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Let W be a group, and R C W a finite subset which generates
positively W, that is, any element w € W can be written
wW=mnr---t, with r € R.
Then we define the R-length Ig(w) as the minimum n in such a
decomposition of w. And we define a left divisibility relation <g
on W by

a<gc if and only if Ir(3) + Ir(a*c) = Ir(c),

that is, we have a product ab = ¢ where lengths add.

Left divisibility is a partial order. We call a left interval a subset of
W stable by taking left divisors.

Symmetrically we can define right divisibility ¢ >g a and call
balanced interval a subset stable by taking left and right divisors.
Let S be a balanced interval. We define the interval monoid M(S)
whose generators are a copy S of S by the presentation

M(S) = (S | ab =c if Ir(a) + Ir(b) = Ir(c) and ab = c)
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Garside interval monoids

Theorem

If the interval S C W is balanced and is a lattice for <g and >pg,
then M(S) has S as a Garside family.

The lattice condition means that there are least common multiples
and greatest common divisors for left and right divisibility.

For least common multiples we can allow a weakening: roughly,
elements which have a common multiple have a least one.

Two applications are a construction of the Artin monoids and the
dual monoids.

If W,S is a finite Coxeter system, then W is a lattice for <s and
> (called also the left and right weak Bruhat order). Then
M(W) is the Artin monoid attached to W. This can be extended
to infinite Coxeter systems weakening the lcm axiom, thus getting
a locally Garside monoid.
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Let V = C". A complex reflection is an element of s € GL(V) of
finite order, whose fixed points are an hyperplane (we say s is a
true reflection if it is of order s2 = 1).

A finite complex reflection group is a finite subgroup W C GL(V)
generated by complex reflections. We say W is irreducible if the
representation V is. We say that the irreducible complex reflection
group W C GL(V) is well generated if it can be generated by n
reflections (sometimes n + 1 is necessary).

If W is a well-generated finite complex reflection group, R is the
set of its reflections, ¢ is a Coxeter element (a product of the n
generators in some order), then the interval S given by

{x € W|1<grx<gc}isbalanced, S is a lattice for <g and >
and M(S) is the dual monoid attached to W and c.
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Germs

Intervals in a group define germs, where germs are sets which
model subsets of a monoid.

Definition

A germ is a set S with a partially defined multiplication
(a,b) > a-b,S%— S.

Usually we require germs to be left associative, that is:
Ifg-handf-(g-h) are defined, then f - g and (f - g) - h are also
defined, and f - (g - h) = (f - g) - h.

There is similarly a right associativity condition.
A germ defines a monoid

M(S)=(S|ab=cif a-bis defined and a- b = c)
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Proposition (Embedding)

A left associative germ S embeds into M(S) as a subset stable
under right divisors.

Sketch of proof.
M(S) identifies with S* (the sequences (si,...,s,) with s; € S)

modulo the relations (sj, ..., s, Si+1,5:) = (Si, ..., Si - Sit+1,5n). We
define a partial map ¢ : M(S) — S by «((s1,...,5n)) = s if
(s1,...,5n) = (s). Left associativity shows that ¢ is well defined.

The composition s +— (s) — ¢((s)) is the identity so s — (s) is
injective.

Similarly left associativity shows that ¢ is defined for a right divisor
(a final subsequence). O

We say that a germ is left-cancellative if f - g and f - g’ defined
and equal implies g = g’.

An balanced interval in a group is automatically a right and left
associative and right and left cancellative germ.
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When is M(S) Garside?

Proposition

A Garside family S in a monoid M defines a germ such that
M = M(S).

Proof.

We have to prove that two elements of M are equal by applying
relations of the form ab = ¢, where a, b, c in S. This is clear since
one goes from any decomposition s; - - - s, of an element to a
normal form by a finite number of equalities s150 = H(s152) T(s152)
which can be written themselves H(s1s;) = st and

S = tT(Slsg). L]

In the above proof appears the functions on S? given by
(s1,%2) — H(s1s2) and (s1,52) — T(s152). Let us see that such
functions are always defined for an interval S as in Theorem 1.
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Let S be a germ which is left-associative, left-cancellative, has

right lcms and is right Noetherian (no infinite bounded chains for
left divisibility). Then given x,y € S, there is a unique maximal z
(for divisibility) which left-divides y and such that x - z is defined.

Proof.

If z1 and z are two left divisors of y such that x - z; and x - z, are
defined, then these elements have a right Icm which can be written
x - z3 (by stability under right divisors). And by left cancellability

we find that z3 is a lcm of z; and z, (and left-divides y). By right

Noetherianity the sequence zi, ..., z, will become stationary when
considering more elements z;, converging to a z satisfying the
requirements. []

We note that in the above proof the property needed is that if
x -z and x - zp are defined and z;, z» have a common multiple
then they have a right-lcm z3 and x - z3 is defined.
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We will denote H(x,y) the element x - z defined in the previous
proposition. We will also denote T,(x,y) the element z’ € S such
that y = z- Z'. In M(S) we have xy = Ha(x, y) T2(x, y).

We will prove that M(S) has S as a Garside family by constructing
a head function. But there is a technical complication: to show
M(S) is cancellable we will have to define simultaneously a tail
function. We first show

Proposition (H and T)

Let S be a germ which is left-associative, left-cancellative and has
functions Hy and T as in Proposition (Head). Then there are
unique functions H : M(S) — S and T : M(S) — M(S) such that

for x,y € S we have H(xy) = Ha(x,y) and T(xy) = Ta(x,y), and
which for any a, b € M(S) satisfy

H(ab) = H(aH(b))

T(ab) = T(aH(b)) T (b)

Further, H(x) is the maximal left divisor of x which is in S.
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> T(() =T((s)) =1

» T(s1,...,50) = Ta(s1, H((s2,.--,50))) T((s2,--.,5n))-
We have to show that these definitions are compatible with = and
satisfy the equations of Proposition (H and T).
We first show that Hp and T, as defined on S? satisfy the
equations of Proposition (H and T)
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Proof.

Define u by Ha(x-y,z) =x-y-uand v by Ho(y,z) =y -v. By
definition of H(y, z) we have y - u < Ha(y, z) where < is the
divisibility relation in S. As x - y - u is defined, this in turn implies
x-y-u=< Ha(x, Ha(y,z)). Define w by

x-y-u-w= Hy(x,Ha(y,z)). It follows that u- w < v < z and
the maximality of u shows that w = 1 which shows (i).

We show now (ii). By definition of T3, since

Ha(x, Ha(y,z)) = x -y - u, we have

y-u- Ta(x, Ha(y,2)) = Ha(y,z) = y - v, whence

u- Ta(x, Ha(y,z)) = v. Similarly, since Ha(y,z) =y - v we have
v-Ta(y,z) = z. Thus u- Ta(x, Ha(y, 2)) - T2(y, z) = z. But since
Hy(x -y,z) = x-y-uwe have u- Tp(x -y, z) = z whence the
result simplifying by u. O
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To check that the definition of H is compatible with =, by
induction it is enough to check what happens when s; is a product,
that is to check that

Ha(s1 - sy, H((s2, - - - sn))) = Ha(s1, Ha(s1, H((s2, - .-, sn)))) which is
(i) of Lemma (Equations for Hy and T5).

We show that H is a S-head (H(x) is the maximal left divisor in S
of x): if s is a divisor in S of x, then x may be represented by a
sequence (s, ...) and the definition shows that s left-divides H(x).
Finally it is easy by induction on the length of a sequence for x
that H(xy) = H(xH(y)).

Similarly to check that the definition of T is compatible with =
boils to Ta(s1 - s1, H((s2,...,5n))) =

Ta(s1, Ha(s, H((s2, - -, 5n)))) Ta(s1, H((s2, - - ., sn))) which is (ii)
of Lemma (Equations for H, and T3), and similarly induction on
the length of a sequence shows the equation for T.
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Cancellability

We now show how Proposition (H and T) implies that M(S) is
left-cancellative. It shows first that for x € M(S) any y such that
x = H(x)y is the unique element T(x). We show this by induction
on the number of terms of x € S*. We have T(x) = T(H(x)y) =
T(HX)H(y)) T(y) = T2(H(x), H(y)) T(y) = H(y) T(y), the last
equality since H(x) = H(H(x)H(y)) = H2(H(x), H(y)), and by
induction H(y)T(y) = y.

This implies general cancellability: we want to show that an
equality ab = ac in M(S) implies b = ¢. Since a is a product of
elements of S it is enough to consider the case whare a € S. Let
x = ab = ac. We have H(x) = H(ab) = H(aH(b)) = Ha(a, H(b))
= a- b; where by divides b thus b = by by and x = (a- by)bp where
H(x) = a- by and thus T(x) = by. We can write similarly

x = (a-c1)cp. By cancellability in S we get b; = ¢; and

by =c = T(X) thus b = b1by = c16 = c.

H is a S-head (H(x) is a maximal divisor of x in S), S generates
M(S) and is stable by right divisor: S is a Garside family in M(S).
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In a group W generated positively by R, let S be an interval stable
under left and right divisors and assume any r,r' € R which have a
common multiple have a least common multiple. Then any s,s’ in
S which have a common multiple have a least common multiple.

Proof.

The proof is by induction on Ig(s) + Ir(s'). If Ir(s) = Ir(s') =1
we are at the start of the induction. Otherwise one of them, say s
is a product s = s155. Assume s, s’ have a common multiple sh.
Then sh is a common multiple of s; and s’ so by induction they
have a least common multiple s;h;. Now h; and s, have a common
multiple sph, so by induction have a least common multiple s;h;.
Then s15h5 is a least common multiple of s and s'. O



Proposition (check extend on generators)

In a group W generated positively by R, let S be an interval stable
under left and right divisors and assume that for any f € S and
any r,r' € R which have a common multiple and for which fr and
fr' are in S then f right-lcm(r, r’) € S.



Proposition (check extend on generators)

In a group W generated positively by R, let S be an interval stable
under left and right divisors and assume that for any f € S and
any r,r' € R which have a common multiple and for which fr and
fr' are in S then f right-lem(r,r') € S. Then for any s,s’ in S
which have a common multiple and for which fs and fs' are in S
then f right-lem(s,s’) € S.



Proposition (check extend on generators)

In a group W generated positively by R, let S be an interval stable
under left and right divisors and assume that for any f € S and
any r,r' € R which have a common multiple and for which fr and
fr' are in S then f right-lem(r,r') € S. Then for any s,s’ in S
which have a common multiple and for which fs and fs' are in S
then f right-lem(s,s’) € S.

Proof.

The previous proposition was the particular case where f = 1.



Proposition (check extend on generators)

In a group W generated positively by R, let S be an interval stable
under left and right divisors and assume that for any f € S and
any r,r' € R which have a common multiple and for which fr and
fr' are in S then f right-lem(r,r') € S. Then for any s,s’ in S
which have a common multiple and for which fs and fs' are in S
then f right-lem(s,s’) € S.

Proof.

The previous proposition was the particular case where f = 1. The
proof is similarly by induction on /g(s) + Ig(s’), but this time we
keep track of the property of elements fsyhy, fsysphs to be in S.



Proposition (check extend on generators)

In a group W generated positively by R, let S be an interval stable
under left and right divisors and assume that for any f € S and
any r,r' € R which have a common multiple and for which fr and
fr' are in S then f right-lem(r,r') € S. Then for any s,s’ in S
which have a common multiple and for which fs and fs' are in S
then f right-lem(s,s’) € S.

Proof.

The previous proposition was the particular case where f = 1. The
proof is similarly by induction on /g(s) + Ig(s’), but this time we
keep track of the property of elements fsyhy, fsysphs to be in S.
This is left as an exercise. O



Proposition (check extend on generators)

In a group W generated positively by R, let S be an interval stable
under left and right divisors and assume that for any f € S and
any r,r' € R which have a common multiple and for which fr and
fr' are in S then f right-lem(r,r') € S. Then for any s,s’ in S
which have a common multiple and for which fs and fs' are in S
then f right-lem(s,s’) € S.

Proof.

The previous proposition was the particular case where f = 1. The
proof is similarly by induction on /g(s) + Ig(s’), but this time we
keep track of the property of elements fsyhy, fsysphs to be in S.
This is left as an exercise. O

The previous two propositions reduce the check for existence of
least common multiples to generators.
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Let (W,S) be a Coxeter system, and let W, be a parabolic
subgroup for | C S. In any coset Wyw there is a unique element x
of minimal length, characterized by the equivalent properties:

» Is(v) + Is(x) = Is(vx) for any v € W,.
» x is not divisible on the left by any i € I (Is(ix) = Is(x) + 1).

Assume s,s’" € S have a common multiple w and write w = vx
where x is the minimal element in Wjw for | = {s,s'}. By
assumption /s(svx) = Is(vx) — 1. We cannot have

Is(sv) = Is(v) 41 by the first item since the lengths add. It follows
that v € W, is a common multiple of s,s’. Now in the dihedral
group W, the generators have a common multiple if and only if W,
is finite and it is the longest element of A, o of W, thus unique.
For the property (extend by generators) we want that if

Is(ws) = Is(w + 1) and Is(ws’) = Is(w + 1) then

/S(WAS,S’) = Is(w) + IS(AS,S’)-



Proposition (/-reduced element)

Let (W,S) be a Coxeter system, and let W, be a parabolic
subgroup for | C S. In any coset Wyw there is a unique element x
of minimal length, characterized by the equivalent properties:

» Is(v) + Is(x) = Is(vx) for any v € W,.
» x is not divisible on the left by any i € I (Is(ix) = Is(x) + 1).

Assume s,s’" € S have a common multiple w and write w = vx
where x is the minimal element in Wjw for | = {s,s'}. By
assumption /s(svx) = Is(vx) — 1. We cannot have

Is(sv) = Is(v) 41 by the first item since the lengths add. It follows
that v € W, is a common multiple of s,s’. Now in the dihedral
group W, the generators have a common multiple if and only if W,
is finite and it is the longest element of A, o of W, thus unique.
For the property (extend by generators) we want that if

Is(ws) = Is(w + 1) and Is(ws’) = Is(w + 1) then

Is(WAs o) = Is(w) 4 Is(As ). This is a consequence of the
equivalence of the two items in the proposition.



