Interval monoids

Jean Michel

University Paris Diderot
Berlin, tuesday 31st August 2021

Interval monoids

Let W be a group, and $R \subset W$ a finite subset which generates positively W; that is, any element $w \in W$ can be written $w=r_{1} \cdots r_{n}$, with $r_{i} \in R$.

Interval monoids

Let W be a group, and $R \subset W$ a finite subset which generates positively W; that is, any element $w \in W$ can be written $w=r_{1} \cdots r_{n}$, with $r_{i} \in R$.
Then we define the R-length $I_{R}(w)$ as the minimum n in such a decomposition of w.

Interval monoids

Let W be a group, and $R \subset W$ a finite subset which generates positively W; that is, any element $w \in W$ can be written $w=r_{1} \cdots r_{n}$, with $r_{i} \in R$.
Then we define the R-length $I_{R}(w)$ as the minimum n in such a decomposition of w. And we define a left divisibility relation \leq_{R} on W by

$$
a \leq_{R} c \quad \text { if and only if } \quad I_{R}(a)+I_{R}\left(a^{-1} c\right)=I_{R}(c)
$$

that is, we have a product $a b=c$ where lengths add.

Interval monoids

Let W be a group, and $R \subset W$ a finite subset which generates positively W; that is, any element $w \in W$ can be written $w=r_{1} \cdots r_{n}$, with $r_{i} \in R$.
Then we define the R-length $I_{R}(w)$ as the minimum n in such a decomposition of w. And we define a left divisibility relation \leq_{R} on W by

$$
a \leq_{R} c \quad \text { if and only if } \quad I_{R}(a)+I_{R}\left(a^{-1} c\right)=I_{R}(c)
$$

that is, we have a product $a b=c$ where lengths add.
Left divisibility is a partial order. We call a left interval a subset of W stable by taking left divisors.

Interval monoids

Let W be a group, and $R \subset W$ a finite subset which generates positively W; that is, any element $w \in W$ can be written $w=r_{1} \cdots r_{n}$, with $r_{i} \in R$.
Then we define the R-length $I_{R}(w)$ as the minimum n in such a decomposition of w. And we define a left divisibility relation \leq_{R} on W by

$$
a \leq_{R} c \quad \text { if and only if } \quad I_{R}(a)+I_{R}\left(a^{-1} c\right)=I_{R}(c)
$$

that is, we have a product $a b=c$ where lengths add.
Left divisibility is a partial order. We call a left interval a subset of W stable by taking left divisors.
Symmetrically we can define right divisibility $c \geq_{R}$ a and call balanced interval a subset stable by taking left and right divisors.

Interval monoids

Let W be a group, and $R \subset W$ a finite subset which generates positively W; that is, any element $w \in W$ can be written $w=r_{1} \cdots r_{n}$, with $r_{i} \in R$.
Then we define the R-length $I_{R}(w)$ as the minimum n in such a decomposition of w. And we define a left divisibility relation \leq_{R} on W by

$$
a \leq_{R} c \quad \text { if and only if } \quad I_{R}(a)+I_{R}\left(a^{-1} c\right)=I_{R}(c)
$$

that is, we have a product $a b=c$ where lengths add. Left divisibility is a partial order. We call a left interval a subset of W stable by taking left divisors.
Symmetrically we can define right divisibility $c \geq_{R}$ a and call balanced interval a subset stable by taking left and right divisors. Let S be a balanced interval. We define the interval monoid $M(\mathbf{S})$ whose generators are a copy \mathbf{S} of S by the presentation

$$
\left.M(\mathbf{S})=\langle\mathbf{S}| \mathbf{a b}=\mathbf{c} \text { if } I_{R}(a)+I_{R}(b)=I_{R}(c) \text { and } a b=c\right\rangle
$$

Garside interval monoids

Theorem

If the interval $S \subset W$ is balanced and is a lattice for \leq_{R} and \geq_{R}, then $M(\mathbf{S})$ has \mathbf{S} as a Garside family.

Garside interval monoids

Theorem

If the interval $S \subset W$ is balanced and is a lattice for \leq_{R} and \geq_{R}, then $M(\mathbf{S})$ has \mathbf{S} as a Garside family.

The lattice condition means that there are least common multiples and greatest common divisors for left and right divisibility.

Garside interval monoids

Theorem

If the interval $S \subset W$ is balanced and is a lattice for \leq_{R} and \geq_{R}, then $M(\mathbf{S})$ has \mathbf{S} as a Garside family.

The lattice condition means that there are least common multiples and greatest common divisors for left and right divisibility. For least common multiples we can allow a weakening: roughly, elements which have a common multiple have a least one.

Garside interval monoids

Theorem

If the interval $S \subset W$ is balanced and is a lattice for \leq_{R} and \geq_{R}, then $M(\mathbf{S})$ has \mathbf{S} as a Garside family.

The lattice condition means that there are least common multiples and greatest common divisors for left and right divisibility. For least common multiples we can allow a weakening: roughly, elements which have a common multiple have a least one.

Two applications are a construction of the Artin monoids and the dual monoids.

Garside interval monoids

Theorem

If the interval $S \subset W$ is balanced and is a lattice for \leq_{R} and \geq_{R}, then $M(\mathbf{S})$ has \mathbf{S} as a Garside family.

The lattice condition means that there are least common multiples and greatest common divisors for left and right divisibility. For least common multiples we can allow a weakening: roughly, elements which have a common multiple have a least one.

Two applications are a construction of the Artin monoids and the dual monoids.

If W, S is a finite Coxeter system, then W is a lattice for \leq_{s} and \geq_{S} (called also the left and right weak Bruhat order).

Garside interval monoids

Theorem

If the interval $S \subset W$ is balanced and is a lattice for \leq_{R} and \geq_{R}, then $M(\mathbf{S})$ has \mathbf{S} as a Garside family.

The lattice condition means that there are least common multiples and greatest common divisors for left and right divisibility. For least common multiples we can allow a weakening: roughly, elements which have a common multiple have a least one.

Two applications are a construction of the Artin monoids and the dual monoids.

If W, S is a finite Coxeter system, then W is a lattice for \leq_{s} and \geq_{S} (called also the left and right weak Bruhat order). Then $M(\mathbf{W})$ is the Artin monoid attached to W.

Garside interval monoids

Theorem

If the interval $S \subset W$ is balanced and is a lattice for \leq_{R} and \geq_{R}, then $M(\mathbf{S})$ has \mathbf{S} as a Garside family.

The lattice condition means that there are least common multiples and greatest common divisors for left and right divisibility. For least common multiples we can allow a weakening: roughly, elements which have a common multiple have a least one.

Two applications are a construction of the Artin monoids and the dual monoids.

If W, S is a finite Coxeter system, then W is a lattice for \leq_{s} and \geq_{s} (called also the left and right weak Bruhat order). Then $M(\mathbf{W})$ is the Artin monoid attached to W. This can be extended to infinite Coxeter systems weakening the Icm axiom, thus getting a locally Garside monoid.

Dual monoid

Let $V=\mathbb{C}^{n}$. A complex reflection is an element of $s \in \mathrm{GL}(V)$ of finite order, whose fixed points are an hyperplane

Dual monoid

Let $V=\mathbb{C}^{n}$. A complex reflection is an element of $s \in \mathrm{GL}(V)$ of finite order, whose fixed points are an hyperplane (we say s is a true reflection if it is of order $s^{2}=1$).

Dual monoid

Let $V=\mathbb{C}^{n}$. A complex reflection is an element of $s \in \mathrm{GL}(V)$ of finite order, whose fixed points are an hyperplane (we say s is a true reflection if it is of order $s^{2}=1$).
A finite complex reflection group is a finite subgroup $W \subset \mathrm{GL}(V)$ generated by complex reflections.

Dual monoid

Let $V=\mathbb{C}^{n}$. A complex reflection is an element of $s \in \mathrm{GL}(V)$ of finite order, whose fixed points are an hyperplane (we say s is a true reflection if it is of order $s^{2}=1$).
A finite complex reflection group is a finite subgroup $W \subset \mathrm{GL}(V)$ generated by complex reflections. We say W is irreducible if the representation V is.
group $W \subset G L(V)$ is well generated if it
reflections (sometimes $n+1$ is necessary)

Dual monoid

Let $V=\mathbb{C}^{n}$. A complex reflection is an element of $s \in \mathrm{GL}(V)$ of finite order, whose fixed points are an hyperplane (we say s is a true reflection if it is of order $s^{2}=1$).
A finite complex reflection group is a finite subgroup $W \subset \mathrm{GL}(V)$ generated by complex reflections. We say W is irreducible if the representation V is. We say that the irreducible complex reflection group $W \subset \mathrm{GL}(V)$ is well generated if it can be generated by n reflections (sometimes $n+1$ is necessary).

Dual monoid

Let $V=\mathbb{C}^{n}$. A complex reflection is an element of $s \in \mathrm{GL}(V)$ of finite order, whose fixed points are an hyperplane (we say s is a true reflection if it is of order $s^{2}=1$).
A finite complex reflection group is a finite subgroup $W \subset \mathrm{GL}(V)$ generated by complex reflections. We say W is irreducible if the representation V is. We say that the irreducible complex reflection group $W \subset \mathrm{GL}(V)$ is well generated if it can be generated by n reflections (sometimes $n+1$ is necessary).

If W is a well-generated finite complex reflection group, R is the set of its reflections, c is a Coxeter element (a product of the n generators in some order),

Dual monoid

Let $V=\mathbb{C}^{n}$. A complex reflection is an element of $s \in \mathrm{GL}(V)$ of finite order, whose fixed points are an hyperplane (we say s is a true reflection if it is of order $s^{2}=1$).
A finite complex reflection group is a finite subgroup $W \subset \mathrm{GL}(V)$ generated by complex reflections. We say W is irreducible if the representation V is. We say that the irreducible complex reflection group $W \subset \mathrm{GL}(V)$ is well generated if it can be generated by n reflections (sometimes $n+1$ is necessary).

If W is a well-generated finite complex reflection group, R is the set of its reflections, c is a Coxeter element (a product of the n generators in some order), then the interval S given by $\left\{x \in W \mid 1 \leq_{R} x \leq_{R} c\right\}$ is balanced,

Dual monoid

Let $V=\mathbb{C}^{n}$. A complex reflection is an element of $s \in \mathrm{GL}(V)$ of finite order, whose fixed points are an hyperplane (we say s is a true reflection if it is of order $s^{2}=1$).
A finite complex reflection group is a finite subgroup $W \subset \mathrm{GL}(V)$ generated by complex reflections. We say W is irreducible if the representation V is. We say that the irreducible complex reflection group $W \subset \mathrm{GL}(V)$ is well generated if it can be generated by n reflections (sometimes $n+1$ is necessary).

If W is a well-generated finite complex reflection group, R is the set of its reflections, c is a Coxeter element (a product of the n generators in some order), then the interval S given by $\left\{x \in W \mid 1 \leq_{R} x \leq_{R} c\right\}$ is balanced, S is a lattice for \leq_{R} and \geq_{R} and $M(\mathbf{S})$ is the dual monoid attached to W and c.

Germs

Intervals in a group define germs, where germs are sets which model subsets of a monoid.

Definition
A germ is a set S with a partially defined multiplication

Usually we require germs to be left associative, that is:

Germs

Intervals in a group define germs, where germs are sets which model subsets of a monoid.

Definition

A germ is a set S with a partially defined multiplication $(a, b) \mapsto a \cdot b, S^{2} \rightarrow S$.

Usually we require germs to be left associative, that is:

Germs

Intervals in a group define germs, where germs are sets which model subsets of a monoid.

Definition

A germ is a set S with a partially defined multiplication $(a, b) \mapsto a \cdot b, S^{2} \rightarrow S$.

Usually we require germs to be left associative, that is:

If $g \cdot h$ and $f \cdot(g \cdot h)$ are defined, then $f \cdot g$ and $(f \cdot g) \cdot h$ are also defined, and $f \cdot(g \cdot h)=(f \cdot g) \cdot h$.

Germs

Intervals in a group define germs, where germs are sets which model subsets of a monoid.

Definition

A germ is a set S with a partially defined multiplication $(a, b) \mapsto a \cdot b, S^{2} \rightarrow S$.

Usually we require germs to be left associative, that is:

If $g \cdot h$ and $f \cdot(g \cdot h)$ are defined, then $f \cdot g$ and $(f \cdot g) \cdot h$ are also defined, and $f \cdot(g \cdot h)=(f \cdot g) \cdot h$.

There is similarly a right associativity condition.

Germs

Intervals in a group define germs, where germs are sets which model subsets of a monoid.

Definition

A germ is a set S with a partially defined multiplication $(a, b) \mapsto a \cdot b, S^{2} \rightarrow S$.

Usually we require germs to be left associative, that is:

If $g \cdot h$ and $f \cdot(g \cdot h)$ are defined, then $f \cdot g$ and $(f \cdot g) \cdot h$ are also defined, and $f \cdot(g \cdot h)=(f \cdot g) \cdot h$.

There is similarly a right associativity condition.
A germ defines a monoid

$$
M(S)=\langle S| a b=c \text { if } a \cdot b \text { is defined and } a \cdot b=c\rangle
$$

Proposition (Embedding)

A left associative germ S embeds into $M(S)$ as a subset stable under right divisors.

Proposition (Embedding)

A left associative germ S embeds into $M(S)$ as a subset stable under right divisors.

Sketch of proof.
$M(S)$ identifies with S^{*} (the sequences $\left(s_{1}, \ldots, s_{n}\right)$ with $s_{i} \in S$) modulo the relations $\left(s_{i}, \ldots, s_{i}, s_{i+1}, s_{n}\right) \equiv\left(s_{i}, \ldots, s_{i} \cdot s_{i+1}, s_{n}\right)$.

Proposition (Embedding)

A left associative germ S embeds into $M(S)$ as a subset stable under right divisors.

Sketch of proof.
$M(S)$ identifies with S^{*} (the sequences $\left(s_{1}, \ldots, s_{n}\right)$ with $s_{i} \in S$) modulo the relations $\left(s_{i}, \ldots, s_{i}, s_{i+1}, s_{n}\right) \equiv\left(s_{i}, \ldots, s_{i} \cdot s_{i+1}, s_{n}\right)$. We define a partial map $\iota: M(S) \rightarrow S$ by $\iota\left(\left(s_{1}, \ldots, s_{n}\right)\right)=s$ if $\left(s_{1}, \ldots, s_{n}\right) \equiv(s)$.

Proposition (Embedding)

A left associative germ S embeds into $M(S)$ as a subset stable under right divisors.

Sketch of proof.
$M(S)$ identifies with S^{*} (the sequences $\left(s_{1}, \ldots, s_{n}\right)$ with $s_{i} \in S$) modulo the relations $\left(s_{i}, \ldots, s_{i}, s_{i+1}, s_{n}\right) \equiv\left(s_{i}, \ldots, s_{i} \cdot s_{i+1}, s_{n}\right)$. We define a partial map $\iota: M(S) \rightarrow S$ by $\iota\left(\left(s_{1}, \ldots, s_{n}\right)\right)=s$ if $\left(s_{1}, \ldots, s_{n}\right) \equiv(s)$. Left associativity shows that ι is well defined.

Proposition (Embedding)

A left associative germ S embeds into $M(S)$ as a subset stable under right divisors.

Sketch of proof.
$M(S)$ identifies with S^{*} (the sequences $\left(s_{1}, \ldots, s_{n}\right)$ with $s_{i} \in S$) modulo the relations $\left(s_{i}, \ldots, s_{i}, s_{i+1}, s_{n}\right) \equiv\left(s_{i}, \ldots, s_{i} \cdot s_{i+1}, s_{n}\right)$. We define a partial map $\iota: M(S) \rightarrow S$ by $\iota\left(\left(s_{1}, \ldots, s_{n}\right)\right)=s$ if $\left(s_{1}, \ldots, s_{n}\right) \equiv(s)$. Left associativity shows that ι is well defined. The composition $s \mapsto(s) \mapsto \iota((s))$ is the identity so $s \rightarrow(s)$ is injective.

Proposition (Embedding)

A left associative germ S embeds into $M(S)$ as a subset stable under right divisors.

Sketch of proof.
$M(S)$ identifies with S^{*} (the sequences $\left(s_{1}, \ldots, s_{n}\right)$ with $s_{i} \in S$) modulo the relations $\left(s_{i}, \ldots, s_{i}, s_{i+1}, s_{n}\right) \equiv\left(s_{i}, \ldots, s_{i} \cdot s_{i+1}, s_{n}\right)$. We define a partial map $\iota: M(S) \rightarrow S$ by $\iota\left(\left(s_{1}, \ldots, s_{n}\right)\right)=s$ if $\left(s_{1}, \ldots, s_{n}\right) \equiv(s)$. Left associativity shows that ι is well defined. The composition $s \mapsto(s) \mapsto \iota((s))$ is the identity so $s \rightarrow(s)$ is injective.
Similarly left associativity shows that ι is defined for a right divisor (a final subsequence).

Proposition (Embedding)

A left associative germ S embeds into $M(S)$ as a subset stable under right divisors.

Sketch of proof.
$M(S)$ identifies with S^{*} (the sequences $\left(s_{1}, \ldots, s_{n}\right)$ with $s_{i} \in S$) modulo the relations $\left(s_{i}, \ldots, s_{i}, s_{i+1}, s_{n}\right) \equiv\left(s_{i}, \ldots, s_{i} \cdot s_{i+1}, s_{n}\right)$. We define a partial map $\iota: M(S) \rightarrow S$ by $\iota\left(\left(s_{1}, \ldots, s_{n}\right)\right)=s$ if $\left(s_{1}, \ldots, s_{n}\right) \equiv(s)$. Left associativity shows that ι is well defined. The composition $s \mapsto(s) \mapsto \iota((s))$ is the identity so $s \rightarrow(s)$ is injective.
Similarly left associativity shows that ι is defined for a right divisor (a final subsequence).

We say that a germ is left-cancellative if $f \cdot g$ and $f \cdot g^{\prime}$ defined and equal implies $g=g^{\prime}$.

Proposition (Embedding)

A left associative germ S embeds into $M(S)$ as a subset stable under right divisors.

Sketch of proof.
$M(S)$ identifies with S^{*} (the sequences $\left(s_{1}, \ldots, s_{n}\right)$ with $s_{i} \in S$) modulo the relations $\left(s_{i}, \ldots, s_{i}, s_{i+1}, s_{n}\right) \equiv\left(s_{i}, \ldots, s_{i} \cdot s_{i+1}, s_{n}\right)$. We define a partial map $\iota: M(S) \rightarrow S$ by $\iota\left(\left(s_{1}, \ldots, s_{n}\right)\right)=s$ if $\left(s_{1}, \ldots, s_{n}\right) \equiv(s)$. Left associativity shows that ι is well defined. The composition $s \mapsto(s) \mapsto \iota((s))$ is the identity so $s \rightarrow(s)$ is injective.
Similarly left associativity shows that ι is defined for a right divisor (a final subsequence).

We say that a germ is left-cancellative if $f \cdot g$ and $f \cdot g^{\prime}$ defined and equal implies $g=g^{\prime}$.
An balanced interval in a group is automatically a right and left associative and right and left cancellative germ.

When is $M(S)$ Garside?

Proposition

A Garside family S in a monoid M defines a germ such that $M=M(S)$.

When is $M(S)$ Garside?

Proposition

A Garside family S in a monoid M defines a germ such that $M=M(S)$.

Proof.

We have to prove that two elements of M are equal by applying relations of the form $a b=c$, where a, b, c in S.

When is $M(S)$ Garside?

Proposition

A Garside family S in a monoid M defines a germ such that $M=M(S)$.

Proof.

We have to prove that two elements of M are equal by applying relations of the form $a b=c$, where a, b, c in S. This is clear since one goes from any decomposition $s_{1} \cdots s_{n}$ of an element to a normal form by a finite number of equalities $s_{1} s_{2}=H\left(s_{1} s_{2}\right) T\left(s_{1} s_{2}\right)$ which can be written themselves $H\left(s_{1} s_{2}\right)=s_{1} t$ and $s_{2}=t T\left(s_{1} s_{2}\right)$.

When is $M(S)$ Garside?

Proposition

A Garside family S in a monoid M defines a germ such that $M=M(S)$.

Proof.

We have to prove that two elements of M are equal by applying relations of the form $a b=c$, where a, b, c in S. This is clear since one goes from any decomposition $s_{1} \cdots s_{n}$ of an element to a normal form by a finite number of equalities $s_{1} s_{2}=H\left(s_{1} s_{2}\right) T\left(s_{1} s_{2}\right)$ which can be written themselves $H\left(s_{1} s_{2}\right)=s_{1} t$ and $s_{2}=t T\left(s_{1} s_{2}\right)$.

In the above proof appears the functions on S^{2} given by $\left(s_{1}, s_{2}\right) \mapsto H\left(s_{1} s_{2}\right)$ and $\left(s_{1}, s_{2}\right) \mapsto T\left(s_{1} s_{2}\right)$.

When is $M(S)$ Garside?

Proposition

A Garside family S in a monoid M defines a germ such that $M=M(S)$.

Proof.

We have to prove that two elements of M are equal by applying relations of the form $a b=c$, where a, b, c in S. This is clear since one goes from any decomposition $s_{1} \cdots s_{n}$ of an element to a normal form by a finite number of equalities $s_{1} s_{2}=H\left(s_{1} s_{2}\right) T\left(s_{1} s_{2}\right)$ which can be written themselves $H\left(s_{1} s_{2}\right)=s_{1} t$ and $s_{2}=t T\left(s_{1} s_{2}\right)$.

In the above proof appears the functions on S^{2} given by $\left(s_{1}, s_{2}\right) \mapsto H\left(s_{1} s_{2}\right)$ and $\left(s_{1}, s_{2}\right) \mapsto T\left(s_{1} s_{2}\right)$. Let us see that such functions are always defined for an interval S as in Theorem 1.

Proposition (Head)

Let S be a germ which is left-associative, left-cancellative, has right Icms and is right Noetherian (no infinite bounded chains for left divisibility).

Proposition (Head)

Let S be a germ which is left-associative, left-cancellative, has right lcms and is right Noetherian (no infinite bounded chains for left divisibility). Then given $x, y \in S$, there is a unique maximal z (for divisibility) which left-divides y and such that $x \cdot z$ is defined.

Proposition (Head)

Let S be a germ which is left-associative, left-cancellative, has right lcms and is right Noetherian (no infinite bounded chains for left divisibility). Then given $x, y \in S$, there is a unique maximal z (for divisibility) which left-divides y and such that $x \cdot z$ is defined.

Proof.

If z_{1} and z_{2} are two left divisors of y such that $x \cdot z_{1}$ and $x \cdot z_{2}$ are defined, then these elements have a right lcm which can be written $x \cdot z_{3}$ (by stability under right divisors).

Proposition (Head)

Let S be a germ which is left-associative, left-cancellative, has right lcms and is right Noetherian (no infinite bounded chains for left divisibility). Then given $x, y \in S$, there is a unique maximal z (for divisibility) which left-divides y and such that $x \cdot z$ is defined.

Proof.

If z_{1} and z_{2} are two left divisors of y such that $x \cdot z_{1}$ and $x \cdot z_{2}$ are defined, then these elements have a right Icm which can be written $x \cdot z_{3}$ (by stability under right divisors). And by left cancellability we find that z_{3} is a Icm of z_{1} and z_{2} (and left-divides y).

Proposition (Head)

Let S be a germ which is left-associative, left-cancellative, has right lcms and is right Noetherian (no infinite bounded chains for left divisibility). Then given $x, y \in S$, there is a unique maximal z (for divisibility) which left-divides y and such that $x \cdot z$ is defined.

Proof.

If z_{1} and z_{2} are two left divisors of y such that $x \cdot z_{1}$ and $x \cdot z_{2}$ are defined, then these elements have a right Icm which can be written $x \cdot z_{3}$ (by stability under right divisors). And by left cancellability we find that z_{3} is a Icm of z_{1} and z_{2} (and left-divides y). By right Noetherianity the sequence z_{1}, \ldots, z_{n} will become stationary when considering more elements z_{i}, converging to a z satisfying the requirements.

Proposition (Head)

Let S be a germ which is left-associative, left-cancellative, has right lcms and is right Noetherian (no infinite bounded chains for left divisibility). Then given $x, y \in S$, there is a unique maximal z (for divisibility) which left-divides y and such that $x \cdot z$ is defined.

Proof.

If z_{1} and z_{2} are two left divisors of y such that $x \cdot z_{1}$ and $x \cdot z_{2}$ are defined, then these elements have a right Icm which can be written $x \cdot z_{3}$ (by stability under right divisors). And by left cancellability we find that z_{3} is a Icm of z_{1} and z_{2} (and left-divides y). By right Noetherianity the sequence z_{1}, \ldots, z_{n} will become stationary when considering more elements z_{i}, converging to a z satisfying the requirements.

We note that in the above proof the property needed is that if $x \cdot z_{1}$ and $x \cdot z_{2}$ are defined and z_{1}, z_{2} have a common multiple then they have a right-Icm z_{3} and $x \cdot z_{3}$ is defined.

We will denote $H_{2}(x, y)$ the element $x \cdot z$ defined in the previous proposition. We will also denote $T_{2}(x, y)$ the element $z^{\prime} \in S$ such that $y=z \cdot z^{\prime}$. In $M(S)$ we have $x y=H_{2}(x, y) T_{2}(x, y)$.

We will denote $H_{2}(x, y)$ the element $x \cdot z$ defined in the previous proposition. We will also denote $T_{2}(x, y)$ the element $z^{\prime} \in S$ such that $y=z \cdot z^{\prime}$. In $M(S)$ we have $x y=H_{2}(x, y) T_{2}(x, y)$. We will prove that $M(S)$ has S as a Garside family by constructing a head function.

We will denote $H_{2}(x, y)$ the element $x \cdot z$ defined in the previous proposition. We will also denote $T_{2}(x, y)$ the element $z^{\prime} \in S$ such that $y=z \cdot z^{\prime}$. In $M(S)$ we have $x y=H_{2}(x, y) T_{2}(x, y)$. We will prove that $M(S)$ has S as a Garside family by constructing a head function. But there is a technical complication: to show $M(S)$ is cancellable we will have to define simultaneously a tail function.

We will denote $H_{2}(x, y)$ the element $x \cdot z$ defined in the previous proposition. We will also denote $T_{2}(x, y)$ the element $z^{\prime} \in S$ such that $y=z \cdot z^{\prime}$. In $M(S)$ we have $x y=H_{2}(x, y) T_{2}(x, y)$. We will prove that $M(S)$ has S as a Garside family by constructing a head function. But there is a technical complication: to show $M(S)$ is cancellable we will have to define simultaneously a tail function. We first show

Proposition (H and T)

Let S be a germ which is left-associative, left-cancellative and has functions H_{2} and T_{2} as in Proposition (Head).

We will denote $H_{2}(x, y)$ the element $x \cdot z$ defined in the previous proposition. We will also denote $T_{2}(x, y)$ the element $z^{\prime} \in S$ such that $y=z \cdot z^{\prime}$. In $M(S)$ we have $x y=H_{2}(x, y) T_{2}(x, y)$.
We will prove that $M(S)$ has S as a Garside family by constructing a head function. But there is a technical complication: to show $M(S)$ is cancellable we will have to define simultaneously a tail function. We first show

Proposition (H and T)

Let S be a germ which is left-associative, left-cancellative and has functions H_{2} and T_{2} as in Proposition (Head). Then there are unique functions $H: M(S) \rightarrow S$ and $T: M(S) \rightarrow M(S)$ such that for $x, y \in S$ we have $H(x y)=H_{2}(x, y)$ and $T(x y)=T_{2}(x, y)$, and which for any $a, b \in M(S)$ satisfy

We will denote $H_{2}(x, y)$ the element $x \cdot z$ defined in the previous proposition. We will also denote $T_{2}(x, y)$ the element $z^{\prime} \in S$ such that $y=z \cdot z^{\prime} . \operatorname{In} M(S)$ we have $x y=H_{2}(x, y) T_{2}(x, y)$.
We will prove that $M(S)$ has S as a Garside family by constructing a head function. But there is a technical complication: to show $M(S)$ is cancellable we will have to define simultaneously a tail function. We first show

Proposition (H and T)

Let S be a germ which is left-associative, left-cancellative and has functions H_{2} and T_{2} as in Proposition (Head). Then there are unique functions $H: M(S) \rightarrow S$ and $T: M(S) \rightarrow M(S)$ such that for $x, y \in S$ we have $H(x y)=H_{2}(x, y)$ and $T(x y)=T_{2}(x, y)$, and which for any $a, b \in M(S)$ satisfy

$$
\begin{aligned}
& H(a b)=H(a H(b)) \\
& T(a b)=T(a H(b)) T(b)
\end{aligned}
$$

We will denote $H_{2}(x, y)$ the element $x \cdot z$ defined in the previous proposition. We will also denote $T_{2}(x, y)$ the element $z^{\prime} \in S$ such that $y=z \cdot z^{\prime} . \operatorname{In} M(S)$ we have $x y=H_{2}(x, y) T_{2}(x, y)$.
We will prove that $M(S)$ has S as a Garside family by constructing a head function. But there is a technical complication: to show $M(S)$ is cancellable we will have to define simultaneously a tail function. We first show

Proposition (H and T)

Let S be a germ which is left-associative, left-cancellative and has functions H_{2} and T_{2} as in Proposition (Head). Then there are unique functions $H: M(S) \rightarrow S$ and $T: M(S) \rightarrow M(S)$ such that for $x, y \in S$ we have $H(x y)=H_{2}(x, y)$ and $T(x y)=T_{2}(x, y)$, and which for any $a, b \in M(S)$ satisfy

$$
\begin{aligned}
& H(a b)=H(a H(b)) \\
& T(a b)=T(a H(b)) T(b)
\end{aligned}
$$

Further, $H(x)$ is the maximal left divisor of x which is in S.

As before, we identify elements of $M(S)$ to elements of S^{*} modulo \equiv. We define H and T on such sequences by induction on the number of terms, by setting

- $H(())=1$
- $H((s))=s$
$\Rightarrow H\left(s_{1}, \ldots, s_{n}\right)=H_{2}\left(s_{1}, H\left(\left(s_{2}, \ldots, s_{n}\right)\right)\right.$
and
$=T(())=T((s))=1$
$>T\left(s_{1}, \ldots, s_{n}\right)=T_{2}\left(s_{1}, H\left(\left(s_{2}, \ldots, s_{n}\right)\right)\right) T\left(\left(s_{2}, \ldots, s_{n}\right)\right)$.
We have to show that these definitions are compatible with \equiv and satisfy the equations of Proposition (H and T).
We first show that H_{2} and T_{2} as defined on S^{2} satisfy the equations of Proposition (H and T)

As before, we identify elements of $M(S)$ to elements of S^{*} modulo三.

As before, we identify elements of $M(S)$ to elements of S^{*} modulo \equiv. We define H and T on such sequences by induction on the number of terms, by setting

- $H(())=1$
- $H((s))=s$
- $H\left(s_{1}, \ldots, s_{n}\right)=H_{2}\left(s_{1}, H\left(\left(s_{2}, \ldots, s_{n}\right)\right)\right.$

As before, we identify elements of $M(S)$ to elements of S^{*} modulo \equiv. We define H and T on such sequences by induction on the number of terms, by setting

- $H(())=1$
- $H((s))=s$
- $H\left(s_{1}, \ldots, s_{n}\right)=H_{2}\left(s_{1}, H\left(\left(s_{2}, \ldots, s_{n}\right)\right)\right.$
and
- $T(())=T((s))=1$
- $T\left(s_{1}, \ldots, s_{n}\right)=T_{2}\left(s_{1}, H\left(\left(s_{2}, \ldots, s_{n}\right)\right)\right) T\left(\left(s_{2}, \ldots, s_{n}\right)\right)$.

As before, we identify elements of $M(S)$ to elements of S^{*} modulo \equiv. We define H and T on such sequences by induction on the number of terms, by setting

- $H(())=1$
- $H((s))=s$
- $H\left(s_{1}, \ldots, s_{n}\right)=H_{2}\left(s_{1}, H\left(\left(s_{2}, \ldots, s_{n}\right)\right)\right.$
and
- $T(())=T((s))=1$
- $T\left(s_{1}, \ldots, s_{n}\right)=T_{2}\left(s_{1}, H\left(\left(s_{2}, \ldots, s_{n}\right)\right)\right) T\left(\left(s_{2}, \ldots, s_{n}\right)\right)$.

We have to show that these definitions are compatible with \equiv and satisfy the equations of Proposition (H and T).
equations of Proposition (H and T)

As before, we identify elements of $M(S)$ to elements of S^{*} modulo \equiv. We define H and T on such sequences by induction on the number of terms, by setting

- $H(())=1$
- $H((s))=s$
- $H\left(s_{1}, \ldots, s_{n}\right)=H_{2}\left(s_{1}, H\left(\left(s_{2}, \ldots, s_{n}\right)\right)\right.$
and
- $T(())=T((s))=1$
- $T\left(s_{1}, \ldots, s_{n}\right)=T_{2}\left(s_{1}, H\left(\left(s_{2}, \ldots, s_{n}\right)\right)\right) T\left(\left(s_{2}, \ldots, s_{n}\right)\right)$.

We have to show that these definitions are compatible with \equiv and satisfy the equations of Proposition (H and T).
We first show that H_{2} and T_{2} as defined on S^{2} satisfy the equations of Proposition (H and T)

Lemma (Equations for H_{2} and T_{2})

$$
\begin{aligned}
& \text { 1. } H_{2}(x \cdot y, z)=H_{2}\left(x, H_{2}(y, z)\right) \\
& \text { 2. } T_{2}(x \cdot y, z)=T_{2}\left(x, H_{2}(y, z)\right) T_{2}(y, z)
\end{aligned}
$$

Lemma (Equations for H_{2} and T_{2})

$$
\begin{aligned}
& \text { 1. } H_{2}(x \cdot y, z)=H_{2}\left(x, H_{2}(y, z)\right) \\
& \text { 2. } T_{2}(x \cdot y, z)=T_{2}\left(x, H_{2}(y, z)\right) T_{2}(y, z)
\end{aligned}
$$

Proof.

Define u by $H_{2}(x \cdot y, z)=x \cdot y \cdot u$ and v by $H_{2}(y, z)=y \cdot v$.

Lemma (Equations for H_{2} and T_{2})

$$
\begin{aligned}
& \text { 1. } H_{2}(x \cdot y, z)=H_{2}\left(x, H_{2}(y, z)\right) \\
& \text { 2. } T_{2}(x \cdot y, z)=T_{2}\left(x, H_{2}(y, z)\right) T_{2}(y, z)
\end{aligned}
$$

Proof.

Define u by $H_{2}(x \cdot y, z)=x \cdot y \cdot u$ and v by $H_{2}(y, z)=y \cdot v$. By definition of $H_{2}(y, z)$ we have $y \cdot u \preccurlyeq H_{2}(y, z)$ where \preccurlyeq is the divisibility relation in S.

Lemma (Equations for H_{2} and T_{2})

$$
\begin{aligned}
& \text { 1. } H_{2}(x \cdot y, z)=H_{2}\left(x, H_{2}(y, z)\right) \\
& \text { 2. } T_{2}(x \cdot y, z)=T_{2}\left(x, H_{2}(y, z)\right) T_{2}(y, z)
\end{aligned}
$$

Proof.

Define u by $H_{2}(x \cdot y, z)=x \cdot y \cdot u$ and v by $H_{2}(y, z)=y \cdot v$. By definition of $H_{2}(y, z)$ we have $y \cdot u \preccurlyeq H_{2}(y, z)$ where \preccurlyeq is the divisibility relation in S. As $x \cdot y \cdot u$ is defined, this in turn implies $x \cdot y \cdot u \preccurlyeq H_{2}\left(x, H_{2}(y, z)\right)$.

Lemma (Equations for H_{2} and T_{2})

$$
\begin{aligned}
& \text { 1. } H_{2}(x \cdot y, z)=H_{2}\left(x, H_{2}(y, z)\right) \\
& \text { 2. } T_{2}(x \cdot y, z)=T_{2}\left(x, H_{2}(y, z)\right) T_{2}(y, z)
\end{aligned}
$$

Proof.

Define u by $H_{2}(x \cdot y, z)=x \cdot y \cdot u$ and v by $H_{2}(y, z)=y \cdot v$. By definition of $H_{2}(y, z)$ we have $y \cdot u \preccurlyeq H_{2}(y, z)$ where \preccurlyeq is the divisibility relation in S. As $x \cdot y \cdot u$ is defined, this in turn implies $x \cdot y \cdot u \preccurlyeq H_{2}\left(x, H_{2}(y, z)\right)$. Define w by $x \cdot y \cdot u \cdot w=H_{2}\left(x, H_{2}(y, z)\right)$.

Lemma (Equations for H_{2} and T_{2})

$$
\begin{aligned}
& \text { 1. } H_{2}(x \cdot y, z)=H_{2}\left(x, H_{2}(y, z)\right) \\
& \text { 2. } T_{2}(x \cdot y, z)=T_{2}\left(x, H_{2}(y, z)\right) T_{2}(y, z)
\end{aligned}
$$

Proof.

Define u by $H_{2}(x \cdot y, z)=x \cdot y \cdot u$ and v by $H_{2}(y, z)=y \cdot v$. By definition of $H_{2}(y, z)$ we have $y \cdot u \preccurlyeq H_{2}(y, z)$ where \preccurlyeq is the divisibility relation in S. As $x \cdot y \cdot u$ is defined, this in turn implies $x \cdot y \cdot u \preccurlyeq H_{2}\left(x, H_{2}(y, z)\right)$. Define w by
$x \cdot y \cdot u \cdot w=H_{2}\left(x, H_{2}(y, z)\right)$. It follows that $u \cdot w \preccurlyeq v \preccurlyeq z$ and the maximality of u shows that $w=1$ which shows (i).

Lemma (Equations for H_{2} and T_{2})

$$
\begin{aligned}
& \text { 1. } H_{2}(x \cdot y, z)=H_{2}\left(x, H_{2}(y, z)\right) \\
& \text { 2. } T_{2}(x \cdot y, z)=T_{2}\left(x, H_{2}(y, z)\right) T_{2}(y, z)
\end{aligned}
$$

Proof.

Define u by $H_{2}(x \cdot y, z)=x \cdot y \cdot u$ and v by $H_{2}(y, z)=y \cdot v$. By definition of $H_{2}(y, z)$ we have $y \cdot u \preccurlyeq H_{2}(y, z)$ where \preccurlyeq is the divisibility relation in S. As $x \cdot y \cdot u$ is defined, this in turn implies $x \cdot y \cdot u \preccurlyeq H_{2}\left(x, H_{2}(y, z)\right)$. Define w by
$x \cdot y \cdot u \cdot w=H_{2}\left(x, H_{2}(y, z)\right)$. It follows that $u \cdot w \preccurlyeq v \preccurlyeq z$ and the maximality of u shows that $w=1$ which shows (i).
We show now (ii). By definition of T_{2}, since
$H_{2}\left(x, H_{2}(y, z)\right)=x \cdot y \cdot u$, we have
$y \cdot u \cdot T_{2}\left(x, H_{2}(y, z)\right)=H_{2}(y, z)=y \cdot v$, whence $u \cdot T_{2}\left(x, H_{2}(y, z)\right)=v$.

Lemma (Equations for H_{2} and T_{2})

$$
\begin{aligned}
& \text { 1. } H_{2}(x \cdot y, z)=H_{2}\left(x, H_{2}(y, z)\right) \\
& \text { 2. } T_{2}(x \cdot y, z)=T_{2}\left(x, H_{2}(y, z)\right) T_{2}(y, z)
\end{aligned}
$$

Proof.

Define u by $H_{2}(x \cdot y, z)=x \cdot y \cdot u$ and v by $H_{2}(y, z)=y \cdot v$. By definition of $H_{2}(y, z)$ we have $y \cdot u \preccurlyeq H_{2}(y, z)$ where \preccurlyeq is the divisibility relation in S. As $x \cdot y \cdot u$ is defined, this in turn implies $x \cdot y \cdot u \preccurlyeq H_{2}\left(x, H_{2}(y, z)\right)$. Define w by
$x \cdot y \cdot u \cdot w=H_{2}\left(x, H_{2}(y, z)\right)$. It follows that $u \cdot w \preccurlyeq v \preccurlyeq z$ and the maximality of u shows that $w=1$ which shows (i).
We show now (ii). By definition of T_{2}, since $H_{2}\left(x, H_{2}(y, z)\right)=x \cdot y \cdot u$, we have $y \cdot u \cdot T_{2}\left(x, H_{2}(y, z)\right)=H_{2}(y, z)=y \cdot v$, whence $u \cdot T_{2}\left(x, H_{2}(y, z)\right)=v$. Similarly, since $H_{2}(y, z)=y \cdot v$ we have $v \cdot T_{2}(y, z)=z$. Thus $u \cdot T_{2}\left(x, H_{2}(y, z)\right) \cdot T_{2}(y, z)=z$.

Lemma (Equations for H_{2} and T_{2})

$$
\begin{aligned}
& \text { 1. } H_{2}(x \cdot y, z)=H_{2}\left(x, H_{2}(y, z)\right) \\
& \text { 2. } T_{2}(x \cdot y, z)=T_{2}\left(x, H_{2}(y, z)\right) T_{2}(y, z)
\end{aligned}
$$

Proof.

Define u by $H_{2}(x \cdot y, z)=x \cdot y \cdot u$ and v by $H_{2}(y, z)=y \cdot v$. By definition of $H_{2}(y, z)$ we have $y \cdot u \preccurlyeq H_{2}(y, z)$ where \preccurlyeq is the divisibility relation in S. As $x \cdot y \cdot u$ is defined, this in turn implies $x \cdot y \cdot u \preccurlyeq H_{2}\left(x, H_{2}(y, z)\right)$. Define w by
$x \cdot y \cdot u \cdot w=H_{2}\left(x, H_{2}(y, z)\right)$. It follows that $u \cdot w \preccurlyeq v \preccurlyeq z$ and the maximality of u shows that $w=1$ which shows (i).
We show now (ii). By definition of T_{2}, since $H_{2}\left(x, H_{2}(y, z)\right)=x \cdot y \cdot u$, we have $y \cdot u \cdot T_{2}\left(x, H_{2}(y, z)\right)=H_{2}(y, z)=y \cdot v$, whence $u \cdot T_{2}\left(x, H_{2}(y, z)\right)=v$. Similarly, since $H_{2}(y, z)=y \cdot v$ we have $v \cdot T_{2}(y, z)=z$. Thus $u \cdot T_{2}\left(x, H_{2}(y, z)\right) \cdot T_{2}(y, z)=z$. But since $H_{2}(x \cdot y, z)=x \cdot y \cdot u$ we have $u \cdot T_{2}(x \cdot y, z)=z$ whence the result simplifying by u.

Compatibility with \equiv

To check that the definition of H is compatible with \equiv, by induction it is enough to check what happens when s_{1} is a product, that is to check that $H_{2}\left(s_{1} \cdot s_{1}^{\prime}, H\left(\left(s_{2}, \ldots s_{n}\right)\right)\right)=H_{2}\left(s_{1}, H_{2}\left(s_{1}^{\prime}, H\left(\left(s_{2}, \ldots, s_{n}\right)\right)\right)\right)$ which is
(i) of Lemma (Equations for H_{2} and T_{2}).

Compatibility with \equiv

To check that the definition of H is compatible with \equiv, by induction it is enough to check what happens when s_{1} is a product, that is to check that $H_{2}\left(s_{1} \cdot s_{1}^{\prime}, H\left(\left(s_{2}, \ldots s_{n}\right)\right)\right)=H_{2}\left(s_{1}, H_{2}\left(s_{1}^{\prime}, H\left(\left(s_{2}, \ldots, s_{n}\right)\right)\right)\right)$ which is
(i) of Lemma (Equations for H_{2} and T_{2}).

We show that H is a S-head $(H(x)$ is the maximal left divisor in S of x):

Compatibility with \equiv

To check that the definition of H is compatible with \equiv, by induction it is enough to check what happens when s_{1} is a product, that is to check that $H_{2}\left(s_{1} \cdot s_{1}^{\prime}, H\left(\left(s_{2}, \ldots s_{n}\right)\right)\right)=H_{2}\left(s_{1}, H_{2}\left(s_{1}^{\prime}, H\left(\left(s_{2}, \ldots, s_{n}\right)\right)\right)\right)$ which is
(i) of Lemma (Equations for H_{2} and T_{2}).

We show that H is a S-head $(H(x)$ is the maximal left divisor in S of x): if s is a divisor in S of x, then x may be represented by a sequence (s, \ldots) and the definition shows that s left-divides $H(x)$.

Compatibility with \equiv

To check that the definition of H is compatible with \equiv, by induction it is enough to check what happens when s_{1} is a product, that is to check that $H_{2}\left(s_{1} \cdot s_{1}^{\prime}, H\left(\left(s_{2}, \ldots s_{n}\right)\right)\right)=H_{2}\left(s_{1}, H_{2}\left(s_{1}^{\prime}, H\left(\left(s_{2}, \ldots, s_{n}\right)\right)\right)\right)$ which is
(i) of Lemma (Equations for H_{2} and T_{2}).

We show that H is a S-head $(H(x)$ is the maximal left divisor in S of x): if s is a divisor in S of x, then x may be represented by a sequence (s, \ldots) and the definition shows that s left-divides $H(x)$. Finally it is easy by induction on the length of a sequence for x that $H(x y)=H(x H(y))$.

Compatibility with \equiv

To check that the definition of H is compatible with \equiv, by induction it is enough to check what happens when s_{1} is a product, that is to check that
$H_{2}\left(s_{1} \cdot s_{1}^{\prime}, H\left(\left(s_{2}, \ldots s_{n}\right)\right)\right)=H_{2}\left(s_{1}, H_{2}\left(s_{1}^{\prime}, H\left(\left(s_{2}, \ldots, s_{n}\right)\right)\right)\right)$ which is
(i) of Lemma (Equations for H_{2} and T_{2}).

We show that H is a S-head $(H(x)$ is the maximal left divisor in S of x): if s is a divisor in S of x, then x may be represented by a sequence (s, \ldots) and the definition shows that s left-divides $H(x)$.
Finally it is easy by induction on the length of a sequence for x that $H(x y)=H(x H(y))$.
Similarly to check that the definition of T is compatible with \equiv boils to $T_{2}\left(s_{1} \cdot s_{1}^{\prime}, H\left(\left(s_{2}, \ldots, s_{n}\right)\right)\right)=$
$T_{2}\left(s_{1}, H_{2}\left(s_{1}^{\prime}, H\left(\left(s_{2}, \ldots, s_{n}\right)\right)\right)\right) T_{2}\left(s_{1}^{\prime}, H\left(\left(s_{2}, \ldots, s_{n}\right)\right)\right)$ which is (ii) of Lemma (Equations for H_{2} and T_{2}), and similarly induction on the length of a sequence shows the equation for T.

Cancellability

We now show how Proposition (H and T) implies that $M(S)$ is left-cancellative.

Cancellability

We now show how Proposition (H and T) implies that $M(S)$ is left-cancellative. It shows first that for $x \in M(S)$ any y such that $x=H(x) y$ is the unique element $T(x)$. We show this by induction on the number of terms of $x \in S^{*}$.

Cancellability

We now show how Proposition (H and T) implies that $M(S)$ is left-cancellative. It shows first that for $x \in M(S)$ any y such that $x=H(x) y$ is the unique element $T(x)$. We show this by induction on the number of terms of $x \in S^{*}$. We have $T(x)=T(H(x) y)=$ $T(H(x) H(y)) T(y)=T_{2}(H(x), H(y)) T(y)=H(y) T(y)$, the last equality since $H(x)=H(H(x) H(y))=H_{2}(H(x), H(y))$, and by induction $H(y) T(y)=y$.

Cancellability

We now show how Proposition (H and T) implies that $M(S)$ is left-cancellative. It shows first that for $x \in M(S)$ any y such that $x=H(x) y$ is the unique element $T(x)$. We show this by induction on the number of terms of $x \in S^{*}$. We have $T(x)=T(H(x) y)=$ $T(H(x) H(y)) T(y)=T_{2}(H(x), H(y)) T(y)=H(y) T(y)$, the last equality since $H(x)=H(H(x) H(y))=H_{2}(H(x), H(y))$, and by induction $H(y) T(y)=y$.
This implies general cancellability: we want to show that an equality $a b=a c$ in $M(S)$ implies $b=c$.

Cancellability

We now show how Proposition (H and T) implies that $M(S)$ is left-cancellative. It shows first that for $x \in M(S)$ any y such that $x=H(x) y$ is the unique element $T(x)$. We show this by induction on the number of terms of $x \in S^{*}$. We have $T(x)=T(H(x) y)=$ $T(H(x) H(y)) T(y)=T_{2}(H(x), H(y)) T(y)=H(y) T(y)$, the last equality since $H(x)=H(H(x) H(y))=H_{2}(H(x), H(y))$, and by induction $H(y) T(y)=y$.
This implies general cancellability: we want to show that an equality $a b=a c$ in $M(S)$ implies $b=c$. Since a is a product of elements of S it is enough to consider the case whare $a \in S$.

Cancellability

We now show how Proposition (H and T) implies that $M(S)$ is left-cancellative. It shows first that for $x \in M(S)$ any y such that $x=H(x) y$ is the unique element $T(x)$. We show this by induction on the number of terms of $x \in S^{*}$. We have $T(x)=T(H(x) y)=$ $T(H(x) H(y)) T(y)=T_{2}(H(x), H(y)) T(y)=H(y) T(y)$, the last equality since $H(x)=H(H(x) H(y))=H_{2}(H(x), H(y))$, and by induction $H(y) T(y)=y$.
This implies general cancellability: we want to show that an equality $a b=a c$ in $M(S)$ implies $b=c$. Since a is a product of elements of S it is enough to consider the case whare $a \in S$. Let $x=a b=a c$. We have $H(x)=H(a b)=H(a H(b))=H_{2}(a, H(b))$ $=a \cdot b_{1}$ where b_{1} divides b thus $b=b_{1} b_{2}$ and $x=\left(a \cdot b_{1}\right) b_{2}$ where $H(x)=a \cdot b_{1}$ and thus $T(x)=b_{2}$.

Cancellability

We now show how Proposition (H and T) implies that $M(S)$ is left-cancellative. It shows first that for $x \in M(S)$ any y such that $x=H(x) y$ is the unique element $T(x)$. We show this by induction on the number of terms of $x \in S^{*}$. We have $T(x)=T(H(x) y)=$ $T(H(x) H(y)) T(y)=T_{2}(H(x), H(y)) T(y)=H(y) T(y)$, the last equality since $H(x)=H(H(x) H(y))=H_{2}(H(x), H(y))$, and by induction $H(y) T(y)=y$.
This implies general cancellability: we want to show that an equality $a b=a c$ in $M(S)$ implies $b=c$. Since a is a product of elements of S it is enough to consider the case whare $a \in S$. Let $x=a b=a c$. We have $H(x)=H(a b)=H(a H(b))=H_{2}(a, H(b))$ $=a \cdot b_{1}$ where b_{1} divides b thus $b=b_{1} b_{2}$ and $x=\left(a \cdot b_{1}\right) b_{2}$ where $H(x)=a \cdot b_{1}$ and thus $T(x)=b_{2}$. We can write similarly $x=\left(a \cdot c_{1}\right) c_{2}$. By cancellability in S we get $b_{1}=c_{1}$ and $b_{2}=c_{2}=T(x)$ thus $b=b_{1} b_{2}=c_{1} c_{2}=c$.

Cancellability

We now show how Proposition (H and T) implies that $M(S)$ is left-cancellative. It shows first that for $x \in M(S)$ any y such that $x=H(x) y$ is the unique element $T(x)$. We show this by induction on the number of terms of $x \in S^{*}$. We have $T(x)=T(H(x) y)=$ $T(H(x) H(y)) T(y)=T_{2}(H(x), H(y)) T(y)=H(y) T(y)$, the last equality since $H(x)=H(H(x) H(y))=H_{2}(H(x), H(y))$, and by induction $H(y) T(y)=y$.
This implies general cancellability: we want to show that an equality $a b=a c$ in $M(S)$ implies $b=c$. Since a is a product of elements of S it is enough to consider the case whare $a \in S$. Let $x=a b=a c$. We have $H(x)=H(a b)=H(a H(b))=H_{2}(a, H(b))$ $=a \cdot b_{1}$ where b_{1} divides b thus $b=b_{1} b_{2}$ and $x=\left(a \cdot b_{1}\right) b_{2}$ where $H(x)=a \cdot b_{1}$ and thus $T(x)=b_{2}$. We can write similarly $x=\left(a \cdot c_{1}\right) c_{2}$. By cancellability in S we get $b_{1}=c_{1}$ and $b_{2}=c_{2}=T(x)$ thus $b=b_{1} b_{2}=c_{1} c_{2}=c$.
H is a S-head $(H(x)$ is a maximal divisor of x in $S), S$ generates $M(S)$ and is stable by right divisor: S is a Garside family in $M(S)$.

Proposition (check common multiple on generators)

In a group W generated positively by R, let S be an interval stable under left and right divisors and assume any $r, r^{\prime} \in R$ which have a common multiple have a least common multiple.

Proposition (check common multiple on generators)

In a group W generated positively by R, let S be an interval stable under left and right divisors and assume any $r, r^{\prime} \in R$ which have a common multiple have a least common multiple. Then any s, s^{\prime} in S which have a common multiple have a least common multiple.

Proposition (check common multiple on generators)

In a group W generated positively by R, let S be an interval stable under left and right divisors and assume any $r, r^{\prime} \in R$ which have a common multiple have a least common multiple. Then any s, s^{\prime} in S which have a common multiple have a least common multiple.

Proof.

The proof is by induction on $I_{R}(s)+I_{R}\left(s^{\prime}\right)$. If $I_{R}(s)=I_{R}\left(s^{\prime}\right)=1$ we are at the start of the induction.

Proposition (check common multiple on generators)

In a group W generated positively by R, let S be an interval stable under left and right divisors and assume any $r, r^{\prime} \in R$ which have a common multiple have a least common multiple. Then any s, s^{\prime} in S which have a common multiple have a least common multiple.

Proof.

The proof is by induction on $I_{R}(s)+I_{R}\left(s^{\prime}\right)$. If $I_{R}(s)=I_{R}\left(s^{\prime}\right)=1$ we are at the start of the induction. Otherwise one of them, say s is a product $s=s_{1} s_{2}$.

Proposition (check common multiple on generators)

In a group W generated positively by R, let S be an interval stable under left and right divisors and assume any $r, r^{\prime} \in R$ which have a common multiple have a least common multiple. Then any s, s^{\prime} in S which have a common multiple have a least common multiple.

Proof.

The proof is by induction on $I_{R}(s)+I_{R}\left(s^{\prime}\right)$. If $I_{R}(s)=I_{R}\left(s^{\prime}\right)=1$ we are at the start of the induction. Otherwise one of them, say s is a product $s=s_{1} s_{2}$. Assume s, s^{\prime} have a common multiple $s h$. Then sh is a common multiple of s_{1} and s^{\prime} so by induction they have a least common multiple $s_{1} h_{1}$.

Proposition (check common multiple on generators)

In a group W generated positively by R, let S be an interval stable under left and right divisors and assume any $r, r^{\prime} \in R$ which have a common multiple have a least common multiple. Then any s, s^{\prime} in S which have a common multiple have a least common multiple.

Proof.

The proof is by induction on $I_{R}(s)+I_{R}\left(s^{\prime}\right)$. If $I_{R}(s)=I_{R}\left(s^{\prime}\right)=1$ we are at the start of the induction. Otherwise one of them, say s is a product $s=s_{1} s_{2}$. Assume s, s^{\prime} have a common multiple $s h$. Then sh is a common multiple of s_{1} and s^{\prime} so by induction they have a least common multiple $s_{1} h_{1}$. Now h_{1} and s_{2} have a common multiple $s_{2} h$, so by induction have a least common multiple $s_{2} h_{2}$.

Proposition (check common multiple on generators)

In a group W generated positively by R, let S be an interval stable under left and right divisors and assume any $r, r^{\prime} \in R$ which have a common multiple have a least common multiple. Then any s, s^{\prime} in S which have a common multiple have a least common multiple.

Proof.

The proof is by induction on $I_{R}(s)+I_{R}\left(s^{\prime}\right)$. If $I_{R}(s)=I_{R}\left(s^{\prime}\right)=1$ we are at the start of the induction. Otherwise one of them, say s is a product $s=s_{1} s_{2}$. Assume s, s^{\prime} have a common multiple $s h$. Then sh is a common multiple of s_{1} and s^{\prime} so by induction they have a least common multiple $s_{1} h_{1}$. Now h_{1} and s_{2} have a common multiple $s_{2} h$, so by induction have a least common multiple $s_{2} h_{2}$. Then $s_{1} s_{2} h_{2}$ is a least common multiple of s and s^{\prime}.

Proposition (check extend on generators)
In a group W generated positively by R, let S be an interval stable under left and right divisors and assume that for any $f \in S$ and any $r, r^{\prime} \in R$ which have a common multiple and for which fr and $f r^{\prime}$ are in S then f right-Icm $\left(r, r^{\prime}\right) \in S$.

Proposition (check extend on generators)

In a group W generated positively by R, let S be an interval stable under left and right divisors and assume that for any $f \in S$ and any $r, r^{\prime} \in R$ which have a common multiple and for which fr and $f r^{\prime}$ are in S then f right- $\operatorname{lcm}\left(r, r^{\prime}\right) \in S$. Then for any s, s^{\prime} in S which have a common multiple and for which fs and $f_{s}{ }^{\prime}$ are in S then f right- $\operatorname{lcm}\left(s, s^{\prime}\right) \in S$.

Proposition (check extend on generators)

In a group W generated positively by R, let S be an interval stable under left and right divisors and assume that for any $f \in S$ and any $r, r^{\prime} \in R$ which have a common multiple and for which fr and $f r^{\prime}$ are in S then f right- $\operatorname{lcm}\left(r, r^{\prime}\right) \in S$. Then for any s, s^{\prime} in S which have a common multiple and for which fs and $f_{s}{ }^{\prime}$ are in S then f right- $\operatorname{lcm}\left(s, s^{\prime}\right) \in S$.

Proof.

The previous proposition was the particular case where $f=1$.

Proposition (check extend on generators)

In a group W generated positively by R, let S be an interval stable under left and right divisors and assume that for any $f \in S$ and any $r, r^{\prime} \in R$ which have a common multiple and for which fr and $f r^{\prime}$ are in S then f right- $\operatorname{lcm}\left(r, r^{\prime}\right) \in S$. Then for any s, s^{\prime} in S which have a common multiple and for which fs and $f_{s}{ }^{\prime}$ are in S then f right- $\operatorname{lcm}\left(s, s^{\prime}\right) \in S$.

Proof.

The previous proposition was the particular case where $f=1$. The proof is similarly by induction on $I_{R}(s)+I_{R}\left(s^{\prime}\right)$, but this time we keep track of the property of elements $f s_{1} h_{1}, f s_{1} s_{2} h_{2}$ to be in S.

Proposition (check extend on generators)

In a group W generated positively by R, let S be an interval stable under left and right divisors and assume that for any $f \in S$ and any $r, r^{\prime} \in R$ which have a common multiple and for which fr and $f r^{\prime}$ are in S then f right- $\operatorname{lcm}\left(r, r^{\prime}\right) \in S$. Then for any s, s^{\prime} in S which have a common multiple and for which fs and $f_{s}{ }^{\prime}$ are in S then f right- $\operatorname{lcm}\left(s, s^{\prime}\right) \in S$.

Proof.

The previous proposition was the particular case where $f=1$. The proof is similarly by induction on $I_{R}(s)+I_{R}\left(s^{\prime}\right)$, but this time we keep track of the property of elements $f s_{1} h_{1}, f s_{1} s_{2} h_{2}$ to be in S. This is left as an exercise.

Proposition (check extend on generators)

In a group W generated positively by R, let S be an interval stable under left and right divisors and assume that for any $f \in S$ and any $r, r^{\prime} \in R$ which have a common multiple and for which fr and $f r^{\prime}$ are in S then f right- $\operatorname{lcm}\left(r, r^{\prime}\right) \in S$. Then for any s, s^{\prime} in S which have a common multiple and for which fs and $f_{s}{ }^{\prime}$ are in S then f right- $\operatorname{lcm}\left(s, s^{\prime}\right) \in S$.

Proof.

The previous proposition was the particular case where $f=1$. The proof is similarly by induction on $I_{R}(s)+I_{R}\left(s^{\prime}\right)$, but this time we keep track of the property of elements $f s_{1} h_{1}, f s_{1} s_{2} h_{2}$ to be in S. This is left as an exercise.

The previous two propositions reduce the check for existence of least common multiples to generators.

Proposition (1 -reduced element)

Let (W, S) be a Coxeter system, and let W_{I} be a parabolic subgroup for $I \subset S$.

Proposition (I-reduced element)

Let (W, S) be a Coxeter system, and let W_{I} be a parabolic subgroup for $I \subset S$. In any coset $W_{1} w$ there is a unique element x of minimal length, characterized by the equivalent properties:

Proposition (1 -reduced element)

Let (W, S) be a Coxeter system, and let W_{I} be a parabolic subgroup for $I \subset S$. In any coset $W_{1} w$ there is a unique element x of minimal length, characterized by the equivalent properties:
$-I_{S}(v)+I_{S}(x)=I_{S}(v x)$ for any $v \in W_{I}$.

Proposition (I-reduced element)

Let (W, S) be a Coxeter system, and let W_{I} be a parabolic subgroup for $I \subset S$. In any coset $W_{1} w$ there is a unique element x of minimal length, characterized by the equivalent properties:
$-I_{S}(v)+I_{S}(x)=I_{S}(v x)$ for any $v \in W_{l}$.

- x is not divisible on the left by any $i \in I\left(I_{s}(i x)=I_{s}(x)+1\right)$.

Proposition (I-reduced element)

Let (W, S) be a Coxeter system, and let W_{I} be a parabolic subgroup for $I \subset S$. In any coset $W_{1} w$ there is a unique element x of minimal length, characterized by the equivalent properties:
$-I_{S}(v)+I_{S}(x)=I_{S}(v x)$ for any $v \in W_{I}$.

- x is not divisible on the left by any $i \in I\left(I_{s}(i x)=I_{s}(x)+1\right)$.

Assume $s, s^{\prime} \in S$ have a common multiple w and write $w=v x$ where x is the minimal element in $W_{I} w$ for $I=\left\{s, s^{\prime}\right\}$.

Proposition (I-reduced element)

Let (W, S) be a Coxeter system, and let W_{I} be a parabolic subgroup for $I \subset S$. In any coset $W_{1} w$ there is a unique element x of minimal length, characterized by the equivalent properties:
$-I_{S}(v)+I_{S}(x)=I_{S}(v x)$ for any $v \in W_{I}$.

- x is not divisible on the left by any $i \in I\left(I_{s}(i x)=I_{s}(x)+1\right)$.

Assume $s, s^{\prime} \in S$ have a common multiple w and write $w=v x$ where x is the minimal element in $W_{I} w$ for $I=\left\{s, s^{\prime}\right\}$. By assumption $I_{S}(s v x)=I_{S}(v x)-1$. We cannot have $I_{S}(s v)=I_{S}(v)+1$ by the first item since the lengths add.

Proposition (I-reduced element)

Let (W, S) be a Coxeter system, and let W_{I} be a parabolic subgroup for $I \subset S$. In any coset $W_{I} w$ there is a unique element x of minimal length, characterized by the equivalent properties:
$-I_{S}(v)+I_{S}(x)=I_{S}(v x)$ for any $v \in W_{l}$.

- x is not divisible on the left by any $i \in I\left(I_{s}(i x)=I_{s}(x)+1\right)$.

Assume $s, s^{\prime} \in S$ have a common multiple w and write $w=v x$ where x is the minimal element in $W_{I} w$ for $I=\left\{s, s^{\prime}\right\}$. By assumption $I_{S}(s v x)=I_{S}(v x)-1$. We cannot have $I_{S}(s v)=I_{S}(v)+1$ by the first item since the lengths add. It follows that $v \in W_{l}$ is a common multiple of s, s^{\prime}.

Proposition (I-reduced element)

Let (W, S) be a Coxeter system, and let W_{I} be a parabolic subgroup for $I \subset S$. In any coset $W_{I} w$ there is a unique element x of minimal length, characterized by the equivalent properties:
$-I_{S}(v)+I_{S}(x)=I_{S}(v x)$ for any $v \in W_{I}$.

- x is not divisible on the left by any $i \in I\left(I_{s}(i x)=I_{s}(x)+1\right)$.

Assume $s, s^{\prime} \in S$ have a common multiple w and write $w=v x$ where x is the minimal element in $W_{I} w$ for $I=\left\{s, s^{\prime}\right\}$. By assumption $I_{S}(s v x)=I_{S}(v x)-1$. We cannot have $I_{S}(s v)=I_{S}(v)+1$ by the first item since the lengths add. It follows that $v \in W_{l}$ is a common multiple of s, s^{\prime}. Now in the dihedral group W_{l} the generators have a common multiple if and only if W_{l} is finite and it is the longest element of $\Delta_{s, s^{\prime}}$ of W_{l}, thus unique.

Proposition (I-reduced element)

Let (W, S) be a Coxeter system, and let W_{I} be a parabolic subgroup for $I \subset S$. In any coset $W_{l} w$ there is a unique element x of minimal length, characterized by the equivalent properties:
$-I_{S}(v)+I_{S}(x)=I_{S}(v x)$ for any $v \in W_{I}$.

- x is not divisible on the left by any $i \in I\left(I_{s}(i x)=I_{s}(x)+1\right)$.

Assume $s, s^{\prime} \in S$ have a common multiple w and write $w=v x$ where x is the minimal element in $W_{I} w$ for $I=\left\{s, s^{\prime}\right\}$. By assumption $I_{S}(s v x)=I_{S}(v x)-1$. We cannot have $I_{S}(s v)=I_{S}(v)+1$ by the first item since the lengths add. It follows that $v \in W_{l}$ is a common multiple of s, s^{\prime}. Now in the dihedral group W_{l} the generators have a common multiple if and only if W_{l} is finite and it is the longest element of $\Delta_{s, s^{\prime}}$ of W_{l}, thus unique.
For the property (extend by generators) we want that if $I_{S}(w s)=I_{S}(w+1)$ and $I_{S}\left(w s^{\prime}\right)=I_{S}(w+1)$ then $I_{S}\left(w \Delta_{s, s^{\prime}}\right)=I_{S}(w)+I_{S}\left(\Delta_{s, s^{\prime}}\right)$.

Proposition (I-reduced element)

Let (W, S) be a Coxeter system, and let W_{I} be a parabolic subgroup for $I \subset S$. In any coset $W_{I} w$ there is a unique element x of minimal length, characterized by the equivalent properties:
$-I_{S}(v)+I_{S}(x)=I_{S}(v x)$ for any $v \in W_{l}$.

- x is not divisible on the left by any $i \in I\left(I_{s}(i x)=I_{s}(x)+1\right)$.

Assume $s, s^{\prime} \in S$ have a common multiple w and write $w=v x$ where x is the minimal element in $W_{I} w$ for $I=\left\{s, s^{\prime}\right\}$. By assumption $I_{S}(s v x)=I_{S}(v x)-1$. We cannot have $I_{S}(s v)=I_{S}(v)+1$ by the first item since the lengths add. It follows that $v \in W_{l}$ is a common multiple of s, s^{\prime}. Now in the dihedral group W_{l} the generators have a common multiple if and only if W_{l} is finite and it is the longest element of $\Delta_{s, s^{\prime}}$ of W_{l}, thus unique. For the property (extend by generators) we want that if $I_{S}(w s)=I_{S}(w+1)$ and $I_{S}\left(w s^{\prime}\right)=I_{S}(w+1)$ then $I_{S}\left(w \Delta_{s, s^{\prime}}\right)=I_{S}(w)+I_{S}\left(\Delta_{s, s^{\prime}}\right)$. This is a consequence of the equivalence of the two items in the proposition.

