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Motivation

Let g be a complex semisimple Lie algebra. Such a Lie algebra gives rise to an integral square matrix
C(g), the so-called Cartan matrix of g. A Theorem by Serre provides a presentation of g by generators
and relations that only depend on C(g), the so-called Serre relations. This implies that the universal
enveloping algebra U(g) of g can be described by the same generators and relations that are derived from
those for the Lie algebra. More generally, such presentations can be associated to so-called generalized
Cartan matrices, which then define certain infinite-dimensional Lie algebras, that are known as Kac-
Moody Lie algebras. Deforming the relations yield quantum Serre relations which lead to quantized
enveloping algebras Uq(g).

Integral matrices can also be used to define quivers. In this talk, which is based on lecture notes by
Andrew Hubery, I will introduce some basic concepts on quivers and their representations and illustrate
how Hall algebras of quivers give rise to similar relations. This is thus the first step towards defining a
homomorphism

Uq(g
+) −→ H

between half quantum groups and Hall algebras.
Our relations will arise in the following fashion: Let x, y ∈ g. In U(g) we have adx = `x−rx, the

difference between the left and right multiplications effected by x. Hence a relation (adx)n(y) = 0 in g
implies

n∑
i=0

(−1)i
(
n

i

)
xiyxn−i = 0

in U(g). For the purposes of this talk, “deforming" relations means replacing binomial coefficients by
Gaussian binomial coefficients.

1. Quiver representations

Let k be a field, R be a k-algebra. We will work in the category modR of finite-dimensional R-
modules. Let M ∈ modR.

• Rad(M) :=
⋂
U(Mmax. U is the radical of M . We put Radn+1(M) := Rad(Radn(M)).

• ``(M) := min{n ∈ N0 ; Radn(M) = (0)} is the Loewy length of M .
• Soc(M) =

∑
S⊆Msimple S is the socle ofM . We put Socn+1(M) := {m ∈M ; m+Socn(M) ∈

Soc(M/Socn(M))}.
• Let M = Soc(M) be semisimple, S be a simple R-module. Then

MS :=
∑

V⊆N ;V∼=S
V

is the S-isotypic component of M . Thus, if M =
⊕`

i=1 S
di
i , then MSi = Sdii .

• We say thatM is uniserial, if (Radn(M))n≥0 is a composition series ofM . In that case Radn(M)
is the unique submodule of M of length `(M)−n.
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A quiver Q = (Q0, Q1) consists of a finite set Q0 of vertices and finite a set Q1 of arrows between
vertices. We postulate that there are no loops, that is, there are no arrows α : i→ i.

For every vertex i ∈ Q0, we pick a path ei of length 0, which starts and ends at i.

Definition. The path algebra kQ has underlying vector space with basis the set of oriented paths and
product given by concatenation or zero. (Arrows are composed like maps).

Examples. (1) Let K2 be the 2-Kronecker quiver:

1 2
α

β

Then
kQ = ke1 ⊕ ke2 ⊕ kα⊕ kβ,

and αβ = 0 = βα while e2i = ei and eie3−i = 0.
(2) Let Ã1:

1 2
α

β

be the cyclic quiver. Then

kÃ1 = ke1⊕ke2⊕ kα⊕kβ⊕kβα
⊕

0≤i+j≤2,n≥1
kβi(αβ)nαj .

Let Q = (Q0, Q1) be a quiver. A representation V = ((Vi)i∈Q0 , (Vα)α∈Q1) consists of finite-dimensional
vector spaces Vi and linear maps Vα : Vi −→ Vj for every arrow α : i → j. The element dimV :=

(dimk Vi)i∈Q0 ∈ NQ0
0 is the dimension vector of V .

A morphism f : V −→ W is a family fi : Vi −→ Wi of linear maps such that, for each arrow
α : i→ j, the diagram

Vi
fi−−−−→ Wi

Vα

y yWα

Vj
fj−−−−→ Wj

commutes.
Kernels, Images and Cokernels are defined canonically, and we thus have an abelian category rep(Q).

In fact, rep(Q) is equivalent to mod kQ.

Special features:
• Let i ∈ Q0 Si := ((δijk)j , 0) is a simple module, and the Si (i ∈ Q0) exhaust all simple
kQ-modules.
• We have dimk Ext

1(Si, Sj) = |α : i→ j|.
• In particular, Si is projective iff i is a sink and Si is injective iff i is a source.
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2. Hall numbers

Let R be an algebra over a finite field k = Fq.
• Given M,X, Y ∈ modR, the Hall number is defined by

FXM,N := |{U ⊆ X ; U ∼= N and X/U ∼=M}|.
• Recall that H(R) :=

⊕
[M ] ZuM is the Hall algebra, with product

uMuN =
∑
[X]

FXM,NuX .

We let Grd(k
n) be the Grassmannian of d-planes in n-space and recall that

|Grd(k
n)| =

(
n

d

)
q

is the Gaussian binomial coefficient. We write (n)q :=
(
n
1

)
q
.

By way of example, we prove the following:

Lemma 2.1. Let Q be a quiver, S be a simple kQ-module,

(0) −→ Sd −→ X
π−→M −→ (0)

be an exact sequence of kQ-modules.
(1) If S is injective or X is semisimple, then have

FXM,Sd =

(
dimk Soc(X)S

d

)
q

(2) If S is injective and M 6∼= S is indecomposable, then FX
M,Sd

= 1 and uMuSd = uM⊕Sd .
(3) We have uSruSs =

(
r+s
s

)
q
uSr+s . In particular, unS = (n)q!uSn for all n ≥ 1.

Proof. (1) We write X = ((Xi), (Xα)) and S = Si0 , so that

(Soc(X)S)i =

{ ⋂
α:i0→j kerXα i = i0

(0) else.

If S is injective, then i0 is a source, whence
∑

α:i→i0 imXα = (0). This also follows in case X is
semisimple.

We write Xi0 = (Soc(X)S)i0⊕Yi0 as a sum of k-spaces. Let U ⊆ X be a submodule, ϕ : U −→ Sd

be an isomorphism. Then U ⊆ Soc(X)S , so that Ui0 ⊆
⋂
α:i0→j kerXα. Hence there is a linear map

fi0 ∈ GL(Xi0) such that
(a) fi0(Soc(X)S) = Soc(X)S , and
(b) fi0 |Ui0 = ϕi0 , and
(c) fi0 |Yi0 = idYi0 .

Setting fi = idXi for i 6= i0, one checks that f = (fi) ∈ Aut(X), while f |U = ϕ. Thus, ker(π◦f) =
f−1(Sd) = U , and we have X/U ∼= M . Consequently, FX

M,Sd
counts the d-dimensional subspaces of

Soc(X)S .
(2) Since S is injective, the sequence splits and X ∼=M⊕Sd. By the same token, S is not isomorphic

to a submodule of M , whence Soc(X)S ∼= Soc(M)S⊕Sd = Sd.
(3) Since the quiver has no loops, we have Ext1(S, S) = (0), whence Ext1(Sr, Ss) = (0). Thus,

every exact sequence
(0) −→ Ss −→ X −→ Sr −→ (0)
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splits and X ∼= Sr+s is semisimple. Consequently, part (1) yields

uSruSs =

(
r+s

s

)
q

uSr+s .

The second assertion now follows by induction. �

3. The n-Kronecker quiver

Let k = Fq. The quiver Kn is given by

1
n→ 2.

Consequently,

• dimM ∈ N2
0 for every M ∈ rep(Kn).

• S1 is injective and S2 is projective.

The category rep(Kn) affords a duality D : rep(Kn) −→ rep(Kn)

D(M1,M2, (ϕi)) := D(M∗2 ,M
∗
1 , (ϕ

∗
i )),

so that dimD(M) = (dimkM2, dimkM1).
Let

(0) −→ N −→ X −→M −→ (0)

be an exact sequence. Then

(0) −→ D(M) −→ D(X) −→ D(N) −→ (0)

is exact, and we have

F
D(X)
D(M),D(N) = FXN,M .

This implies that the map
D : H(Kn) −→ H(Kn) ; uM 7→ uD(M)

is an involution: D(ab) = D(b)D(a) ; D2 = id.

Given d ∈ N2
0, we put

indd(Kn) := {[M ] ; M ∈ rep(Kn) indecomposable, dimM = d}

as well as
ud :=

∑
[M ]∈indd(Kn)

uM .

Lemma 3.1. The following statements hold:

(1) If N is indecomposable with N 6∼= S2, then uSs2uN = uSs2⊕N .
(2) uSr2uS1uSs2 =

∑s
a=0

(
r+s−a
r

)
q
uSr+s−a2

u(1,a).
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Proof. (1) Since Since S1 = D(S2) is injective and D(N) is indecomposable with D(N) 6∼= S1, Lemma
2.1 yields

uSs2uN = D(uSs1 )D(uD(N)) = D(uD(N)uSs1 ) = D(uD(N)⊕Ss1 ) = uSs2⊕N .

(2) If

(0) −→ Ss2 −→ X −→ S1 −→ (0)

is exact, then Soc(X)S2
∼= Ss2, so that every U ⊆ X with U ∼= Ss2 equals Soc(X)S2 . Consequently,

FXS1,Ss2
= 1, and we obtain

uS1uSs2 =
∑

dimX=(1,s)

FXS1,Ss2
uX =

∑
dimX=(1,s)

uX ,

so that

uSr2uS1uSs2 =
∑

dimX=(1,s)

uSr2uX .

GivenM with dimM = (1, s), we haveM ∼= N⊕Ss−a2 , where N is indecomposable and dimN = (1, a).
Now (1) implies

uSr2uS1uSs2 =
s∑

a=0

∑
N∈ind(1,a)(Kn)

uSr2uSs−a2 ⊕N =
s∑

a=0

(uSr2uSs−a2
)u(1,a) =

s∑
a=0

(
r+s−a

r

)
q

u(1,a),

where the last equation follows from Lemma 2.1(3). �

Lemma 3.2. We have:

(1)
∑n+1

r=0 (−1)rq(
r
2)uSr2uS1uSn+1−r

2
= 0.

(2)
∑n+1

r=0 (−1)n+1−rq(
n+1−r

2 )uSr1uS2uSn+1−r
1

= 0.

Proof. (1) This follows directly from Lemma 3.1 and the formula

m∑
r=0

(−1)rq(
r
2)
(
m

r

)
q

= 0

along with
(
m
s

)
q
= 0 for s > m.

(2) This follows by applying D to (1), while observing D(Si) = S3−i. �

Lemma 2.1(3) now implies that (1) yields

n+1∑
r=0

(−1)rq(
r
2)
(
n+1

r

)
q

urS2
uS1u

n+1−r
S2

= 0.

For n = 2, this resembles one of the q-Serre relations for affine sl(2), but (2) shows that we obtain a
second relation that is different.
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4. The cyclic quiver Ã1

We consider the quiver
1 � 2.

Since we are interested in finding relations involving only S1 and S2 and their iterated extensions, we will
be working in the full subcategory of mod kÃ1, whose objects have composition series involving S1 and
S2 only. This is in fact the subcategory repnil(Ã1) of nilpotent representations.

Fact:
• Every indecomposable module M ∈ repnil(Ã1) is uniquely determined by its top Top(M) :=
M/Rad(M) and its length (= ``(M) = dimkM). We denote by Si(n) the indecomposable
repnil(Ã1)-module such that Top(Si(n)) ∼= Si and dimk Si(n) = n.

Lemma 4.1. The following statements hold:
(1) uS2uSs1 = uS2(2)⊕Ss−1

1
+uSs1⊕S2 .

(2) uSr1uS2uSs1 =
(
r+s−2
r−1

)
q
uS1(3)⊕Sr+s−2

1
+
(
r+s−1
r

)
q
uS2(1)⊕Sr+s−1

1
+
(
r+s−1
r−1

)
q
uS1(2)⊕Sr+s−1

1
+
(
r+s
r

)
q
uSr+s1 ⊕S2

Proof. (1) Let
(0) −→ Ss1 −→ X −→ S2 −→ (0)

be an exact sequence. Then we have

(0) −→ Ss1 −→ Soc(X)S1 −→ Soc(S2)S1

so that Soc(X)S1 = Ss1. This readily yields FXS2Ss1
= 1. If ``(X) = 2, then X ∼= S2(2)⊕Ss−1,

alternatively X = Ss1⊕S2 is semisimple.
(2) By way of example, we compute the product

uSr1uS2(2)⊕Ss−1
1

=
∑
[X]

FX
Sr1 ,S2(2)⊕Ss−1

1
uX .

Thus, we have to consider exact sequences

(0) −→ S2(2)⊕Ss−11 −→ X −→ Sr1 −→ (0).

Then we have 2≤ ``(X) ≤ 3 and dimX = (r+s, 1). Suppose that ``(X) = 3. Since dimS2(3) = (1, 2),
we get

X ∼= S1(3)⊕Sr+s−21 .

We write this in the from X = X1⊕X2 and denote the canonical projection by π : X −→ X2.
Let Y ⊆ X be an indecomposable module such that Y ∼= S2(2). Since Hom(S2(2), S1) = (0), we

get π(Y ) = (0), so that Y ⊆ X1. This implies Y = Soc2(X
1).

Let U ⊆ X be such that U ∼= S2(2)⊕Ss−11 . Then ``(U) = 2, whence

U ⊆ Soc2(X) = Soc2(X
1)⊕Soc2(X2) ∼= S2(2)⊕Sr+s−21 .

By the above, we have
U = Soc2(X

1)⊕V,
where Ss−1 ∼= V ↪→ X2 ∼= Sr+s−21 .

Given such a submodule U ⊆ Soc2(X), we have

(0) −→ U/ Soc2(X
1) −→ X/ Soc2(X

1) −→ X/U −→ (0),
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where U/ Soc2(X1) ∼= Ss−11 and X/ Soc2(X1) ∼= Sr+s−11 . Thus, X/U ∼= Sr, and

FX
Sr1 ,S2(2)⊕Ss−1

1
=

(
r+s−2
s−1

)
q

.

If ``(X) = 2, then we obtain X ∼= S2(2)⊕Sr+s−11 and the arguments above yield FX
Sr1 ,S2(2)⊕Ss−1

1

=(
r+s−1
s−1
)
q
. �

Using this, one can verify the following relation for H(Ã1):

quS3
1
uS2−uS2

1
uS2uS1+uS1uS2uS2

1
−quS2uS3

1
= 0.

By symmetry there is another such relation with the roles of S1 and S2 interchanged. These relations
markedly differ from those of the quiver K2 and illustrate the dependence on the orientation of the
quiver.

5. The twisted Hall Algebra

Since our categories rep(Q) are hereditary, we have the Euler form 〈 , 〉 : K0(rep(Q))2 −→ Z
〈M,N〉 = dimk Hom(M,N)−dimk Ext

1(M,N).

The simple modules from a basis for K0(rep(Q)), an the representing matrix relative to this basis is

EQ = In−(aij),
where aij is the number of arrows from i to j and n := |Q0|. Hence we get

EKn :=

(
1 −n
0 1

)
; EÃ1

=

(
1 −1
−1 1

)
.

We pick v ∈ R such that v2 = q and let Qv ⊆ R be the subfield generated by v. We consider

Hv(Q) :=
⊕
[M ]

QvuM

and define a new product
uM ∗uN := v〈M,N〉uMuN .

With respect to this new product, the algebras Hv(K2) and Hv(Ã1) satisfy the quantum Serre relations.


