
COMPLEXITY AND KRULL DIMENSION

ROLF FARNSTEINER

Let k be an algebraically closed field of characteristic p > 0. In this lecture we want to take a
first glance at the geometric approach towards the modular representation theory of finite groups.
The results presented here also hold in the wider context of finite group schemes, mainly because
the fundamental result, Theorem 1, concerning the cohomology ring also holds in that generality.

In the following, G denotes a finite group with group algebra kG. Let M ∈ mod kG be a finite
dimensional G-module, P := (Pi)i≥0 be a minimal projective resolution of M . Then

cxG(M) := min{s ∈ N ∪ {∞} ; ∃ λ > 0 such that dimk Pn ≤ λns−1 ∀ n ≥ 1}

is called the complexity of M . This notion, first introduced by Alperin [1] and further developed in
[2], has proven to be an effective tool in the modular representation theory of finite groups.

Example. Consider the group algebra

k(Z/(p) × Z/(p)) ∼= k[X,Y ]/(Xp, Y p) ∼= k[X]/(Xp) ⊗k k[Y ]/(Y p).

Let P = (Pi)i≥0 be a minimal projective resolution of the trivial k[X]/(Xp)-module k, i.e., Pi =

k[X]/(Xp) for every i ≥ 0. Setting Qi :=
∑i

j=0 Pj ⊗k Pi−j , we obtain a minimal projective

resolution Q := (Qi)i≥0 of the k(Z/(p) × Z/(p))-module k ⊗k k ∼= k. Since dimk Qi = (i + 1)p2, we
have cxZ/(p)×Z/(p)(k) = 2. One can iterate this process to see that c(Z/(p))r (k) = r.

Let G be a finite group. If M is a G-module, we denote by

Hn(G,M) := ExtnG(k,M) (n ≥ 0)

the n-th cohomology group of G with coefficients in M . Note that these are just the Hochschild
cohomology groups of the augmented algebra (kG, ε).

Given three G-modules X,Y,Z, we recall the Yoneda product

ExtmG (Y,Z) × ExtnG(X,Y ) −→ Extm+n
G (X,Z).

This product endows Ext∗G(X,X) :=
⊕

n≥0 ExtnG(X,X) with the structure of a Z-graded k-algebra.

Moreover, the spaces Ext∗G(Y,X) and Ext∗G(X,Y ) are graded left and right Ext∗G(X,X)-modules,
respectively. In particular, H∗(G,M) is a graded right module over the cohomology ring H∗(G, k).
This ring is known to be graded commutative, that is,

yx = (−1)deg(x)deg(y)xy

for any two homogeneous elements x, y ∈ H∗(G, k). Consequently, the subring

H•(G, k) =
⊕

i≥0

H2i(G, k)

is a commutative, Z-graded k-algebra (see [4, §6] for details).
The main result to be discussed in this lecture is the following:
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Theorem. [3] Let M be a G-module. Then there exists an ideal IM ⊂ H•(G, k) such that

cxG(M) = dim H•(G, k)/IM .

To understand this result, we need to see how the Krull dimension dim A of a commutative graded
ring A =

⊕
n≥0 An is related to its growth.

Let (ai)i≥0 be a sequence of natural numbers. We call

γ((ai)i≥0) := min{s ∈ N ∪ {∞} ; ∃ λ > 0 such that an ≤ λns−1 ∀ n ≥ 1}

the rate of growth of the sequence (ai)i≥0. If V := (Vi)i≥0 is a sequence of finite dimensional k-
vector spaces, then we write γ(V) := γ((dimk Vi)i≥0). Thus, if P := (Pi)i≥0 is a minimal projective
resolution of a G-module M . Then

cxG(M) = γ(P).

Let
A =

⊕

n≥0

An

be a finitely generated, commutative graded k-algebra. We want to find the growth γ(A) of the
sequence (An)n≥0. By the Noether Normalization Lemma there exists a graded subalgebra

R =
⊕

n≥0

Rn

of A such that
(a) A is a finitely generated R-module, and
(b) R ∼= k[X1, . . . ,Xℓ], where deg(Xi) = d for some d ≥ 1.

Owing to (a) we have γ(R) = γ(A). Condition (b) implies γ(R) = ℓ. On the other hand, the
number ℓ is the Krull dimension dimR of R, which, by Cohen-Seidenberg theory (cf. [6, §9]),
coincides with dim A. We therefore obtain

γ(A) = dim A.

The following fundamental result provides the finitely generated commutative k-algebra we want
to work with:

Theorem 1 ([7, 5]). Let G be a finite group, M a finite dimensional G-module. Then the following

statements hold:

(1) H•(G, k) is a finitely generated k-algebra.

(2) H∗(G,M) is a finitely generated H•(G, k)-module. 2

Let M be a finite dimensional G-module, (Pi, ∂i)i≥0 be a projective resolution of the trivial module
k. Since (Pi ⊗k M,∂i ⊗ idM )i≥0 is a projective resolution of M , we obtain a homomorphism

ΦM : H•(G, k) −→ Ext∗G(M,M) ; [f ] 7→ [f⊗̂ idM ]

of graded k-algebras. The natural equivalence

HomG(M,N) ∼= HomG(k,Homk(M,N))

gives rise to Ext∗G(M,M) ∼= H∗(G,Homk(M,N)). Thus, Theorem 1 says that the map ΦM endows
the Yoneda algebra with the structure of a finitely generated H•(G, k)-module. Moreover, our map
ΦM is induced by the canonical homomorphism k −→ Homk(M,M) sending α to α idM .

The following result, due to Alperin-Evens [2], relates the complexity of a module to the growth
of certain Ext-groups. We let S be a complete set of representatives of the simple G-modules, and
denote the projective cover of S ∈ S by P (S).
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Proposition 2. Let M be a finite dimensional G-module. Then

cxG(M) = max
S∈S

γ((Extn
G(M,S))n≥0).

Proof. Given a minimal projective resolution (Pn)n≥0 of M , we decompose each Pn into its in-
decomposable constituents and write Pn =

⊕
T∈S ℓn,T P (T ). Basic properties of Ext and Schur’s

Lemma yield

dimk ExtnG(M,S) =
∑

T∈S

ℓn,T dimk HomG(P (T ), S) = ℓn,S dimk HomG(S, S) = ℓn,S

for every S ∈ S. Consequently,

cxG(M) = max
S∈S

γ((ℓn,S)n≥0) = max
S∈S

γ((Extn
G(M,S))n≥0),

as desired. �

We now turn to the proof of our Theorem:

Proof. Thanks to Theorem 1, the Yoneda algebra Ext∗G(M,M) is a finitely generated H•(G, k)-
module. Consequently, we have

dimH•(G, k)/ ker ΦM = γ(H•(G, k)/ ker ΦM) = γ(Ext∗G(M,M)) ≤ max
S∈S

γ(Ext∗G(M,S)).

In view of Proposition 2, the latter number coincides with cxG(M).
To verify the reverse inequality, we let S be a simple G-module. Owing to Theorem 1, the space

Ext∗G(M,S) ∼= H∗(G,Homk(M,S)) is a finitely generated (H•(G, k)-module. Since this action is
induced by the scalar multiplication of k on Homk(M,S), the identity

αf = αf ◦ idM = f ◦ (α idM ) ∀ f ∈ Homk(M,S), α ∈ k

implies that it factors through the right action of Ext∗G(M,M) on Ext∗G(M,S). As a result,
Ext∗G(M,S) is a finitely generated (H•(G, k)/ ker ΦM)-module, whence

γ(Ext∗G(M,S)) ≤ γ(H•(G, k)/ ker ΦM ).

Another application of Proposition 2 now yields cxG(M) ≤ dim H•(G, k)/ ker ΦM , as desired. �

Example. Suppose that p ≥ 3. The Künneth formula furnishes an isomorphism H∗((Z/(p))n, k)
∼= k[X1, . . . ,Xn]⊗k Λ(Y1, . . . , Yn), where the generators Xi and Yi have degrees 2 and 1, respectively
(cf. [4, (7.6)]). Consequently, k[X1, . . . ,Xn] is a Noether normalization of H•((Z/(p))n, k), and
cx(Z/(p))n (k) = n. Note that this agrees with our earlier observations.
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