HALL ALGEBRAS OF QUIVER REPRESENTATIONS

ROLF FARNSTEINER

Motivation

Let \mathfrak{g} be a complex semisimple Lie algebra. Such a Lie algebra gives rise to an integral square matrix $C(\mathfrak{g})$, the so-called Cartan matrix of \mathfrak{g}. A Theorem by Serre provides a presentation of \mathfrak{g} by generators and relations that only depend on $C(\mathfrak{g})$, the so-called Serre relations. This implies that the universal enveloping algebra $U(\mathfrak{g})$ of \mathfrak{g} can be described by the same generators and relations that are derived from those for the Lie algebra. More generally, such presentations can be associated to so-called generalized Cartan matrices, which then define certain infinite-dimensional Lie algebras, that are known as KacMoody Lie algebras. Deforming the relations yield quantum Serre relations which lead to quantized enveloping algebras $U_{q}(\mathfrak{g})$.

Integral matrices can also be used to define quivers. In this talk, which is based on lecture notes by Andrew Hubery, I will introduce some basic concepts on quivers and their representations and illustrate how Hall algebras of quivers give rise to similar relations. This is thus the first step towards defining a homomorphism

$$
U_{q}\left(\mathfrak{g}^{+}\right) \longrightarrow \mathcal{H}
$$

between half quantum groups and Hall algebras.
Our relations will arise in the following fashion: Let $x, y \in \mathfrak{g}$. In $U(\mathfrak{g})$ we have $\operatorname{ad} x=\ell_{x}-r_{x}$, the difference between the left and right multiplications effected by x. Hence a relation $(\operatorname{ad} x)^{n}(y)=0$ in \mathfrak{g} implies

$$
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} x^{i} y x^{n-i}=0
$$

in $U(\mathfrak{g})$. For the purposes of this talk, "deforming" relations means replacing binomial coefficients by Gaussian binomial coefficients.

1. Quiver representations

Let k be a field, R be a k-algebra. We will work in the category $\bmod R$ of finite-dimensional R modules. Let $M \in \bmod R$.

- $\operatorname{Rad}(M):=\bigcap_{U \subseteq M \text { max. }} U$ is the radical of M. We put $\operatorname{Rad}^{n+1}(M):=\operatorname{Rad}\left(\operatorname{Rad}^{n}(M)\right)$.
- $\ell \ell(M):=\min \left\{n \in \mathbb{N}_{0} ; \operatorname{Rad}^{n}(M)=(0)\right\}$ is the Loewy length of M.
- $\operatorname{Soc}(M)=\sum_{S \subseteq M \text { simple }} S$ is the socle of M. We put $\operatorname{Soc}_{n+1}(M):=\left\{m \in M ; m+\operatorname{Soc}_{n}(M) \in\right.$ $\left.\operatorname{Soc}\left(M / \operatorname{Soc}_{n}(M)\right)\right\}$.
- Let $M=\operatorname{Soc}(M)$ be semisimple, S be a simple R-module. Then

$$
M_{S}:=\sum_{V \subseteq N ; V \cong S} V
$$

is the S-isotypic component of M. Thus, if $M=\bigoplus_{i=1}^{\ell} S_{i}^{d_{i}}$, then $M_{S_{i}}=S_{i}^{d_{i}}$.

- We say that M is uniserial, if $\left(\operatorname{Rad}^{n}(M)\right)_{n \geq 0}$ is a composition series of M. In that case $\operatorname{Rad}^{n}(M)$ is the unique submodule of M of length $\ell(M)-n$.

A quiver $Q=\left(Q_{0}, Q_{1}\right)$ consists of a finite set Q_{0} of vertices and finite a set Q_{1} of arrows between vertices. We postulate that there are no loops, that is, there are no arrows $\alpha: i \rightarrow i$.

For every vertex $i \in Q_{0}$, we pick a path e_{i} of length 0 , which starts and ends at i.

Definition. The path algebra $k Q$ has underlying vector space with basis the set of oriented paths and product given by concatenation or zero. (Arrows are composed like maps).

Examples. (1) Let K_{2} be the 2 -Kronecker quiver:

$$
1 \underset{\beta}{\stackrel{\alpha}{\rightrightarrows}} 2
$$

Then

$$
k Q=k e_{1} \oplus k e_{2} \oplus k \alpha \oplus k \beta
$$

and $\alpha \beta=0=\beta \alpha$ while $e_{i}^{2}=e_{i}$ and $e_{i} e_{3-i}=0$.
(2) Let \tilde{A}_{1} :

be the cyclic quiver. Then

$$
k \tilde{A}_{1}=k e_{1} \oplus k e_{2} \oplus k \alpha \oplus k \beta \oplus k \beta \alpha \bigoplus_{0 \leq i+j \leq 2, n \geq 1} k \beta^{i}(\alpha \beta)^{n} \alpha^{j}
$$

Let $Q=\left(Q_{0}, Q_{1}\right)$ be a quiver. A representation $V=\left(\left(V_{i}\right)_{i \in Q_{0}},\left(V_{\alpha}\right)_{\alpha \in Q_{1}}\right)$ consists of finite-dimensional vector spaces V_{i} and linear maps $V_{\alpha}: V_{i} \longrightarrow V_{j}$ for every arrow $\alpha: i \rightarrow j$. The element $\underline{\operatorname{dim} V:=}$ $\left(\operatorname{dim}_{k} V_{i}\right)_{i \in Q_{0}} \in \mathbb{N}_{0}^{Q_{0}}$ is the dimension vector of V.

A morphism $f: V \longrightarrow W$ is a family $f_{i}: V_{i} \longrightarrow W_{i}$ of linear maps such that, for each arrow $\alpha: i \rightarrow j$, the diagram

commutes.
Kernels, Images and Cokernels are defined canonically, and we thus have an abelian category rep (Q). In fact, $\operatorname{rep}(Q)$ is equivalent to $\bmod k Q$.

Special features:

- Let $i \in Q_{0} S_{i}:=\left(\left(\delta_{i j} k\right)_{j}, 0\right)$ is a simple module, and the $S_{i}\left(i \in Q_{0}\right)$ exhaust all simple $k Q$-modules.
- We have $\operatorname{dim}_{k} \operatorname{Ext}^{1}\left(S_{i}, S_{j}\right)=|\alpha: i \rightarrow j|$.
- In particular, S_{i} is projective iff i is a sink and S_{i} is injective iff i is a source.

2. Hall numbers

Let R be an algebra over a finite field $k=\mathbb{F}_{q}$.

- Given $M, X, Y \in \bmod R$, the Hall number is defined by

$$
F_{M, N}^{X}:=\mid\{U \subseteq X ; U \cong N \text { and } X / U \cong M\} \mid
$$

- Recall that $\mathcal{H}(R):=\bigoplus_{[M]} \mathbb{Z} u_{M}$ is the Hall algebra, with product

$$
u_{M} u_{N}=\sum_{[X]} F_{M, N}^{X} u_{X}
$$

We let $\operatorname{Gr}_{d}\left(k^{n}\right)$ be the Grassmannian of d-planes in n-space and recall that

$$
\left|\operatorname{Gr}_{d}\left(k^{n}\right)\right|=\binom{n}{d}_{q}
$$

is the Gaussian binomial coefficient. We write $(n)_{q}:=\binom{n}{1}_{q}$.
By way of example, we prove the following:

Lemma 2.1. Let Q be a quiver, S be a simple $k Q$-module,

$$
(0) \longrightarrow S^{d} \longrightarrow X \xrightarrow{\pi} M \longrightarrow(0)
$$

be an exact sequence of $k Q$-modules.
(1) If S is injective or X is semisimple, then have

$$
F_{M, S^{d}}^{X}=\binom{\operatorname{dim}_{k} \operatorname{Soc}(X)_{S}}{d}_{q}
$$

(2) If S is injective and $M \not \approx S$ is indecomposable, then $F_{M, S^{d}}^{X}=1$ and $u_{M} u_{S^{d}}=u_{M \oplus S^{d}}$.
(3) We have $u_{S^{r}} u_{S^{s}}=\binom{r+s}{s}_{q} u_{S^{r+s}}$. In particular, $u_{S}^{n}=(n)_{q}$! $u_{S^{n}}$ for all $n \geq 1$.

Proof. (1) We write $X=\left(\left(X_{i}\right),\left(X_{\alpha}\right)\right)$ and $S=S_{i_{0}}$, so that

$$
\left(\operatorname{Soc}(X)_{S}\right)_{i}=\left\{\begin{array}{cc}
\bigcap_{\alpha: i_{0} \rightarrow j} \operatorname{ker} X_{\alpha} & i=i_{0} \\
(0) & \text { else }
\end{array}\right.
$$

If S is injective, then i_{0} is a source, whence $\sum_{\alpha: i \rightarrow i_{0}} \operatorname{im} X_{\alpha}=(0)$. This also follows in case X is semisimple.

We write $X_{i_{0}}=\left(\operatorname{Soc}(X)_{S}\right)_{i_{0}} \oplus Y_{i_{0}}$ as a sum of k-spaces. Let $U \subseteq X$ be a submodule, $\varphi: U \longrightarrow S^{d}$ be an isomorphism. Then $U \subseteq \operatorname{Soc}(X)_{S}$, so that $U_{i_{0}} \subseteq \bigcap_{\alpha: i_{0} \rightarrow j} \operatorname{ker} X_{\alpha}$. Hence there is a linear map $f_{i_{0}} \in \mathrm{GL}\left(X_{i_{0}}\right)$ such that
(a) $f_{i_{0}}\left(\operatorname{Soc}(X)_{S}\right)=\operatorname{Soc}(X)_{S}$, and
(b) $\left.f_{i_{0}}\right|_{U_{i_{0}}}=\varphi_{i_{0}}$, and
(c) $\left.f_{i_{0}}\right|_{Y_{i_{0}}}=\operatorname{id}_{Y_{i_{0}}}$.

Setting $f_{i}=\operatorname{id}_{X_{i}}$ for $i \neq i_{0}$, one checks that $f=\left(f_{i}\right) \in \operatorname{Aut}(X)$, while $\left.f\right|_{U}=\varphi$. Thus, $\operatorname{ker}(\pi \circ f)=$ $f^{-1}\left(S^{d}\right)=U$, and we have $X / U \cong M$. Consequently, $F_{M, S^{d}}^{X}$ counts the d-dimensional subspaces of $\operatorname{Soc}(X)_{S}$.
(2) Since S is injective, the sequence splits and $X \cong M \oplus S^{d}$. By the same token, S is not isomorphic to a submodule of M, whence $\operatorname{Soc}(X)_{S} \cong \operatorname{Soc}(M)_{S} \oplus S^{d}=S^{d}$.
(3) Since the quiver has no loops, we have $\operatorname{Ext}^{1}(S, S)=(0)$, whence $\operatorname{Ext}^{1}\left(S^{r}, S^{s}\right)=(0)$. Thus, every exact sequence

$$
(0) \longrightarrow S^{s} \longrightarrow X \longrightarrow S^{r} \longrightarrow(0)
$$

splits and $X \cong S^{r+s}$ is semisimple. Consequently, part (1) yields

$$
u_{S^{r}} u_{S^{s}}=\binom{r+s}{s}_{q} u_{S^{r+s}}
$$

The second assertion now follows by induction.

3. The n-Kronecker quiver

Let $k=\mathbb{F}_{q}$. The quiver K_{n} is given by

$$
1 \xrightarrow{n} 2 .
$$

Consequently,

- $\underline{\operatorname{dim}} M \in \mathbb{N}_{0}^{2}$ for every $M \in \operatorname{rep}\left(K_{n}\right)$.
- S_{1} is injective and S_{2} is projective.

The category $\operatorname{rep}\left(K_{n}\right)$ affords a duality $D: \operatorname{rep}\left(K_{n}\right) \longrightarrow \operatorname{rep}\left(K_{n}\right)$

$$
D\left(M_{1}, M_{2},\left(\varphi_{i}\right)\right):=D\left(M_{2}^{*}, M_{1}^{*},\left(\varphi_{i}^{*}\right)\right)
$$

so that $\underline{\operatorname{dim}} D(M)=\left(\operatorname{dim}_{k} M_{2}, \operatorname{dim}_{k} M_{1}\right)$.
Let

$$
(0) \longrightarrow N \longrightarrow X \longrightarrow M \longrightarrow(0)
$$

be an exact sequence. Then

$$
(0) \longrightarrow D(M) \longrightarrow D(X) \longrightarrow D(N) \longrightarrow(0)
$$

is exact, and we have

$$
F_{D(M), D(N)}^{D(X)}=F_{N, M}^{X}
$$

This implies that the map

$$
D: \mathcal{H}\left(K_{n}\right) \longrightarrow \mathcal{H}\left(K_{n}\right) \quad ; \quad u_{M} \mapsto u_{D(M)}
$$

is an involution: $D(a b)=D(b) D(a) ; D^{2}=\mathrm{id}$.

Given $\underline{d} \in \mathbb{N}_{0}^{2}$, we put

$$
\operatorname{ind}^{\underline{\mathrm{d}}}\left(K_{n}\right):=\left\{[M] ; M \in \operatorname{rep}\left(K_{n}\right) \text { indecomposable, } \underline{\operatorname{dim}} M=\underline{\mathrm{d}}\right\}
$$

as well as

$$
u_{\underline{\mathrm{d}}}:=\sum_{[M] \in \operatorname{ind}^{\underline{d}}\left(K_{n}\right)} u_{M} .
$$

Lemma 3.1. The following statements hold:
(1) If N is indecomposable with $N \nsubseteq S_{2}$, then $u_{S_{2}^{s}} u_{N}=u_{S_{2}^{s} \oplus N}$.
(2) $u_{S_{2}^{r}} u_{S_{1}} u_{S_{2}^{s}}=\sum_{a=0}^{s}\binom{r+s-a}{r}_{q} u_{S_{2}^{r+s-a}} u_{(1, a)}$.

Proof. (1) Since Since $S_{1}=D\left(S_{2}\right)$ is injective and $D(N)$ is indecomposable with $D(N) \not \approx S_{1}$, Lemma 2.1 yields

$$
u_{S_{2}^{s}} u_{N}=D\left(u_{S_{1}^{s}}\right) D\left(u_{D(N)}\right)=D\left(u_{D(N)} u_{S_{1}^{s}}\right)=D\left(u_{D(N) \oplus S_{1}^{s}}\right)=u_{S_{2}^{s} \oplus N} .
$$

(2) If

$$
(0) \longrightarrow S_{2}^{s} \longrightarrow X \longrightarrow S_{1} \longrightarrow(0)
$$

is exact, then $\operatorname{Soc}(X)_{S_{2}} \cong S_{2}^{s}$, so that every $U \subseteq X$ with $U \cong S_{2}^{s}$ equals $\operatorname{Soc}(X)_{S_{2}}$. Consequently, $F_{S_{1}, S_{2}^{s}}^{X}=1$, and we obtain

$$
u_{S_{1}} u_{S_{2}^{s}}=\sum_{\underline{\operatorname{dim}} X=(1, s)} F_{S_{1}, S_{2}^{s}}^{X} u_{X}=\sum_{\underline{\operatorname{dim}} X=(1, s)} u_{X},
$$

so that

$$
u_{S_{2}^{r}} u_{S_{1}} u_{S_{2}^{s}}=\sum_{\operatorname{dim} X=(1, s)} u_{S_{2}^{r}} u_{X} .
$$

Given M with $\underline{\operatorname{dim}} M=(1, s)$, we have $M \cong N \oplus S_{2}^{s-a}$, where N is indecomposable and $\underline{\operatorname{dim}} N=(1, a)$. Now (1) implies

$$
u_{S_{2}^{r}} u_{S_{1}} u_{S_{2}^{s}}=\sum_{a=0}^{s} \sum_{N \in \operatorname{ind}^{(1, a)}\left(K_{n}\right)} u_{S_{2}^{r}} u_{S_{2}^{s-a} \oplus N}=\sum_{a=0}^{s}\left(u_{S_{2}^{r}} u_{\left.S_{2}^{s-a}\right)} u_{(1, a)}=\sum_{a=0}^{s}\binom{r+s-a}{r}_{q} u_{(1, a)},\right.
$$

where the last equation follows from Lemma 2.1(3).

Lemma 3.2. We have:
(1) $\left.\sum_{r=0}^{n+1}(-1)^{r} q^{r} \begin{array}{c}r \\ 2\end{array}\right) u_{S_{2}^{r}} u_{S_{1}} u_{S_{2}^{n+1-r}}=0$.
(2) $\left.\sum_{r=0}^{n+1}(-1)^{n+1-r} q^{(n+1-r}\right)^{2} u_{S_{1}^{r}} u_{S_{2}} u_{S_{1}^{n+1-r}}=0$.

Proof. (1) This follows directly from Lemma 3.1 and the formula

$$
\sum_{r=0}^{m}(-1)^{r} q^{\binom{r}{2}}\binom{m}{r}_{q}=0
$$

along with $\binom{m}{s}_{q}=0$ for $s>m$.
(2) This follows by applying D to (1), while observing $D\left(S_{i}\right)=S_{3-i}$.

Lemma 2.1(3) now implies that (1) yields

$$
\sum_{r=0}^{n+1}(-1)^{r} q^{\binom{r}{2}}\binom{n+1}{r}_{q} u_{S_{2}}^{r} u_{S_{1}} u_{S_{2}}^{n+1-r}=0
$$

For $n=2$, this resembles one of the q-Serre relations for affine $\mathfrak{s l}(2)$, but (2) shows that we obtain a second relation that is different.

4. The cyclic quiver \tilde{A}_{1}

We consider the quiver

$$
1 \leftrightarrows 2
$$

Since we are interested in finding relations involving only S_{1} and S_{2} and their iterated extensions, we will be working in the full subcategory of $\bmod k \tilde{A}_{1}$, whose objects have composition series involving S_{1} and S_{2} only. This is in fact the subcategory $\operatorname{rep}^{\text {nil }}\left(\tilde{A}_{1}\right)$ of nilpotent representations.

Fact:

- Every indecomposable module $M \in \operatorname{rep}^{\text {nil }}\left(\tilde{A}_{1}\right)$ is uniquely determined by its top $\operatorname{Top}(M):=$ $M / \operatorname{Rad}(M)$ and its length $\left(=\ell \ell(M)=\operatorname{dim}_{k} M\right)$. We denote by $S_{i}(n)$ the indecomposable $\operatorname{rep}^{\text {nil }}\left(\tilde{A}_{1}\right)$-module such that $\operatorname{Top}\left(S_{i}(n)\right) \cong S_{i}$ and $\operatorname{dim}_{k} S_{i}(n)=n$.

Lemma 4.1. The following statements hold:
(1) $u_{S_{2}} u_{S_{1}^{s}}=u_{S_{2}(2) \oplus S_{1}^{s-1}}+u_{S_{1}^{s} \oplus S_{2}}$.
(2) $u_{S_{1}^{r}} u_{S_{2}} u_{S_{1}^{s}}=\binom{r+s-2}{r-1}_{q} u_{S_{1}(3) \nsubseteq \Phi_{1}^{r+s-2}}+\binom{r+s-1}{r}_{q} u_{S_{2}(1) \nrightarrow \Phi_{1}^{r+s-1}}+\binom{r+s-1}{r-1}_{q} u_{S_{1}(2) \nrightarrow \Phi_{1}^{r+s-1}}+\binom{r+s}{r}_{q} u_{S_{1}^{r+s} \oplus S_{2}}$

Proof. (1) Let

$$
(0) \longrightarrow S_{1}^{s} \longrightarrow X \longrightarrow S_{2} \longrightarrow(0)
$$

be an exact sequence. Then we have

$$
(0) \longrightarrow S_{1}^{S} \longrightarrow \operatorname{Soc}(X)_{S_{1}} \longrightarrow \operatorname{Soc}\left(S_{2}\right)_{S_{1}}
$$

so that $\operatorname{Soc}(X)_{S_{1}}=S_{1}^{s}$. This readily yields $F_{S_{2} S_{1}^{s}}^{X}=1$. If $\ell \ell(X)=2$, then $X \cong S_{2}(2) \oplus S^{s-1}$, alternatively $X=S_{1}^{s} \oplus S_{2}$ is semisimple.
(2) By way of example, we compute the product

$$
u_{S_{1}^{r}} u_{S_{2}(2) \oplus S_{1}^{s-1}}=\sum_{[X]} F_{S_{1}^{r}, S_{2}(2) \oplus S_{1}^{s-1}}^{X} u_{X} .
$$

Thus, we have to consider exact sequences

$$
(0) \longrightarrow S_{2}(2) \oplus S_{1}^{s-1} \longrightarrow X \longrightarrow S_{1}^{r} \longrightarrow(0)
$$

Then we have $2 \leq \ell \ell(X) \leq 3$ and $\operatorname{dim} X=(r+s, 1)$. Suppose that $\ell \ell(X)=3$. Since $\operatorname{dim} S_{2}(3)=(1,2)$, we get

$$
X \cong S_{1}(3) \oplus S_{1}^{r+s-2}
$$

We write this in the from $X=X^{1} \oplus X^{2}$ and denote the canonical projection by $\pi: X \longrightarrow X^{2}$.
Let $Y \subseteq X$ be an indecomposable module such that $Y \cong S_{2}(2)$. Since $\operatorname{Hom}\left(S_{2}(2), S_{1}\right)=(0)$, we get $\pi(Y)=(0)$, so that $Y \subseteq X^{1}$. This implies $Y=\operatorname{Soc}_{2}\left(X^{1}\right)$.

Let $U \subseteq X$ be such that $U \cong S_{2}(2) \oplus S_{1}^{s-1}$. Then $\ell \ell(U)=2$, whence

$$
U \subseteq \operatorname{Soc}_{2}(X)=\operatorname{Soc}_{2}\left(X^{1}\right) \oplus \operatorname{Soc}_{2}\left(X^{2}\right) \cong S_{2}(2) \oplus S_{1}^{r+s-2}
$$

By the above, we have

$$
U=\operatorname{Soc}_{2}\left(X^{1}\right) \oplus V,
$$

where $S^{s-1} \cong V \hookrightarrow X^{2} \cong S_{1}^{r+s-2}$.
Given such a submodule $U \subseteq \operatorname{Soc}_{2}(X)$, we have

$$
(0) \longrightarrow U / \operatorname{Soc}_{2}\left(X^{1}\right) \longrightarrow X / \operatorname{Soc}_{2}\left(X^{1}\right) \longrightarrow X / U \longrightarrow(0),
$$

where $U / \operatorname{Soc}_{2}\left(X^{1}\right) \cong S_{1}^{s-1}$ and $X / \operatorname{Soc}_{2}\left(X^{1}\right) \cong S_{1}^{r+s-1}$. Thus, $X / U \cong S^{r}$, and

$$
F_{S_{1}^{r}, S_{2}(2) \oplus S_{1}^{s-1}}^{X}=\binom{r+s-2}{s-1}_{q}
$$

If $\ell \ell(X)=2$, then we obtain $X \cong S_{2}(2) \oplus S_{1}^{r+s-1}$ and the arguments above yield $F_{S_{1}^{r}, S_{2}(2) \oplus S_{1}^{s-1}}^{X}=$ $\binom{r+s-1}{s-1}_{q}$.

Using this, one can verify the following relation for $\mathcal{H}\left(\tilde{A}_{1}\right)$:

$$
q u_{S_{1}^{3}} u_{S_{2}}-u_{S_{1}^{2}} u_{S_{2}} u_{S_{1}}+u_{S_{1}} u_{S_{2}} u_{S_{1}^{2}}-q u_{S_{2}} u_{S_{1}^{3}}=0 .
$$

By symmetry there is another such relation with the roles of S_{1} and S_{2} interchanged. These relations markedly differ from those of the quiver K_{2} and illustrate the dependence on the orientation of the quiver.

5. The twisted Hall Algebra

Since our categories $\operatorname{rep}(Q)$ are hereditary, we have the Euler form $\langle\rangle:, K_{0}(\operatorname{rep}(Q))^{2} \longrightarrow \mathbb{Z}$

$$
\langle M, N\rangle=\operatorname{dim}_{k} \operatorname{Hom}(M, N)-\operatorname{dim}_{k} \operatorname{Ext}^{1}(M, N) .
$$

The simple modules from a basis for $K_{0}(\operatorname{rep}(Q))$, an the representing matrix relative to this basis is

$$
E_{Q}=I_{n}-\left(a_{i j}\right),
$$

where $a_{i j}$ is the number of arrows from i to j and $n:=\left|Q_{0}\right|$. Hence we get

$$
E_{K_{n}}:=\left(\begin{array}{cc}
1 & -n \\
0 & 1
\end{array}\right) \quad ; \quad E_{\tilde{A}_{1}}=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right) .
$$

We pick $v \in \mathbb{R}$ such that $v^{2}=q$ and let $\mathbb{Q}_{v} \subseteq \mathbb{R}$ be the subfield generated by v. We consider

$$
\mathcal{H}_{v}(Q):=\bigoplus_{[M]} \mathbb{Q}_{v} u_{M}
$$

and define a new product

$$
u_{M} * u_{N}:=v^{\langle M, N\rangle} u_{M} u_{N} .
$$

With respect to this new product, the algebras $\mathcal{H}_{v}\left(K_{2}\right)$ and $\mathcal{H}_{v}\left(\tilde{A}_{1}\right)$ satisfy the quantum Serre relations.

