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Throughout, H denotes a finite dimensional Hopf algebra over a field k. As usual, the comulti-
plication, the counit and the antipode of H are denoted ∆, ε and η, respectively. Recall that∫ ℓ

H

:= {x ∈ H ; hx = ε(h)x ∀ h ∈ H} and

∫ r

H

:= {x ∈ H ; xh = ε(h)x ∀ h ∈ H}

are the subspaces of left and right integrals of H, respectively. The object of this lecture is the
ensuing

Theorem ([3]). The following statements hold:

(1) dimk

∫ r

H
= 1.

(2) The antipode η is bijective.

(3) η(
∫ r

H
) =

∫ ℓ

H
.

The main idea of the proof is to endow H∗ with the structure of a Hopf module and use the
fundamental theorem [2] to show dimk

∫ r

H∗ = 1. Since H∗ is also a Hopf algebra, the asserted result
follows.

The multiplication and comultiplication on H∗ are given by the following formulae:

(ϕψ)(h) :=
∑
(h)

ϕ(h(1))ψ(h(2)) ∀ ϕ,ψ ∈ H∗, h ∈ H

and

∆(ϕ) =
∑
(ϕ)

ϕ(1) ⊗ ϕ(2) ⇔ ϕ(hh′) =
∑
(h)

ϕ(1)(h)ϕ(2)(h
′) ∀ h, h′ ∈ H.

These rules are obtained by dualizing those for H. For instance, the multiplication mH∗ is the
composite

mH∗ : H∗ ⊗k H
∗ −→ (H ⊗k H)∗

∆∗

H−→ H∗.

The counit and the antipode of H∗ are defined via

ε∗(ϕ) = ϕ(1) and η∗(ϕ) = ϕ ◦ η ∀ ϕ ∈ H∗,

respectively. In a similar fashion, the vector space H∗ obtains the structure of a Hopf module for
H by postulating

(h.ϕ)(x) := ϕ(η(h)x) ∀ h, x ∈ H, ϕ ∈ H∗

as well as

∇(ϕ) =
∑
(ϕ)

ϕ(0) ⊗ ϕ(1) ⇔ ϕψ =
∑
(ϕ)

ψ(ϕ(0))ϕ(1) ∀ ψ ∈ H∗

for every ϕ ∈ H∗. Taking these structures for granted, we can prove our Theorem.
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Proof. By the fundamental theorem of Hopf modules (cf. [2]), the multiplication induces an iso-
morphism

Φ : H ⊗k (H∗)coH −→ H∗ ; h⊗ ϕ 7→ h.ϕ.

Given ϕ ∈ (H∗)coH , we have ∇(ϕ) = 1 ⊗ ϕ, so that ϕψ = ψ(1)ϕ for all ψ ∈ H∗. Consequently,
(H∗)coH ⊂

∫ r

H∗ . The reverse inclusion follows analogously. Since dimk H = dimkH
∗, we obtain

dimk

∫ r

H∗ = 1. Replacing H by H∗, while observing (H∗)∗ ∼= H, yields (1).

Let h ∈ ker η. Pick ϕ0 ∈
∫ r

H∗ \{0}. Then we have Φ(h⊗ϕ0) = 0, so that h = 0. As a result, η is
injective and hence bijective.

Assertion (3) now follows from direct computation, using the fact that η is an anti-homomorphism
of associative algebras. �

Examples. (1) Suppose that H = kG is the group algebra of a finite group. Then x :=
∑

g∈G g is
a two-sided integral of kG.

(2) In general, integrals of Hopf algebras are not easy to find. Suppose that char(k) = p > 0 and
let g = kt⊕kx be the two-dimensional non-abelian restricted Lie algebra with restricted enveloping
algebra U0(g). Thus, U0(g) is generated by t and x subject to the relations tp = t, xp = 0, tx−xt = x.
The generators are primitive elements (that is, they satisfy ∆(y) = y ⊗ 1 + 1 ⊗ y) and hence are
annihilated by ε. Moreover, η(t) = −t and η(x) = −x. Then

(tp−1 − 1)xp−1 ∈

∫ ℓ

U0(g)

is a non-zero (!) left integral and xp−1(tp−1 − 1) is a right integral. Since

(tp−1 − 1)xp−1t = (tp−1 − 1)xp−1

the left integral is not a right integral.

We record an important consequence of the main theorem, namely H being a Frobenius algebra.
Despite the title of their article [3], the authors were apparently not aware of this fact at the time
of writing1.

Corollary 1. Let π ∈
∫ ℓ

H∗ be non-zero left integral of H∗. Then

(x, y) := π(xy) ∀ x, y ∈ H

defines a non-degenerate associative form on H. In particular, H is a Frobenius algebra.

Proof. Writing (h ∗ ϕ)(x) := ϕ(xh) for h, x ∈ H and ϕ ∈ H∗, we consider the canonical homomor-
phism

Ψ : H −→ H∗ ; h 7→ h ∗ π.

In view of our theorem, ϕ0 := π ◦ η is a non-zero right integral of H∗ and the map

Φ : H −→ H∗ ; h 7→ h.ϕ0

is an isomorphism. Direct computation shows that η−2(ker Ψ) ⊂ ker Φ = (0). Consequently, Ψ is
an isomorphism, and [1, Lemma 1] implies the result. �

1On page 85 of [3] they note: “The referee has pointed out to us that our main theorem implies that every finite
dimensional Hopf algebra with antipode is a Frobenius algebra.”
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Our next application is often referred to as “Maschke’s Theorem for Hopf algebras”. Given two
H-modules M , N , we recall that Homk(M,N) obtains the structure of an H-module via

(h.ϕ)(m) =
∑
(h)

h(1)ϕ(η(h(2))m)

for all h ∈ H, m ∈M, ϕ ∈ Homk(M,N).

Corollary 2. The following statements are equivalent:

(1) H is semi-simple.

(2) ε(
∫ ℓ

H
) 6= (0).

Proof. (1) ⇒ (2). By assumption, the exact sequence

(0) −→ ker ε −→ H −→ k −→ (0)

splits, so that H = ker ε⊕
∫ ℓ

H
.

(2) ⇒ (1). The assumption entails the splitting of the above exact sequence. As a result, the
trivial H-module k is projective. Let P be a projective H-module, M be any H-module. The
adjoint isomorphism

Homk(P ⊗k M,N) ∼= Homk(P,Homk(M,N))

induces an isomorphism

HomH(P ⊗k M,N) ∼= HomH(P,Homk(M,N)).

Consequently, HomH(P ⊗k M,−) is exact, so that P ⊗k M is projective. Setting P = k, we see
that k ⊗k M ∼= M is projective. This shows that H is semi-simple. �

Examples. (1) Let G be a finite group and consider the integral x :=
∑

g∈G g ∈ kG. Then

ε(x) = ord(G).1, so that kG is semi-simple if and only if char(k) ∤ ord(G).
(2) Let g = kt⊕ kx be as above. Then ε((tp−1 − 1)xp−1) = (0), so that U0(g) is not semi-simple.

In fact, Rad(U0(g)) = U0(g)x.

Corollary 3. If H is semi-simple, then H is separable.

Proof. Let K be an extension field of k. Then H ′ := H⊗kK obtains the structure of a Hopf algebra
by defining ∆′ = ∆⊗ idK . Here we use the identification (H⊗kK)⊗K (H⊗kK) ∼= (H⊗kH)⊗kK.
Since the counit ε′ of H ′ is given by ε⊗̄ idK , we get

∫ ℓ

H′

=

∫ ℓ

H

⊗kK.

Thus, if H is semi-simple, then

ε′(

∫ ℓ

H′

) = ε(

∫ ℓ

H

)K 6= (0),

so that H ′ is also semi-simple. Consequently, H is separable. �
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