Jean Michel

University Paris Diderot

Berlin, tuesday 31st August 2021

Let W be a group, and $R \subset W$ a finite subset which generates positively W; that is, any element $w \in W$ can be written $w = r_1 \cdots r_n$, with $r_i \in R$.

Then we define the *R*-length $I_R(w)$ as the minimum *n* in such a decomposition of *w*. And we define a left divisibility relation \leq_R on *W* by

 $a \leq_R c$ if and only if $l_R(a) + l_R(a^{-1}c) = l_R(c)$,

that is, we have a product ab = c where lengths add.

Left divisibility is a partial order. We call a *left interval* a subset of W stable by taking left divisors.

Symmetrically we can define right divisibility $c \ge_R a$ and call balanced interval a subset stable by taking left and right divisors. Let S be a balanced interval. We define the interval monoid M(S) whose generators are a copy S of S by the presentation

 $M(\mathbf{S}) = \langle \mathbf{S} \mid \mathbf{ab} = \mathbf{c} \text{ if } I_R(a) + I_R(b) = I_R(c) \text{ and } ab = c \rangle$

Let W be a group, and $R \subset W$ a finite subset which generates positively W; that is, any element $w \in W$ can be written $w = r_1 \cdots r_n$, with $r_i \in R$.

Then we define the *R*-length $I_R(w)$ as the minimum *n* in such a decomposition of *w*. And we define a left divisibility relation \leq_R on *W* by

 $a \leq_R c$ if and only if $I_R(a) + I_R(a^{-1}c) = I_R(c)$,

that is, we have a product ab = c where lengths add.

Left divisibility is a partial order. We call a *left interval* a subset of W stable by taking left divisors.

Symmetrically we can define right divisibility $c \ge_R a$ and call balanced interval a subset stable by taking left and right divisors. Let S be a balanced interval. We define the interval monoid M(S) whose generators are a copy S of S by the presentation

 $M(\mathbf{S}) = \langle \mathbf{S} \mid \mathbf{ab} = \mathbf{c} \text{ if } I_R(a) + I_R(b) = I_R(c) \text{ and } ab = c \rangle$

Let W be a group, and $R \subset W$ a finite subset which generates positively W; that is, any element $w \in W$ can be written $w = r_1 \cdots r_n$, with $r_i \in R$.

Then we define the *R*-length $I_R(w)$ as the minimum *n* in such a decomposition of *w*. And we define a left divisibility relation \leq_R on *W* by

 $a \leq_R c$ if and only if $I_R(a) + I_R(a^{-1}c) = I_R(c)$,

that is, we have a product ab = c where lengths add.

Left divisibility is a partial order. We call a *left interval* a subset of W stable by taking left divisors.

Symmetrically we can define right divisibility $c \ge_R a$ and call balanced interval a subset stable by taking left and right divisors. Let S be a balanced interval. We define the interval monoid M(S) whose generators are a copy **S** of S by the presentation

 $M(\mathbf{S}) = \langle \mathbf{S} \mid \mathbf{ab} = \mathbf{c} \text{ if } I_R(\mathbf{a}) + I_R(\mathbf{b}) = I_R(\mathbf{c}) \text{ and } \mathbf{ab} = \mathbf{c} \rangle$

Let W be a group, and $R \subset W$ a finite subset which generates positively W; that is, any element $w \in W$ can be written $w = r_1 \cdots r_n$, with $r_i \in R$.

Then we define the *R*-length $I_R(w)$ as the minimum *n* in such a decomposition of *w*. And we define a left divisibility relation \leq_R on *W* by

 $a \leq_R c$ if and only if $I_R(a) + I_R(a^{-1}c) = I_R(c)$,

that is, we have a product ab = c where lengths add. Left divisibility is a partial order. We call a *left interval* a subset of W stable by taking left divisors.

Symmetrically we can define right divisibility $c \ge_R a$ and call balanced interval a subset stable by taking left and right divisors. Let S be a balanced interval. We define the interval monoid $M(\mathbf{S})$ whose generators are a copy **S** of S by the presentation

 $M(\mathbf{S}) = \langle \mathbf{S} \mid \mathbf{ab} = \mathbf{c} \text{ if } I_R(a) + I_R(b) = I_R(c) \text{ and } ab = c \rangle$

Let W be a group, and $R \subset W$ a finite subset which generates positively W; that is, any element $w \in W$ can be written $w = r_1 \cdots r_n$, with $r_i \in R$.

Then we define the *R*-length $I_R(w)$ as the minimum *n* in such a decomposition of *w*. And we define a left divisibility relation \leq_R on *W* by

 $a \leq_R c$ if and only if $I_R(a) + I_R(a^{-1}c) = I_R(c)$,

that is, we have a product ab = c where lengths add.

Left divisibility is a partial order. We call a *left interval* a subset of W stable by taking left divisors.

Symmetrically we can define right divisibility $c \ge_R a$ and call balanced interval a subset stable by taking left and right divisors. Let S be a balanced interval. We define the interval monoid M(S)

whose generators are a copy \mathbf{S} of S by the presentation

 $M(\mathbf{S}) = \langle \mathbf{S} \mid \mathbf{ab} = \mathbf{c} \text{ if } I_R(a) + I_R(b) = I_R(c) \text{ and } ab = c \rangle$

Let W be a group, and $R \subset W$ a finite subset which generates positively W; that is, any element $w \in W$ can be written $w = r_1 \cdots r_n$, with $r_i \in R$.

Then we define the *R*-length $I_R(w)$ as the minimum *n* in such a decomposition of *w*. And we define a left divisibility relation \leq_R on *W* by

 $a \leq_R c$ if and only if $l_R(a) + l_R(a^{-1}c) = l_R(c)$,

that is, we have a product ab = c where lengths add.

Left divisibility is a partial order. We call a *left interval* a subset of W stable by taking left divisors.

Symmetrically we can define right divisibility $c \ge_R a$ and call balanced interval a subset stable by taking left and right divisors. Let S be a balanced interval. We define the interval monoid M(S) whose generators are a copy **S** of S by the presentation

$$M(\mathbf{S}) = \langle \mathbf{S} \mid \mathbf{ab} = \mathbf{c} \text{ if } I_R(a) + I_R(b) = I_R(c) \text{ and } ab = c \rangle$$

Theorem

If the interval $S \subset W$ is balanced and is a lattice for \leq_R and \geq_R , then M(S) has S as a Garside family.

The lattice condition means that there are least common multiples and greatest common divisors for left and right divisibility. For least common multiples we can allow a weakening: roughly, elements which have a common multiple have a least one.

Two applications are a construction of the Artin monoids and the dual monoids.

Theorem

If the interval $S \subset W$ is balanced and is a lattice for \leq_R and \geq_R , then $M(\mathbf{S})$ has \mathbf{S} as a Garside family.

The lattice condition means that there are least common multiples and greatest common divisors for left and right divisibility.

For least common multiples we can allow a weakening: roughly, elements which have a common multiple have a least one.

Two applications are a construction of the Artin monoids and the dual monoids.

Theorem

If the interval $S \subset W$ is balanced and is a lattice for \leq_R and \geq_R , then $M(\mathbf{S})$ has \mathbf{S} as a Garside family.

The lattice condition means that there are least common multiples and greatest common divisors for left and right divisibility. For least common multiples we can allow a weakening: roughly, elements which have a common multiple have a least one.

Two applications are a construction of the Artin monoids and the dual monoids.

Theorem

If the interval $S \subset W$ is balanced and is a lattice for \leq_R and \geq_R , then $M(\mathbf{S})$ has \mathbf{S} as a Garside family.

The lattice condition means that there are least common multiples and greatest common divisors for left and right divisibility. For least common multiples we can allow a weakening: roughly, elements which have a common multiple have a least one.

Two applications are a construction of the Artin monoids and the dual monoids.

Theorem

If the interval $S \subset W$ is balanced and is a lattice for \leq_R and \geq_R , then $M(\mathbf{S})$ has \mathbf{S} as a Garside family.

The lattice condition means that there are least common multiples and greatest common divisors for left and right divisibility. For least common multiples we can allow a weakening: roughly, elements which have a common multiple have a least one.

Two applications are a construction of the Artin monoids and the dual monoids.

Theorem

If the interval $S \subset W$ is balanced and is a lattice for \leq_R and \geq_R , then $M(\mathbf{S})$ has \mathbf{S} as a Garside family.

The lattice condition means that there are least common multiples and greatest common divisors for left and right divisibility. For least common multiples we can allow a weakening: roughly, elements which have a common multiple have a least one.

Two applications are a construction of the Artin monoids and the dual monoids.

Theorem

If the interval $S \subset W$ is balanced and is a lattice for \leq_R and \geq_R , then $M(\mathbf{S})$ has \mathbf{S} as a Garside family.

The lattice condition means that there are least common multiples and greatest common divisors for left and right divisibility. For least common multiples we can allow a weakening: roughly, elements which have a common multiple have a least one.

Two applications are a construction of the Artin monoids and the dual monoids.

Let $V = \mathbb{C}^n$. A complex reflection is an element of $s \in GL(V)$ of finite order, whose fixed points are an hyperplane (we say s is a true reflection if it is of order $s^2 = 1$).

A finite complex reflection group is a finite subgroup $W \subset GL(V)$ generated by complex reflections. We say W is *irreducible* if the representation V is. We say that the irreducible complex reflection group $W \subset GL(V)$ is *well generated* if it can be generated by nreflections (sometimes n + 1 is necessary).

Let $V = \mathbb{C}^n$. A complex reflection is an element of $s \in GL(V)$ of finite order, whose fixed points are an hyperplane (we say s is a true reflection if it is of order $s^2 = 1$).

A finite complex reflection group is a finite subgroup $W \subset GL(V)$ generated by complex reflections. We say W is *irreducible* if the representation V is. We say that the irreducible complex reflection group $W \subset GL(V)$ is *well generated* if it can be generated by nreflections (sometimes n + 1 is necessary).

Let $V = \mathbb{C}^n$. A complex reflection is an element of $s \in GL(V)$ of finite order, whose fixed points are an hyperplane (we say s is a true reflection if it is of order $s^2 = 1$). A finite complex reflection group is a finite subgroup $W \subset GL(V)$ generated by complex reflections. We say W is *irreducible* if the representation V is. We say that the irreducible complex reflection

group $W \subset GL(V)$ is well generated if it can be generated by n reflections (sometimes n + 1 is necessary).

Let $V = \mathbb{C}^n$. A complex reflection is an element of $s \in GL(V)$ of finite order, whose fixed points are an hyperplane (we say s is a true reflection if it is of order $s^2 = 1$). A finite complex reflection group is a finite subgroup $W \subset GL(V)$ generated by complex reflections. We say W is *irreducible* if the representation V is. We say that the irreducible complex reflection group $W \subset GL(V)$ is well generated if it can be generated by n reflections (sometimes n + 1 is necessary).

Let $V = \mathbb{C}^n$. A complex reflection is an element of $s \in GL(V)$ of finite order, whose fixed points are an hyperplane (we say s is a true reflection if it is of order $s^2 = 1$). A finite complex reflection group is a finite subgroup $W \subset GL(V)$ generated by complex reflections. We say W is *irreducible* if the representation V is. We say that the irreducible complex reflection group $W \subset GL(V)$ is *well generated* if it can be generated by n reflections (sometimes n + 1 is necessary).

Let $V = \mathbb{C}^n$. A complex reflection is an element of $s \in GL(V)$ of finite order, whose fixed points are an hyperplane (we say s is a true reflection if it is of order $s^2 = 1$). A finite complex reflection group is a finite subgroup $W \subset GL(V)$ generated by complex reflections. We say W is *irreducible* if the representation V is. We say that the irreducible complex reflection group $W \subset GL(V)$ is *well generated* if it can be generated by nreflections (sometimes n + 1 is necessary).

Let $V = \mathbb{C}^n$. A complex reflection is an element of $s \in GL(V)$ of finite order, whose fixed points are an hyperplane (we say s is a true reflection if it is of order $s^2 = 1$). A finite complex reflection group is a finite subgroup $W \subset GL(V)$ generated by complex reflections. We say W is *irreducible* if the representation V is. We say that the irreducible complex reflection group $W \subset GL(V)$ is *well generated* if it can be generated by n

reflections (sometimes n+1 is necessary).

Let $V = \mathbb{C}^n$. A complex reflection is an element of $s \in GL(V)$ of finite order, whose fixed points are an hyperplane (we say s is a true reflection if it is of order $s^2 = 1$). A finite complex reflection group is a finite subgroup $W \subset GL(V)$ generated by complex reflections. We say W is *irreducible* if the representation V is. We say that the irreducible complex reflection group $W \subset GL(V)$ is *well generated* if it can be generated by nreflections (sometimes n + 1 is necessary).

Intervals in a group define *germs*, where germs are sets which model subsets of a monoid.

Definition

A germ is a set S with a partially defined multiplication $(a, b) \mapsto a \cdot b, S^2 \to S.$

Usually we require germs to be *left associative*, that is:

If $g \cdot h$ and $f \cdot (g \cdot h)$ are defined, then $f \cdot g$ and $(f \cdot g) \cdot h$ are also defined, and $f \cdot (g \cdot h) = (f \cdot g) \cdot h$.

There is similarly a *right associativity* condition. A germ defines a monoid

$$M(S) = \langle S \mid ab = c \text{ if } a \cdot b \text{ is defined and } a \cdot b = c \rangle$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Intervals in a group define *germs*, where germs are sets which model subsets of a monoid.

Definition

A germ is a set S with a partially defined multiplication $(a, b) \mapsto a \cdot b, S^2 \to S.$

Usually we require germs to be *left associative*, that is:

If $g \cdot h$ and $f \cdot (g \cdot h)$ are defined, then $f \cdot g$ and $(f \cdot g) \cdot h$ are also defined, and $f \cdot (g \cdot h) = (f \cdot g) \cdot h$.

There is similarly a *right associativity* condition. A germ defines a monoid

$$M(S) = \langle S \mid ab = c \text{ if } a \cdot b \text{ is defined and } a \cdot b = c \rangle$$

Intervals in a group define *germs*, where germs are sets which model subsets of a monoid.

Definition

A germ is a set S with a partially defined multiplication $(a, b) \mapsto a \cdot b, S^2 \to S.$

Usually we require germs to be *left associative*, that is:

If $g \cdot h$ and $f \cdot (g \cdot h)$ are defined, then $f \cdot g$ and $(f \cdot g) \cdot h$ are also defined, and $f \cdot (g \cdot h) = (f \cdot g) \cdot h$.

There is similarly a *right associativity* condition. A germ defines a monoid

 $M(S) = \langle S \mid ab = c \text{ if } a \cdot b \text{ is defined and } a \cdot b = c \rangle$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Intervals in a group define *germs*, where germs are sets which model subsets of a monoid.

Definition

A germ is a set S with a partially defined multiplication $(a, b) \mapsto a \cdot b, S^2 \to S.$

Usually we require germs to be *left associative*, that is:

If $g \cdot h$ and $f \cdot (g \cdot h)$ are defined, then $f \cdot g$ and $(f \cdot g) \cdot h$ are also defined, and $f \cdot (g \cdot h) = (f \cdot g) \cdot h$.

There is similarly a *right associativity* condition. A germ defines a monoid

 $M(S) = \langle S \mid ab = c \text{ if } a \cdot b \text{ is defined and } a \cdot b = c \rangle$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Intervals in a group define *germs*, where germs are sets which model subsets of a monoid.

Definition

A germ is a set S with a partially defined multiplication $(a, b) \mapsto a \cdot b, S^2 \to S.$

Usually we require germs to be *left associative*, that is:

If $g \cdot h$ and $f \cdot (g \cdot h)$ are defined, then $f \cdot g$ and $(f \cdot g) \cdot h$ are also defined, and $f \cdot (g \cdot h) = (f \cdot g) \cdot h$.

There is similarly a *right associativity* condition. A germ defines a monoid

$$M(S) = \langle S \mid ab = c \text{ if } a \cdot b \text{ is defined and } a \cdot b = c \rangle$$

A left associative germ S embeds into M(S) as a subset stable under right divisors.

Sketch of proof.

M(S) identifies with S^* (the sequences (s_1, \ldots, s_n) with $s_i \in S$) modulo the relations $(s_i, \ldots, s_i, s_{i+1}, s_n) \equiv (s_i, \ldots, s_i \cdot s_{i+1}, s_n)$. We define a partial map $\iota : M(S) \to S$ by $\iota((s_1, \ldots, s_n)) = s$ if $(s_1, \ldots, s_n) \equiv (s)$. Left associativity shows that ι is well defined. The composition $s \mapsto (s) \mapsto \iota((s))$ is the identity so $s \to (s)$ is injective. Similarly left associativity shows that ι is defined for a right divisor (a final subsequence).

We say that a germ is *left-cancellative* if $f \cdot g$ and $f \cdot g'$ defined and equal implies g = g'.

A left associative germ S embeds into M(S) as a subset stable under right divisors.

Sketch of proof.

M(S) identifies with S^* (the sequences (s_1, \ldots, s_n) with $s_i \in S$) modulo the relations $(s_i, \ldots, s_i, s_{i+1}, s_n) \equiv (s_i, \ldots, s_i \cdot s_{i+1}, s_n)$. We define a partial map $\iota : M(S) \to S$ by $\iota((s_1, \ldots, s_n)) = s$ if $(s_1, \ldots, s_n) \equiv (s)$. Left associativity shows that ι is well defined. The composition $s \mapsto (s) \mapsto \iota((s))$ is the identity so $s \to (s)$ is injective. Similarly left associativity shows that ι is defined for a right divisor (a final subsequence).

We say that a germ is *left-cancellative* if $f \cdot g$ and $f \cdot g'$ defined and equal implies g = g'.

A left associative germ S embeds into M(S) as a subset stable under right divisors.

Sketch of proof.

M(S) identifies with S^* (the sequences (s_1, \ldots, s_n) with $s_i \in S$) modulo the relations $(s_i, \ldots, s_i, s_{i+1}, s_n) \equiv (s_i, \ldots, s_i \cdot s_{i+1}, s_n)$. We define a partial map $\iota : M(S) \to S$ by $\iota((s_1, \ldots, s_n)) = s$ if $(s_1, \ldots, s_n) \equiv (s)$. Left associativity shows that ι is well defined. The composition $s \mapsto (s) \mapsto \iota((s))$ is the identity so $s \to (s)$ is injective. Similarly left associativity shows that ι is defined for a right divisor (a final subsequence).

We say that a germ is *left-cancellative* if $f \cdot g$ and $f \cdot g'$ defined and equal implies g = g'.

A left associative germ S embeds into M(S) as a subset stable under right divisors.

Sketch of proof.

M(S) identifies with S^* (the sequences (s_1, \ldots, s_n) with $s_i \in S$) modulo the relations $(s_i, \ldots, s_i, s_{i+1}, s_n) \equiv (s_i, \ldots, s_i \cdot s_{i+1}, s_n)$. We define a partial map $\iota : M(S) \to S$ by $\iota((s_1, \ldots, s_n)) = s$ if $(s_1, \ldots, s_n) \equiv (s)$. Left associativity shows that ι is well defined. The composition $s \mapsto (s) \mapsto \iota((s))$ is the identity so $s \to (s)$ is injective. Similarly left associativity shows that ι is defined for a right divisor (a final subsequence).

We say that a germ is *left-cancellative* if $f \cdot g$ and $f \cdot g'$ defined and equal implies g = g'.

A left associative germ S embeds into M(S) as a subset stable under right divisors.

Sketch of proof.

M(S) identifies with S^* (the sequences (s_1, \ldots, s_n) with $s_i \in S$) modulo the relations $(s_i, \ldots, s_i, s_{i+1}, s_n) \equiv (s_i, \ldots, s_i \cdot s_{i+1}, s_n)$. We define a partial map $\iota : M(S) \to S$ by $\iota((s_1, \ldots, s_n)) = s$ if $(s_1, \ldots, s_n) \equiv (s)$. Left associativity shows that ι is well defined. The composition $s \mapsto (s) \mapsto \iota((s))$ is the identity so $s \to (s)$ is injective.

Similarly left associativity shows that ι is defined for a right divisor (a final subsequence).

We say that a germ is *left-cancellative* if $f \cdot g$ and $f \cdot g'$ defined and equal implies g = g'.

A left associative germ S embeds into M(S) as a subset stable under right divisors.

Sketch of proof.

M(S) identifies with S^* (the sequences (s_1, \ldots, s_n) with $s_i \in S$) modulo the relations $(s_i, \ldots, s_i, s_{i+1}, s_n) \equiv (s_i, \ldots, s_i \cdot s_{i+1}, s_n)$. We define a partial map $\iota : M(S) \to S$ by $\iota((s_1, \ldots, s_n)) = s$ if $(s_1, \ldots, s_n) \equiv (s)$. Left associativity shows that ι is well defined. The composition $s \mapsto (s) \mapsto \iota((s))$ is the identity so $s \to (s)$ is injective. Similarly left associativity shows that ι is defined for a right divisor

(a final subsequence).

We say that a germ is *left-cancellative* if $f \cdot g$ and $f \cdot g'$ defined and equal implies g = g'.

A left associative germ S embeds into M(S) as a subset stable under right divisors.

Sketch of proof.

M(S) identifies with S^* (the sequences (s_1, \ldots, s_n) with $s_i \in S$) modulo the relations $(s_i, \ldots, s_i, s_{i+1}, s_n) \equiv (s_i, \ldots, s_i \cdot s_{i+1}, s_n)$. We define a partial map $\iota : M(S) \to S$ by $\iota((s_1, \ldots, s_n)) = s$ if $(s_1, \ldots, s_n) \equiv (s)$. Left associativity shows that ι is well defined. The composition $s \mapsto (s) \mapsto \iota((s))$ is the identity so $s \to (s)$ is injective. Similarly left associativity shows that ι is defined for a right divisor

(a final subsequence). \Box

We say that a germ is *left-cancellative* if $f \cdot g$ and $f \cdot g'$ defined and equal implies g = g'.

A left associative germ S embeds into M(S) as a subset stable under right divisors.

Sketch of proof.

M(S) identifies with S^* (the sequences (s_1, \ldots, s_n) with $s_i \in S$) modulo the relations $(s_i, \ldots, s_i, s_{i+1}, s_n) \equiv (s_i, \ldots, s_i \cdot s_{i+1}, s_n)$. We define a partial map $\iota : M(S) \to S$ by $\iota((s_1, \ldots, s_n)) = s$ if $(s_1, \ldots, s_n) \equiv (s)$. Left associativity shows that ι is well defined. The composition $s \mapsto (s) \mapsto \iota((s))$ is the identity so $s \to (s)$ is injective. Similarly left associativity shows that ι is defined for a right divisor

(a final subsequence). \Box

We say that a germ is *left-cancellative* if $f \cdot g$ and $f \cdot g'$ defined and equal implies g = g'.

When is M(S) Garside?

Proposition

A Garside family S in a monoid M defines a germ such that M = M(S).

Proof.

We have to prove that two elements of M are equal by applying relations of the form ab = c, where a, b, c in S. This is clear since one goes from any decomposition $s_1 \cdots s_n$ of an element to a normal form by a finite number of equalities $s_1s_2 = H(s_1s_2)T(s_1s_2)$ which can be written themselves $H(s_1s_2) = s_1t$ and $s_2 = tT(s_1s_2)$.

In the above proof appears the functions on S^2 given by $(s_1, s_2) \mapsto H(s_1 s_2)$ and $(s_1, s_2) \mapsto T(s_1 s_2)$. Let us see that such functions are always defined for an interval S as in Theorem 1.
Proposition

A Garside family S in a monoid M defines a germ such that M = M(S).

Proof.

We have to prove that two elements of M are equal by applying relations of the form ab = c, where a, b, c in S. This is clear since one goes from any decomposition $s_1 \cdots s_n$ of an element to a normal form by a finite number of equalities $s_1s_2 = H(s_1s_2)T(s_1s_2)$ which can be written themselves $H(s_1s_2) = s_1t$ and $s_2 = tT(s_1s_2)$.

In the above proof appears the functions on S^2 given by $(s_1, s_2) \mapsto H(s_1s_2)$ and $(s_1, s_2) \mapsto T(s_1s_2)$. Let us see that such functions are always defined for an interval S as in Theorem 1.

Proposition

A Garside family S in a monoid M defines a germ such that M = M(S).

Proof.

We have to prove that two elements of M are equal by applying relations of the form ab = c, where a, b, c in S. This is clear since one goes from any decomposition $s_1 \cdots s_n$ of an element to a normal form by a finite number of equalities $s_1s_2 = H(s_1s_2)T(s_1s_2)$ which can be written themselves $H(s_1s_2) = s_1t$ and $s_2 = tT(s_1s_2)$.

In the above proof appears the functions on S^2 given by $(s_1, s_2) \mapsto H(s_1s_2)$ and $(s_1, s_2) \mapsto T(s_1s_2)$. Let us see that such functions are always defined for an interval S as in Theorem 1.

Proposition

A Garside family S in a monoid M defines a germ such that M = M(S).

Proof.

We have to prove that two elements of M are equal by applying relations of the form ab = c, where a, b, c in S. This is clear since one goes from any decomposition $s_1 \cdots s_n$ of an element to a normal form by a finite number of equalities $s_1s_2 = H(s_1s_2)T(s_1s_2)$ which can be written themselves $H(s_1s_2) = s_1t$ and $s_2 = tT(s_1s_2)$.

In the above proof appears the functions on S^2 given by $(s_1, s_2) \mapsto H(s_1 s_2)$ and $(s_1, s_2) \mapsto T(s_1 s_2)$. Let us see that such functions are always defined for an interval S as in Theorem 1.

Proposition

A Garside family S in a monoid M defines a germ such that M = M(S).

Proof.

We have to prove that two elements of M are equal by applying relations of the form ab = c, where a, b, c in S. This is clear since one goes from any decomposition $s_1 \cdots s_n$ of an element to a normal form by a finite number of equalities $s_1s_2 = H(s_1s_2)T(s_1s_2)$ which can be written themselves $H(s_1s_2) = s_1t$ and $s_2 = tT(s_1s_2)$.

In the above proof appears the functions on S^2 given by $(s_1, s_2) \mapsto H(s_1 s_2)$ and $(s_1, s_2) \mapsto T(s_1 s_2)$. Let us see that such functions are always defined for an interval S as in Theorem 1.

Let S be a germ which is left-associative, left-cancellative, has right lcms and is right Noetherian (no infinite bounded chains for left divisibility). Then given $x, y \in S$, there is a unique maximal z (for divisibility) which left-divides y and such that $x \cdot z$ is defined

Proof.

If z_1 and z_2 are two left divisors of y such that $x \cdot z_1$ and $x \cdot z_2$ are defined, then these elements have a right lcm which can be written $x \cdot z_3$ (by stability under right divisors). And by left cancellability we find that z_3 is a lcm of z_1 and z_2 (and left-divides y). By right Noetherianity the sequence z_1, \ldots, z_n will become stationary when considering more elements z_i , converging to a z satisfying the requirements.

Let S be a germ which is left-associative, left-cancellative, has right lcms and is right Noetherian (no infinite bounded chains for left divisibility). Then given $x, y \in S$, there is a unique maximal z (for divisibility) which left-divides y and such that $x \cdot z$ is defined.

Proof.

If z_1 and z_2 are two left divisors of y such that $x \cdot z_1$ and $x \cdot z_2$ are defined, then these elements have a right lcm which can be written $x \cdot z_3$ (by stability under right divisors). And by left cancellability we find that z_3 is a lcm of z_1 and z_2 (and left-divides y). By right Noetherianity the sequence z_1, \ldots, z_n will become stationary when considering more elements z_i , converging to a z satisfying the requirements.

Let S be a germ which is left-associative, left-cancellative, has right lcms and is right Noetherian (no infinite bounded chains for left divisibility). Then given $x, y \in S$, there is a unique maximal z (for divisibility) which left-divides y and such that $x \cdot z$ is defined.

Proof.

If z_1 and z_2 are two left divisors of y such that $x \cdot z_1$ and $x \cdot z_2$ are defined, then these elements have a right lcm which can be written $x \cdot z_3$ (by stability under right divisors). And by left cancellability we find that z_3 is a lcm of z_1 and z_2 (and left-divides y). By right Noetherianity the sequence z_1, \ldots, z_n will become stationary when considering more elements z_i , converging to a z satisfying the requirements.

Let S be a germ which is left-associative, left-cancellative, has right lcms and is right Noetherian (no infinite bounded chains for left divisibility). Then given $x, y \in S$, there is a unique maximal z (for divisibility) which left-divides y and such that $x \cdot z$ is defined.

Proof.

If z_1 and z_2 are two left divisors of y such that $x \cdot z_1$ and $x \cdot z_2$ are defined, then these elements have a right lcm which can be written $x \cdot z_3$ (by stability under right divisors). And by left cancellability we find that z_3 is a lcm of z_1 and z_2 (and left-divides y). By right Noetherianity the sequence z_1, \ldots, z_n will become stationary when considering more elements z_1 , converging to a z satisfying the requirements.

Let S be a germ which is left-associative, left-cancellative, has right lcms and is right Noetherian (no infinite bounded chains for left divisibility). Then given $x, y \in S$, there is a unique maximal z (for divisibility) which left-divides y and such that $x \cdot z$ is defined.

Proof.

If z_1 and z_2 are two left divisors of y such that $x \cdot z_1$ and $x \cdot z_2$ are defined, then these elements have a right lcm which can be written $x \cdot z_3$ (by stability under right divisors). And by left cancellability we find that z_3 is a lcm of z_1 and z_2 (and left-divides y). By right Noetherianity the sequence z_1, \ldots, z_n will become stationary when considering more elements z_i , converging to a z satisfying the requirements.

Let S be a germ which is left-associative, left-cancellative, has right lcms and is right Noetherian (no infinite bounded chains for left divisibility). Then given $x, y \in S$, there is a unique maximal z (for divisibility) which left-divides y and such that $x \cdot z$ is defined.

Proof.

If z_1 and z_2 are two left divisors of y such that $x \cdot z_1$ and $x \cdot z_2$ are defined, then these elements have a right lcm which can be written $x \cdot z_3$ (by stability under right divisors). And by left cancellability we find that z_3 is a lcm of z_1 and z_2 (and left-divides y). By right Noetherianity the sequence z_1, \ldots, z_n will become stationary when considering more elements z_i , converging to a z satisfying the requirements.

We will denote $H_2(x, y)$ the element $x \cdot z$ defined in the previous proposition. We will also denote $T_2(x, y)$ the element $z' \in S$ such that $y = z \cdot z'$. In M(S) we have $xy = H_2(x, y)T_2(x, y)$.

We will prove that M(S) has S as a Garside family by constructing a head function. But there is a technical complication: to show M(S) is cancellable we will have to define simultaneously a tail function. We first show

Proposition (H and T)

Let *S* be a germ which is left-associative, left-cancellative and has functions H_2 and T_2 as in Proposition (Head). Then there are unique functions $H : M(S) \rightarrow S$ and $T : M(S) \rightarrow M(S)$ such that for $x, y \in S$ we have $H(xy) = H_2(x, y)$ and $T(xy) = T_2(x, y)$, and which for any $a, b \in M(S)$ satisfy

H(ab) = H(aH(b))T(ab) = T(aH(b))T(b)

Further, H(x) is the maximal left divisor of x which is in S.

うしん 前 ふぼやふぼやふむや

Proposition (H and T)

Let S be a germ which is left-associative, left-cancellative and has functions H_2 and T_2 as in Proposition (Head). Then there are unique functions $H : M(S) \rightarrow S$ and $T : M(S) \rightarrow M(S)$ such that for $x, y \in S$ we have $H(xy) = H_2(x, y)$ and $T(xy) = T_2(x, y)$, and which for any $a, b \in M(S)$ satisfy

H(ab) = H(aH(b))T(ab) = T(aH(b))T(b)

Further, H(x) is the maximal left divisor of x which is in S

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◇◇◇

Proposition (H and T)

Let *S* be a germ which is left-associative, left-cancellative and has functions H_2 and T_2 as in Proposition (Head). Then there are unique functions $H : M(S) \to S$ and $T : M(S) \to M(S)$ such that for $x, y \in S$ we have $H(xy) = H_2(x, y)$ and $T(xy) = T_2(x, y)$, and which for any $a, b \in M(S)$ satisfy

H(ab) = H(aH(b))T(ab) = T(aH(b))T(b)

Further, H(x) is the maximal left divisor of x which is in S

・ロト・西・・田・・田・・日・

Proposition (H and T)

Let S be a germ which is left-associative, left-cancellative and has functions H_2 and T_2 as in Proposition (Head). Then there are unique functions $H : M(S) \to S$ and $T : M(S) \to M(S)$ such that for $x, y \in S$ we have $H(xy) = H_2(x, y)$ and $T(xy) = T_2(x, y)$, and which for any $a, b \in M(S)$ satisfy

H(ab) = H(aH(b))T(ab) = T(aH(b))T(b)

Proposition (H and T)

Let S be a germ which is left-associative, left-cancellative and has functions H_2 and T_2 as in Proposition (Head). Then there are unique functions $H : M(S) \to S$ and $T : M(S) \to M(S)$ such that for $x, y \in S$ we have $H(xy) = H_2(x, y)$ and $T(xy) = T_2(x, y)$, and which for any $a, b \in M(S)$ satisfy

H(ab) = H(aH(b))T(ab) = T(aH(b))T(b)

(日) (四) (日) (日) (日) (日) (日) (日)

Proposition (H and T)

Let S be a germ which is left-associative, left-cancellative and has functions H_2 and T_2 as in Proposition (Head). Then there are unique functions $H : M(S) \to S$ and $T : M(S) \to M(S)$ such that for $x, y \in S$ we have $H(xy) = H_2(x, y)$ and $T(xy) = T_2(x, y)$, and which for any $a, b \in M(S)$ satisfy

$$H(ab) = H(aH(b))$$
$$T(ab) = T(aH(b))T(b)$$

(日) (四) (日) (日) (日) (日) (日) (日)

Proposition (H and T)

Let S be a germ which is left-associative, left-cancellative and has functions H_2 and T_2 as in Proposition (Head). Then there are unique functions $H : M(S) \to S$ and $T : M(S) \to M(S)$ such that for $x, y \in S$ we have $H(xy) = H_2(x, y)$ and $T(xy) = T_2(x, y)$, and which for any $a, b \in M(S)$ satisfy

$$H(ab) = H(aH(b))$$
$$T(ab) = T(aH(b))T(b)$$

►
$$H(()) = 1$$

$$\blacktriangleright H((s)) = s$$

•
$$H(s_1,...,s_n) = H_2(s_1, H((s_2,...,s_n)))$$

and

► T(()) = T((s)) = 1

•
$$T(s_1,...,s_n) = T_2(s_1, H((s_2,...,s_n)))T((s_2,...,s_n)).$$

We have to show that these definitions are compatible with \equiv and satisfy the equations of Proposition (*H* and *T*). We first show that H_2 and T_2 as defined on S^2 satisfy the equations of Proposition (*H* and *T*)

(日本)(同本)(日本)(日本)(日本)

As before, we identify elements of M(S) to elements of S^* modulo

 \equiv . We define *H* and *T* on such sequences by induction on the number of terms, by setting

- ► H(()) = 1
- $\blacktriangleright H((s)) = s$
- $\blacktriangleright H(s_1,\ldots,s_n) = H_2(s_1,H((s_2,\ldots,s_n)))$

and

► T(()) = T((s)) = 1

• $T(s_1,...,s_n) = T_2(s_1, H((s_2,...,s_n)))T((s_2,...,s_n)).$

We have to show that these definitions are compatible with \equiv and satisfy the equations of Proposition (*H* and *T*). We first show that *H*₂ and *T*₂ as defined on *S*² satisfy the equations of Proposition (*H* and *T*)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

►
$$H(()) = 1$$

$$\blacktriangleright H((s)) = s$$

•
$$H(s_1,...,s_n) = H_2(s_1, H((s_2,...,s_n)))$$

and

► T(()) = T((s)) = 1

• $T(s_1,...,s_n) = T_2(s_1, H((s_2,...,s_n)))T((s_2,...,s_n)).$

We have to show that these definitions are compatible with \equiv and satisfy the equations of Proposition (*H* and *T*). We first show that H_2 and T_2 as defined on S^2 satisfy the equations of Proposition (*H* and *T*).

•
$$H(s_1,...,s_n) = H_2(s_1, H((s_2,...,s_n)))$$

and

•
$$T(()) = T((s)) = 1$$

•
$$T(s_1,...,s_n) = T_2(s_1, H((s_2,...,s_n)))T((s_2,...,s_n)).$$

We have to show that these definitions are compatible with \equiv and satisfy the equations of Proposition (*H* and *T*). We first show that H_2 and T_2 as defined on S^2 satisfy the equations of Proposition (*H* and *T*)

•
$$H(()) = 1$$

$$\blacktriangleright H((s)) = s$$

•
$$H(s_1,...,s_n) = H_2(s_1, H((s_2,...,s_n)))$$

and

►
$$T(()) = T((s)) = 1$$

•
$$T(s_1,...,s_n) = T_2(s_1, H((s_2,...,s_n)))T((s_2,...,s_n)).$$

We have to show that these definitions are compatible with \equiv and satisfy the equations of Proposition (*H* and *T*).

We first show that H_2 and T_2 as defined on S^2 satisfy the equations of Proposition (*H* and *T*)

•
$$H(()) = 1$$

$$\blacktriangleright H((s)) = s$$

•
$$H(s_1,...,s_n) = H_2(s_1, H((s_2,...,s_n)))$$

and

►
$$T(()) = T((s)) = 1$$

•
$$T(s_1,...,s_n) = T_2(s_1, H((s_2,...,s_n)))T((s_2,...,s_n)).$$

We have to show that these definitions are compatible with \equiv and satisfy the equations of Proposition (*H* and *T*). We first show that H_2 and T_2 as defined on S^2 satisfy the equations of Proposition (*H* and *T*)

1.
$$H_2(x \cdot y, z) = H_2(x, H_2(y, z))$$

2.
$$T_2(x \cdot y, z) = T_2(x, H_2(y, z))T_2(y, z)$$

Proof.

1.
$$H_2(x \cdot y, z) = H_2(x, H_2(y, z))$$

2.
$$T_2(x \cdot y, z) = T_2(x, H_2(y, z))T_2(y, z)$$

Proof.

Define u by $H_2(x \cdot y, z) = x \cdot y \cdot u$ and v by $H_2(y, z) = y \cdot v$. By

1.
$$H_2(x \cdot y, z) = H_2(x, H_2(y, z))$$

2.
$$T_2(x \cdot y, z) = T_2(x, H_2(y, z))T_2(y, z)$$

Proof.

Define u by $H_2(x \cdot y, z) = x \cdot y \cdot u$ and v by $H_2(y, z) = y \cdot v$. By definition of $H_2(y, z)$ we have $y \cdot u \preccurlyeq H_2(y, z)$ where \preccurlyeq is the divisibility relation in S. As $x \cdot y \cdot u$ is defined, this in turn implies

1.
$$H_2(x \cdot y, z) = H_2(x, H_2(y, z))$$

2.
$$T_2(x \cdot y, z) = T_2(x, H_2(y, z))T_2(y, z)$$

Proof.

Define u by $H_2(x \cdot y, z) = x \cdot y \cdot u$ and v by $H_2(y, z) = y \cdot v$. By definition of $H_2(y, z)$ we have $y \cdot u \preccurlyeq H_2(y, z)$ where \preccurlyeq is the divisibility relation in S. As $x \cdot y \cdot u$ is defined, this in turn implies $x \cdot y \cdot u \preccurlyeq H_2(x, H_2(y, z))$. Define w by

1.
$$H_2(x \cdot y, z) = H_2(x, H_2(y, z))$$

2.
$$T_2(x \cdot y, z) = T_2(x, H_2(y, z))T_2(y, z)$$

Proof.

Define u by $H_2(x \cdot y, z) = x \cdot y \cdot u$ and v by $H_2(y, z) = y \cdot v$. By definition of $H_2(y, z)$ we have $y \cdot u \preccurlyeq H_2(y, z)$ where \preccurlyeq is the divisibility relation in S. As $x \cdot y \cdot u$ is defined, this in turn implies $x \cdot y \cdot u \preccurlyeq H_2(x, H_2(y, z))$. Define w by $x \cdot y \cdot u \cdot w = H_2(x, H_2(y, z))$. It follows that $u \cdot w \leq v \leq z$ and

1.
$$H_2(x \cdot y, z) = H_2(x, H_2(y, z))$$

2.
$$T_2(x \cdot y, z) = T_2(x, H_2(y, z))T_2(y, z)$$

Proof.

Define u by $H_2(x \cdot y, z) = x \cdot y \cdot u$ and v by $H_2(y, z) = y \cdot v$. By definition of $H_2(y, z)$ we have $y \cdot u \preccurlyeq H_2(y, z)$ where \preccurlyeq is the divisibility relation in S. As $x \cdot y \cdot u$ is defined, this in turn implies $x \cdot y \cdot u \preccurlyeq H_2(x, H_2(y, z))$. Define w by $x \cdot y \cdot u \cdot w = H_2(x, H_2(y, z))$. It follows that $u \cdot w \preccurlyeq v \preccurlyeq z$ and the maximality of u shows that w = 1 which shows (i).

1.
$$H_2(x \cdot y, z) = H_2(x, H_2(y, z))$$

2.
$$T_2(x \cdot y, z) = T_2(x, H_2(y, z))T_2(y, z)$$

Proof.

Define u by $H_2(x \cdot y, z) = x \cdot y \cdot u$ and v by $H_2(y, z) = y \cdot v$. By definition of $H_2(y, z)$ we have $y \cdot u \preccurlyeq H_2(y, z)$ where \preccurlyeq is the divisibility relation in S. As $x \cdot y \cdot u$ is defined, this in turn implies $x \cdot y \cdot u \preccurlyeq H_2(x, H_2(y, z))$. Define w by $x \cdot y \cdot u \cdot w = H_2(x, H_2(y, z))$. It follows that $u \cdot w \preccurlyeq v \preccurlyeq z$ and the maximality of u shows that w = 1 which shows (i). We show now (ii). By definition of T_2 , since $H_2(x, H_2(y, z)) = x \cdot y \cdot u$, we have $y \cdot u \cdot T_2(x, H_2(y, z)) = H_2(y, z) = y \cdot v$, whence $u \cdot T_2(x, H_2(y, z)) = v$. Similarly, since $H_2(y, z) = y \cdot v$ we have

1.
$$H_2(x \cdot y, z) = H_2(x, H_2(y, z))$$

2.
$$T_2(x \cdot y, z) = T_2(x, H_2(y, z))T_2(y, z)$$

Proof.

Define u by $H_2(x \cdot y, z) = x \cdot y \cdot u$ and v by $H_2(y, z) = y \cdot v$. By definition of $H_2(y, z)$ we have $y \cdot u \preccurlyeq H_2(y, z)$ where \preccurlyeq is the divisibility relation in S. As $x \cdot y \cdot u$ is defined, this in turn implies $x \cdot y \cdot u \preccurlyeq H_2(x, H_2(y, z))$. Define w by $x \cdot y \cdot u \cdot w = H_2(x, H_2(y, z))$. It follows that $u \cdot w \preccurlyeq v \preccurlyeq z$ and the maximality of u shows that w = 1 which shows (i). We show now (ii). By definition of T_2 , since $H_2(x, H_2(y, z)) = x \cdot y \cdot u$, we have $y \cdot u \cdot T_2(x, H_2(y, z)) = H_2(y, z) = y \cdot v$, whence $u \cdot T_2(x, H_2(y, z)) = v$. Similarly, since $H_2(y, z) = y \cdot v$ we have $v \cdot T_2(y,z) = z$. Thus $u \cdot T_2(x, H_2(y,z)) \cdot T_2(y,z) = z$. But since

1.
$$H_2(x \cdot y, z) = H_2(x, H_2(y, z))$$

2.
$$T_2(x \cdot y, z) = T_2(x, H_2(y, z))T_2(y, z)$$

Proof.

Define u by $H_2(x \cdot y, z) = x \cdot y \cdot u$ and v by $H_2(y, z) = y \cdot v$. By definition of $H_2(y, z)$ we have $y \cdot u \preccurlyeq H_2(y, z)$ where \preccurlyeq is the divisibility relation in S. As $x \cdot y \cdot u$ is defined, this in turn implies $x \cdot y \cdot u \preccurlyeq H_2(x, H_2(y, z))$. Define w by $x \cdot y \cdot u \cdot w = H_2(x, H_2(y, z))$. It follows that $u \cdot w \preccurlyeq v \preccurlyeq z$ and the maximality of *u* shows that w = 1 which shows (i). We show now (ii). By definition of T_2 , since $H_2(x, H_2(y, z)) = x \cdot y \cdot u$, we have $y \cdot u \cdot T_2(x, H_2(y, z)) = H_2(y, z) = y \cdot v$, whence $u \cdot T_2(x, H_2(y, z)) = v$. Similarly, since $H_2(y, z) = y \cdot v$ we have $v \cdot T_2(y, z) = z$. Thus $u \cdot T_2(x, H_2(y, z)) \cdot T_2(y, z) = z$. But since $H_2(x \cdot y, z) = x \cdot y \cdot u$ we have $u \cdot T_2(x \cdot y, z) = z$ whence the result simplifying by u.

To check that the definition of H is compatible with \equiv , by induction it is enough to check what happens when s_1 is a product, that is to check that

 $H_2(s_1 \cdot s'_1, H((s_2, \dots, s_n))) = H_2(s_1, H_2(s'_1, H((s_2, \dots, s_n))))$ which is (i) of Lemma (Equations for H_2 and T_2).

We show that H is a S-head (H(x) is the maximal left divisor in S of x): if s is a divisor in S of x, then x may be represented by a sequence (s,...) and the definition shows that s left-divides H(x). Finally it is easy by induction on the length of a sequence for x that H(xy) = H(xH(y)).

Similarly to check that the definition of T is compatible with \equiv boils to $T_2(s_1 \cdot s'_1, H((s_2, \dots, s_n))) =$

 $T_2(s_1, H_2(s'_1, H((s_2, ..., s_n))))T_2(s'_1, H((s_2, ..., s_n)))$ which is (ii) of Lemma (Equations for H_2 and T_2), and similarly induction on the length of a sequence shows the equation for T.

To check that the definition of H is compatible with \equiv , by induction it is enough to check what happens when s_1 is a product, that is to check that

 $H_2(s_1 \cdot s'_1, H((s_2, \dots, s_n))) = H_2(s_1, H_2(s'_1, H((s_2, \dots, s_n))))$ which is (i) of Lemma (Equations for H_2 and T_2).

We show that H is a S-head (H(x)) is the maximal left divisor in S

of x): if s is a divisor in S of x, then x may be represented by a sequence (s,...) and the definition shows that s left-divides H(x). Finally it is easy by induction on the length of a sequence for x that H(xy) = H(xH(y)).

Similarly to check that the definition of T is compatible with \equiv boils to $T_2(s_1 \cdot s'_1, H((s_2, \dots, s_n))) =$

 $T_2(s_1, H_2(s'_1, H((s_2, ..., s_n))))T_2(s'_1, H((s_2, ..., s_n)))$ which is (ii) of Lemma (Equations for H_2 and T_2), and similarly induction on the length of a sequence shows the equation for T.

To check that the definition of H is compatible with \equiv , by induction it is enough to check what happens when s_1 is a product, that is to check that

 $H_2(s_1 \cdot s'_1, H((s_2, \dots, s_n))) = H_2(s_1, H_2(s'_1, H((s_2, \dots, s_n))))$ which is (i) of Lemma (Equations for H_2 and T_2).

We show that *H* is a *S*-head (H(x) is the maximal left divisor in *S* of *x*): if *s* is a divisor in *S* of *x*, then *x* may be represented by a sequence (*s*,...) and the definition shows that *s* left-divides H(x). Finally it is easy by induction on the length of a sequence for *x* that H(x) = H(xH(x)).

Similarly to check that the definition of T is compatible with \equiv boils to $T_2(s_1 \cdot s'_1, H((s_2, \dots, s_n))) =$

 $T_2(s_1, H_2(s'_1, H((s_2, \ldots, s_n))))T_2(s'_1, H((s_2, \ldots, s_n)))$ which is (ii) of Lemma (Equations for H_2 and T_2), and similarly induction on the length of a sequence shows the equation for T.

To check that the definition of H is compatible with \equiv , by induction it is enough to check what happens when s_1 is a product, that is to check that

 $H_2(s_1 \cdot s'_1, H((s_2, \dots, s_n))) = H_2(s_1, H_2(s'_1, H((s_2, \dots, s_n))))$ which is (i) of Lemma (Equations for H_2 and T_2).

We show that H is a S-head (H(x)) is the maximal left divisor in S of x): if s is a divisor in S of x, then x may be represented by a sequence (s,...) and the definition shows that s left-divides H(x). Finally it is easy by induction on the length of a sequence for x that H(xy) = H(xH(y)).

Similarly to check that the definition of T is compatible with \equiv boils to $T_2(s_1 \cdot s'_1, H((s_2, \ldots, s_n))) =$ $T_2(s_1, H_2(s'_1, H((s_2, \ldots, s_n))))T_2(s'_1, H((s_2, \ldots, s_n)))$ which is (ii) of Lemma (Equations for H_2 and T_2), and similarly induction on the length of a sequence shows the equation for T.
Compatibility with \equiv

To check that the definition of H is compatible with \equiv , by induction it is enough to check what happens when s_1 is a product, that is to check that

 $H_2(s_1 \cdot s'_1, H((s_2, \dots, s_n))) = H_2(s_1, H_2(s'_1, H((s_2, \dots, s_n))))$ which is (i) of Lemma (Equations for H_2 and T_2).

We show that H is a S-head (H(x) is the maximal left divisor in S of x): if s is a divisor in S of x, then x may be represented by a sequence (s,...) and the definition shows that s left-divides H(x). Finally it is easy by induction on the length of a sequence for x that H(xy) = H(xH(y)).

Similarly to check that the definition of T is compatible with \equiv boils to $T_2(s_1 \cdot s'_1, H((s_2, \ldots, s_n))) = T_2(s_1, H_2(s'_1, H((s_2, \ldots, s_n)))) T_2(s'_1, H((s_2, \ldots, s_n)))$ which is (ii) of Lemma (Equations for H_2 and T_2), and similarly induction on the length of a sequence shows the equation for T.

We now show how Proposition (H and T) implies that M(S) is

left-cancellative. It shows first that for $x \in M(S)$ any y such that x = H(x)y is the unique element T(x). We show this by induction on the number of terms of $x \in S^*$. We have $T(x) = T(H(x)y) = T(H(x)H(y))T(y) = T_2(H(x), H(y))T(y) = H(y)T(y)$, the last equality since $H(x) = H(H(x)H(y)) = H_2(H(x), H(y))$, and by induction H(y)T(y) = y.

This implies general cancellability: we want to show that an equality ab = ac in M(S) implies b = c. Since a is a product of elements of S it is enough to consider the case whare $a \in S$. Let x = ab = ac. We have $H(x) = H(ab) = H(aH(b)) = H_2(a, H(b))$ $= a \cdot b_1$ where b_1 divides b thus $b = b_1b_2$ and $x = (a \cdot b_1)b_2$ where $H(x) = a \cdot b_1$ and thus $T(x) = b_2$. We can write similarly $x = (a \cdot c_1)c_2$. By cancellability in S we get $b_1 = c_1$ and $b_2 = c_2 = T(x)$ thus $b = b_1b_2 = c_1c_2 = c$.

H is a *S*-head (*H*(*x*) is a maximal divisor of *x* in *S*), *S* generates M(S) and is stable by right divisor: *S* is a Garside smill in M(S), *s*,

We now show how Proposition (*H* and *T*) implies that M(S) is left-cancellative. It shows first that for $x \in M(S)$ any *y* such that x = H(x)y is the unique element T(x). We show this by induction on the number of terms of $x \in S^*$. We have T(x) = T(H(x)y) = $T(H(x)H(y))T(y) = T_2(H(x), H(y))T(y) = H(y)T(y)$, the last equality since $H(x) = H(H(x)H(y)) = H_2(H(x), H(y))$, and by induction H(y)T(y) = y.

This implies general cancellability: we want to show that an equality ab = ac in M(S) implies b = c. Since a is a product of elements of S it is enough to consider the case whare $a \in S$. Let x = ab = ac. We have $H(x) = H(ab) = H(aH(b)) = H_2(a, H(b))$ $= a \cdot b_1$ where b_1 divides b thus $b = b_1b_2$ and $x = (a \cdot b_1)b_2$ where $H(x) = a \cdot b_1$ and thus $T(x) = b_2$. We can write similarly $x = (a \cdot c_1)c_2$. By cancellability in S we get $b_1 = c_1$ and $b_2 = c_2 = T(x)$ thus $b = b_1b_2 = c_1c_2 = c$.

H is a *S*-head (*H*(*x*) is a maximal divisor of *x* in *S*), *S* generates M(S) and is stable by right divisor: *S* is a Garside smill in M(S), *s*,

We now show how Proposition (*H* and *T*) implies that M(S) is left-cancellative. It shows first that for $x \in M(S)$ any *y* such that x = H(x)y is the unique element T(x). We show this by induction on the number of terms of $x \in S^*$. We have T(x) = T(H(x)y) = $T(H(x)H(y))T(y) = T_2(H(x), H(y))T(y) = H(y)T(y)$, the last equality since $H(x) = H(H(x)H(y)) = H_2(H(x), H(y))$, and by induction H(y)T(y) = y.

This implies general cancellability: we want to show that an equality ab = ac in M(S) implies b = c. Since a is a product of elements of S it is enough to consider the case whare $a \in S$. Let x = ab = ac. We have $H(x) = H(ab) = H(aH(b)) = H_2(a, H(b))$ $= a \cdot b_1$ where b_1 divides b thus $b = b_1b_2$ and $x = (a \cdot b_1)b_2$ where $H(x) = a \cdot b_1$ and thus $T(x) = b_2$. We can write similarly $x = (a \cdot c_1)c_2$. By cancellability in S we get $b_1 = c_1$ and $b_2 = c_2 = T(x)$ thus $b = b_1b_2 = c_1c_2 = c$.

H is a *S*-head (*H*(*x*) is a maximal divisor of *x* in *S*), *S* generates M(S) and is stable by right divisor: *S* is a Garside smill in M(S), *s*,

We now show how Proposition (*H* and *T*) implies that M(S) is left-cancellative. It shows first that for $x \in M(S)$ any *y* such that x = H(x)y is the unique element T(x). We show this by induction on the number of terms of $x \in S^*$. We have T(x) = T(H(x)y) = $T(H(x)H(y))T(y) = T_2(H(x), H(y))T(y) = H(y)T(y)$, the last equality since $H(x) = H(H(x)H(y)) = H_2(H(x), H(y))$, and by induction H(y)T(y) = y.

This implies general cancellability: we want to show that an equality ab = ac in M(S) implies b = c. Since a is a product of elements of S it is enough to consider the case whare $a \in S$. Let x = ab = ac. We have $H(x) = H(ab) = H(aH(b)) = H_2(a, H(b))$ = $a \cdot b_1$ where b_1 divides b thus $b = b_1b_2$ and $x = (a \cdot b_1)b_2$ where $H(x) = a \cdot b_1$ and thus $T(x) = b_2$. We can write similarly $x = (a \cdot c_1)c_2$. By cancellability in S we get $b_1 = c_1$ and $b_2 = c_2 = T(x)$ thus $b = b_1b_2 = c_1c_2 = c$.

H is a *S*-head (*H*(*x*) is a maximal divisor of *x* in *S*), *S* generates M(S) and is stable by right divisor: *S* is a Garside smill in M(S), S_{1} , M(S).

We now show how Proposition (*H* and *T*) implies that M(S) is left-cancellative. It shows first that for $x \in M(S)$ any *y* such that x = H(x)y is the unique element T(x). We show this by induction on the number of terms of $x \in S^*$. We have T(x) = T(H(x)y) = $T(H(x)H(y))T(y) = T_2(H(x), H(y))T(y) = H(y)T(y)$, the last equality since $H(x) = H(H(x)H(y)) = H_2(H(x), H(y))$, and by induction H(y)T(y) = y.

This implies general cancellability: we want to show that an equality ab = ac in M(S) implies b = c. Since a is a product of elements of S it is enough to consider the case whare $a \in S$. Let x = ab = ac. We have $H(x) = H(ab) = H(aH(b)) = H_2(a, H(b))$ $= a \cdot b_1$ where b_1 divides b thus $b = b_1b_2$ and $x = (a \cdot b_1)b_2$ where $H(x) = a \cdot b_1$ and thus $T(x) = b_2$. We can write similarly $x = (a \cdot c_1)c_2$. By cancellability in S we get $b_1 = c_1$ and $b_2 = c_2 = T(x)$ thus $b = b_1b_2 = c_1c_2 = c$.

H is a *S*-head (*H*(*x*) is a maximal divisor of *x* in *S*), *S* generates M(S) and is stable by right divisor: *S* is a Garside smill in M(S) = 2000

We now show how Proposition (*H* and *T*) implies that M(S) is left-cancellative. It shows first that for $x \in M(S)$ any *y* such that x = H(x)y is the unique element T(x). We show this by induction on the number of terms of $x \in S^*$. We have T(x) = T(H(x)y) = $T(H(x)H(y))T(y) = T_2(H(x), H(y))T(y) = H(y)T(y)$, the last equality since $H(x) = H(H(x)H(y)) = H_2(H(x), H(y))$, and by induction H(y)T(y) = y.

This implies general cancellability: we want to show that an equality ab = ac in M(S) implies b = c. Since a is a product of elements of S it is enough to consider the case whare $a \in S$. Let x = ab = ac. We have $H(x) = H(ab) = H(aH(b)) = H_2(a, H(b))$ $= a \cdot b_1$ where b_1 divides b thus $b = b_1b_2$ and $x = (a \cdot b_1)b_2$ where $H(x) = a \cdot b_1$ and thus $T(x) = b_2$. We can write similarly $x = (a \cdot c_1)c_2$. By cancellability in S we get $b_1 = c_1$ and $b_2 = c_2 = T(x)$ thus $b = b_1b_2 = c_1c_2 = c$.

We now show how Proposition (*H* and *T*) implies that M(S) is left-cancellative. It shows first that for $x \in M(S)$ any *y* such that x = H(x)y is the unique element T(x). We show this by induction on the number of terms of $x \in S^*$. We have T(x) = T(H(x)y) = $T(H(x)H(y))T(y) = T_2(H(x), H(y))T(y) = H(y)T(y)$, the last equality since $H(x) = H(H(x)H(y)) = H_2(H(x), H(y))$, and by induction H(y)T(y) = y.

This implies general cancellability: we want to show that an equality ab = ac in M(S) implies b = c. Since a is a product of elements of S it is enough to consider the case whare $a \in S$. Let x = ab = ac. We have $H(x) = H(ab) = H(aH(b)) = H_2(a, H(b))$ $= a \cdot b_1$ where b_1 divides b thus $b = b_1b_2$ and $x = (a \cdot b_1)b_2$ where $H(x) = a \cdot b_1$ and thus $T(x) = b_2$. We can write similarly $x = (a \cdot c_1)c_2$. By cancellability in S we get $b_1 = c_1$ and $b_2 = c_2 = T(x)$ thus $b = b_1b_2 = c_1c_2 = c$.

H is a *S*-head (*H*(*x*) is a maximal divisor of *x* in *S*), *S* generates M(S) and is stable by right divisor: *S* is a Garside smill in M(S).

We now show how Proposition (*H* and *T*) implies that M(S) is left-cancellative. It shows first that for $x \in M(S)$ any *y* such that x = H(x)y is the unique element T(x). We show this by induction on the number of terms of $x \in S^*$. We have T(x) = T(H(x)y) = $T(H(x)H(y))T(y) = T_2(H(x), H(y))T(y) = H(y)T(y)$, the last equality since $H(x) = H(H(x)H(y)) = H_2(H(x), H(y))$, and by induction H(y)T(y) = y.

This implies general cancellability: we want to show that an equality ab = ac in M(S) implies b = c. Since a is a product of elements of S it is enough to consider the case whare $a \in S$. Let x = ab = ac. We have $H(x) = H(ab) = H(aH(b)) = H_2(a, H(b))$ $= a \cdot b_1$ where b_1 divides b thus $b = b_1b_2$ and $x = (a \cdot b_1)b_2$ where $H(x) = a \cdot b_1$ and thus $T(x) = b_2$. We can write similarly $x = (a \cdot c_1)c_2$. By cancellability in S we get $b_1 = c_1$ and $b_2 = c_2 = T(x)$ thus $b = b_1b_2 = c_1c_2 = c$.

H is a *S*-head (H(x) is a maximal divisor of x in S), S generates M(S) and is stable by right divisor: S is a Garside family in M(S).

In a group W generated positively by R, let S be an interval stable under left and right divisors and assume any $r, r' \in R$ which have a common multiple have a least common multiple. Then any s, s' in S which have a common multiple have a least common multiple.

Proof.

In a group W generated positively by R, let S be an interval stable under left and right divisors and assume any $r, r' \in R$ which have a common multiple have a least common multiple. Then any s, s' in S which have a common multiple have a least common multiple.

Proof.

In a group W generated positively by R, let S be an interval stable under left and right divisors and assume any $r, r' \in R$ which have a common multiple have a least common multiple. Then any s, s' in S which have a common multiple have a least common multiple.

Proof.

In a group W generated positively by R, let S be an interval stable under left and right divisors and assume any $r, r' \in R$ which have a common multiple have a least common multiple. Then any s, s' in S which have a common multiple have a least common multiple.

Proof.

In a group W generated positively by R, let S be an interval stable under left and right divisors and assume any $r, r' \in R$ which have a common multiple have a least common multiple. Then any s, s' in S which have a common multiple have a least common multiple.

Proof.

In a group W generated positively by R, let S be an interval stable under left and right divisors and assume any $r, r' \in R$ which have a common multiple have a least common multiple. Then any s, s' in S which have a common multiple have a least common multiple.

Proof.

In a group W generated positively by R, let S be an interval stable under left and right divisors and assume any $r, r' \in R$ which have a common multiple have a least common multiple. Then any s, s' in S which have a common multiple have a least common multiple.

Proof.

In a group W generated positively by R, let S be an interval stable under left and right divisors and assume that for any $f \in S$ and any $r, r' \in R$ which have a common multiple and for which fr and fr' are in S then f right-lcm $(r, r') \in S$. Then for any s, s' in S which have a common multiple and for which fs and fs' are in S then f right-lcm $(s, s') \in S$.

Proof.

The previous proposition was the particular case where f = 1. The proof is similarly by induction on $l_R(s) + l_R(s')$, but this time we keep track of the property of elements fs_1h_1 , $fs_1s_2h_2$ to be in S. This is left as an exercise.

The previous two propositions reduce the check for existence of least common multiples to generators.

In a group W generated positively by R, let S be an interval stable under left and right divisors and assume that for any $f \in S$ and any $r, r' \in R$ which have a common multiple and for which fr and fr' are in S then f right-lcm $(r, r') \in S$. Then for any s, s' in S which have a common multiple and for which fs and fs' are in S then f right-lcm $(s, s') \in S$.

Proof.

The previous proposition was the particular case where f = 1. The proof is similarly by induction on $I_R(s) + I_R(s')$, but this time we keep track of the property of elements fs_1h_1 , $fs_1s_2h_2$ to be in S. This is left as an exercise.

The previous two propositions reduce the check for existence of least common multiples to generators.

人口 医水黄 医水黄 医水黄素 化甘油

In a group W generated positively by R, let S be an interval stable under left and right divisors and assume that for any $f \in S$ and any $r, r' \in R$ which have a common multiple and for which fr and fr' are in S then f right-lcm $(r, r') \in S$. Then for any s, s' in S which have a common multiple and for which fs and fs' are in S then f right-lcm $(s, s') \in S$.

Proof.

The previous proposition was the particular case where f = 1. The proof is similarly by induction on $I_R(s) + I_R(s')$, but this time we keep track of the property of elements fs_1h_1 , $fs_1s_2h_2$ to be in S. This is left as an exercise.

The previous two propositions reduce the check for existence of least common multiples to generators.

In a group W generated positively by R, let S be an interval stable under left and right divisors and assume that for any $f \in S$ and any $r, r' \in R$ which have a common multiple and for which fr and fr' are in S then f right-lcm $(r, r') \in S$. Then for any s, s' in S which have a common multiple and for which fs and fs' are in S then f right-lcm $(s, s') \in S$.

Proof.

The previous proposition was the particular case where f = 1. The proof is similarly by induction on $I_R(s) + I_R(s')$, but this time we keep track of the property of elements fs_1h_1 , $fs_1s_2h_2$ to be in S. This is left as an exercise.

The previous two propositions reduce the check for existence of least common multiples to generators.

In a group W generated positively by R, let S be an interval stable under left and right divisors and assume that for any $f \in S$ and any $r, r' \in R$ which have a common multiple and for which fr and fr' are in S then f right-lcm $(r, r') \in S$. Then for any s, s' in S which have a common multiple and for which fs and fs' are in S then f right-lcm $(s, s') \in S$.

Proof.

The previous proposition was the particular case where f = 1. The proof is similarly by induction on $I_R(s) + I_R(s')$, but this time we keep track of the property of elements fs_1h_1 , $fs_1s_2h_2$ to be in S. This is left as an exercise.

The previous two propositions reduce the check for existence of least common multiples to generators.

In a group W generated positively by R, let S be an interval stable under left and right divisors and assume that for any $f \in S$ and any $r, r' \in R$ which have a common multiple and for which fr and fr' are in S then f right-lcm $(r, r') \in S$. Then for any s, s' in S which have a common multiple and for which fs and fs' are in S then f right-lcm $(s, s') \in S$.

Proof.

The previous proposition was the particular case where f = 1. The proof is similarly by induction on $I_R(s) + I_R(s')$, but this time we keep track of the property of elements fs_1h_1 , $fs_1s_2h_2$ to be in S. This is left as an exercise.

The previous two propositions reduce the check for existence of least common multiples to generators.

Let (W, S) be a Coxeter system, and let W_I be a parabolic subgroup for $I \subset S$. In any coset W_I w there is a unique element x of minimal length, characterized by the equivalent properties:

• $l_S(v) + l_S(x) = l_S(vx)$ for any $v \in W_l$.

• x is not divisible on the left by any $i \in I$ $(I_S(ix) = I_S(x) + 1)$.

Let (W, S) be a Coxeter system, and let W_I be a parabolic subgroup for $I \subset S$. In any coset W_Iw there is a unique element x of minimal length, characterized by the equivalent properties:

• $l_S(v) + l_S(x) = l_S(vx)$ for any $v \in W_I$.

• x is not divisible on the left by any $i \in I$ $(I_S(ix) = I_S(x) + 1)$.

···· 《曰》 《國》 《문》 《문》 · · 문

Let (W, S) be a Coxeter system, and let W_I be a parabolic subgroup for $I \subset S$. In any coset W_Iw there is a unique element x of minimal length, characterized by the equivalent properties:

•
$$I_S(v) + I_S(x) = I_S(vx)$$
 for any $v \in W_I$.

• x is not divisible on the left by any $i \in I$ $(I_S(ix) = I_S(x) + 1)$.

(1). 《티》 《問》 《문》 《문》 - 문

Let (W, S) be a Coxeter system, and let W_I be a parabolic subgroup for $I \subset S$. In any coset W_Iw there is a unique element x of minimal length, characterized by the equivalent properties:

•
$$I_S(v) + I_S(x) = I_S(vx)$$
 for any $v \in W_I$.

▶ x is not divisible on the left by any $i \in I$ $(I_S(ix) = I_S(x) + 1)$.

Let (W, S) be a Coxeter system, and let W_I be a parabolic subgroup for $I \subset S$. In any coset W_Iw there is a unique element x of minimal length, characterized by the equivalent properties:

•
$$I_S(v) + I_S(x) = I_S(vx)$$
 for any $v \in W_I$.

▶ x is not divisible on the left by any $i \in I$ $(I_S(ix) = I_S(x) + 1)$.

Assume $s, s' \in S$ have a common multiple w and write w = vxwhere x is the minimal element in $W_I w$ for $I = \{s, s'\}$. By equivalence of the two items in the proposition.

Let (W, S) be a Coxeter system, and let W_I be a parabolic subgroup for $I \subset S$. In any coset W_Iw there is a unique element x of minimal length, characterized by the equivalent properties:

•
$$I_S(v) + I_S(x) = I_S(vx)$$
 for any $v \in W_I$.

▶ x is not divisible on the left by any $i \in I$ $(I_S(ix) = I_S(x) + 1)$.

Assume $s, s' \in S$ have a common multiple w and write w = vxwhere x is the minimal element in $W_I w$ for $I = \{s, s'\}$. By assumption $l_{S}(svx) = l_{S}(vx) - 1$. We cannot have $l_{S}(sv) = l_{S}(v) + 1$ by the first item since the lengths add. It follows equivalence of the two items in the proposition.

Let (W, S) be a Coxeter system, and let W_I be a parabolic subgroup for $I \subset S$. In any coset W_Iw there is a unique element x of minimal length, characterized by the equivalent properties:

•
$$I_S(v) + I_S(x) = I_S(vx)$$
 for any $v \in W_I$.

▶ x is not divisible on the left by any $i \in I$ $(I_S(ix) = I_S(x) + 1)$.

Assume $s, s' \in S$ have a common multiple w and write w = vxwhere x is the minimal element in $W_I w$ for $I = \{s, s'\}$. By assumption $l_{S}(svx) = l_{S}(vx) - 1$. We cannot have $l_{S}(sv) = l_{S}(v) + 1$ by the first item since the lengths add. It follows that $v \in W_l$ is a common multiple of s, s'. Now in the dihedral

Let (W, S) be a Coxeter system, and let W_I be a parabolic subgroup for $I \subset S$. In any coset W_Iw there is a unique element x of minimal length, characterized by the equivalent properties:

•
$$I_S(v) + I_S(x) = I_S(vx)$$
 for any $v \in W_I$.

▶ x is not divisible on the left by any $i \in I$ $(I_S(ix) = I_S(x) + 1)$.

Assume $s, s' \in S$ have a common multiple w and write w = vxwhere x is the minimal element in $W_I w$ for $I = \{s, s'\}$. By assumption $l_{S}(svx) = l_{S}(vx) - 1$. We cannot have $l_{S}(sv) = l_{S}(v) + 1$ by the first item since the lengths add. It follows that $v \in W_l$ is a common multiple of s, s'. Now in the dihedral group W_l the generators have a common multiple if and only if W_l is finite and it is the longest element of $\Delta_{s,s'}$ of W_l , thus unique. equivalence of the two items in the proposition.

Let (W, S) be a Coxeter system, and let W_I be a parabolic subgroup for $I \subset S$. In any coset W_Iw there is a unique element x of minimal length, characterized by the equivalent properties:

•
$$I_S(v) + I_S(x) = I_S(vx)$$
 for any $v \in W_I$.

▶ x is not divisible on the left by any $i \in I$ $(I_S(ix) = I_S(x) + 1)$.

Assume $s, s' \in S$ have a common multiple w and write w = vxwhere x is the minimal element in $W_I w$ for $I = \{s, s'\}$. By assumption $l_{S}(svx) = l_{S}(vx) - 1$. We cannot have $l_{S}(sv) = l_{S}(v) + 1$ by the first item since the lengths add. It follows that $v \in W_l$ is a common multiple of s, s'. Now in the dihedral group W_l the generators have a common multiple if and only if W_l is finite and it is the longest element of $\Delta_{s,s'}$ of W_l , thus unique. For the property (extend by generators) we want that if $I_{S}(ws) = I_{S}(w+1)$ and $I_{S}(ws') = I_{S}(w+1)$ then $I_{S}(w\Delta_{s,s'}) = I_{S}(w) + I_{S}(\Delta_{s,s'})$. This is a consequence of the |. □▶▲@▶▲콜▶▲콜▶ ▲콜▶ 콜 ∽의≪(~

Let (W, S) be a Coxeter system, and let W_I be a parabolic subgroup for $I \subset S$. In any coset W_Iw there is a unique element x of minimal length, characterized by the equivalent properties:

•
$$I_S(v) + I_S(x) = I_S(vx)$$
 for any $v \in W_{I}$.

▶ x is not divisible on the left by any $i \in I$ $(I_S(ix) = I_S(x) + 1)$.

Assume $s, s' \in S$ have a common multiple w and write w = vxwhere x is the minimal element in $W_I w$ for $I = \{s, s'\}$. By assumption $l_{S}(svx) = l_{S}(vx) - 1$. We cannot have $l_{S}(sv) = l_{S}(v) + 1$ by the first item since the lengths add. It follows that $v \in W_l$ is a common multiple of s, s'. Now in the dihedral group W_l the generators have a common multiple if and only if W_l is finite and it is the longest element of $\Delta_{s,s'}$ of W_l , thus unique. For the property (extend by generators) we want that if $I_{S}(ws) = I_{S}(w+1)$ and $I_{S}(ws') = I_{S}(w+1)$ then $l_{S}(w\Delta_{s,s'}) = l_{S}(w) + l_{S}(\Delta_{s,s'})$. This is a consequence of the equivalence of the two items in the proposition. . □ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● → のへで