eigenvalue $\zeta:=e^{2 i \pi / e}$

- 0

Braid reflections

A braid reflection above a reflection s with non-trivial eigenvalue $\zeta:=e^{2 i \pi / e}$

Braid reflections

A braid reflection above a reflection s with non-trivial eigenvalue $\zeta:=e^{2 i \pi / e}$

The discriminant

We have $V^{\text {reg }} / W \simeq \mathbb{C}^{n}-\{\Delta=0\}$ where the discriminant Δ is an invariant equation of $\bigcup_{r \in R} H_{r}$ in V / W.

The discriminant

We have $V^{\text {reg }} / W \simeq \mathbb{C}^{n}-\{\Delta=0\}$ where the discriminant Δ is an invariant equation of $\bigcup_{r \in R} H_{r}$ in V / W. To express the variety
$\bigcup_{r \in R} H_{r}$ as the zeroes of an invariant polynomial, for each reflecting hyperplane H choose a linear fom I_{H} of kernel H.

The discriminant

We have $V^{\text {reg }} / W \simeq \mathbb{C}^{n}-\{\Delta=0\}$ where the discriminant Δ is an invariant equation of $\bigcup_{r \in R} H_{r}$ in V / W. To express the variety $\bigcup_{r \in R} H_{r}$ as the zeroes of an invariant polynomial, for each reflecting hyperplane H choose a linear fom I_{H} of kernel H. Then $\Delta=\left.\prod_{H}\right|_{H} ^{C_{W}(H) \mid}$ is an invariant equation.

The discriminant

We have $V^{\text {reg }} / W \simeq \mathbb{C}^{n}-\{\Delta=0\}$ where the discriminant Δ is an invariant equation of $\bigcup_{r \in R} H_{r}$ in V / W. To express the variety $\bigcup_{r \in R} H_{r}$ as the zeroes of an invariant polynomial, for each reflecting hyperplane H choose a linear fom I_{H} of kernel H. Then $\Delta=\left.\prod_{H}\right|_{H} ^{C_{W}(H) \mid}$ is an invariant equation.

Theorem (Bessis)
If W is an irreducible well generated complex reflection group,

The discriminant

We have $V^{\text {reg }} / W \simeq \mathbb{C}^{n}-\{\Delta=0\}$ where the discriminant Δ is an invariant equation of $\bigcup_{r \in R} H_{r}$ in V / W. To express the variety $\bigcup_{r \in R} H_{r}$ as the zeroes of an invariant polynomial, for each reflecting hyperplane H choose a linear fom I_{H} of kernel H. Then $\Delta=\left.\prod_{H}\right|_{H} ^{C_{W}(H) \mid}$ is an invariant equation.

Theorem (Bessis)

If W is an irreducible well generated complex reflection group, we have $\Delta=f_{n}^{n}+P_{2}\left(f_{1}, \ldots, f_{n-1}\right) f_{n}^{n-2}+\ldots+P_{n}\left(f_{1}, \ldots, f_{n-1}\right)$ where P_{i} is weighted homogeneous of degree ih.

The discriminant

We have $V^{\text {reg }} / W \simeq \mathbb{C}^{n}-\{\Delta=0\}$ where the discriminant Δ is an invariant equation of $\bigcup_{r \in R} H_{r}$ in V / W. To express the variety $\bigcup_{r \in R} H_{r}$ as the zeroes of an invariant polynomial, for each reflecting hyperplane H choose a linear fom I_{H} of kernel H. Then $\Delta=\left.\left.\prod_{H}\right|_{H}\right|_{W} ^{C_{W}(H) \mid}$ is an invariant equation.

Theorem (Bessis)

If W is an irreducible well generated complex reflection group, we have $\Delta=f_{n}^{n}+P_{2}\left(f_{1}, \ldots, f_{n-1}\right) f_{n}^{n-2}+\ldots+P_{n}\left(f_{1}, \ldots, f_{n-1}\right)$ where P_{i} is weighted homogeneous of degree ih.

It follows that if we fix the values of f_{1}, \ldots, f_{n-1} and let f_{n} vary in the complex plane, the discriminant has generically n zeroes in that plane

Decomposition of lift of c

Decomposition of lift of c

$$
x_{2}
$$

- X_{1}
...
- x_{n}

Decomposition of lift of c

Decomposition of lift of c

Decomposition of lift of c

Decomposition of lift of c

Since f_{n} has degree h a loop in that plane maps to an element of W with eigenvalue $e^{2 i \pi / h}$. We get a decomposition $\mathbf{c}=\mathbf{s}_{1} \ldots \mathbf{s}_{n}$ as braid reflections.

The Birman-Ko-Lee monoid

For the symmetric group \mathfrak{S}_{n} the reflections are the transpositions (ij).

The Birman-Ko-Lee monoid

For the symmetric group \mathfrak{S}_{n} the reflections are the transpositions (ij). For $c=(12 \ldots n)$ the simples dividing c correspond to non-crossing partitions: the cycles correspond to non-crossing
polygons on the circle:
east common multiple of two non-crossing transposition is their product. If two transpositions cross:

The Birman-Ko-Lee monoid

For the symmetric group \mathfrak{S}_{n} the reflections are the transpositions (ij). For $c=(12 \ldots n)$ the simples dividing c correspond to non-crossing partitions: the cycles correspond to non-crossing
polygons on the circle:

The picture corresponds to (134)(5689).

The Birman-Ko-Lee monoid

For the symmetric group \mathfrak{S}_{n} the reflections are the transpositions (ij). For $c=(12 \ldots n)$ the simples dividing c correspond to non-crossing partitions: the cycles correspond to non-crossing
polygons on the circle:

The picture corresponds to (134)(5689). The least common multiple of two non-crossing transposition is their product. If two transpositions cross:

The Birman-Ko-Lee monoid

For the symmetric group \mathfrak{S}_{n} the reflections are the transpositions (ij). For $c=(12 \ldots n)$ the simples dividing c correspond to non-crossing partitions: the cycles correspond to non-crossing
polygons on the circle:

The picture corresponds to (134)(5689). The least common multiple of two non-crossing transposition is their product. If two transpositions cross:

The Birman-Ko-Lee monoid

For the symmetric group \mathfrak{S}_{n} the reflections are the transpositions (ij). For $c=(12 \ldots n)$ the simples dividing c correspond to non-crossing partitions: the cycles correspond to non-crossing
polygons on the circle:

The picture corresponds to (134)(5689). The least common multiple of two non-crossing transposition is their product. If two transpositions cross:

their least common multiple is the cycle (1358).

