HOPF MODULES AND INTEGRALS: THE SPACE OF INTEGRALS

ROLF FARNSTEINER

Throughout, H denotes a finite dimensional Hopf algebra over a field k. As usual, the comulti-
plication, the counit and the antipode of H are denoted A, € and n, respectively. Recall that

4 r
/::{xGH;hxze(h)x VheH} and/::{xEH;xhze(h)x VheH}
H H

are the subspaces of left and right integrals of H, respectively. The object of this lecture is the
ensuing

Theorem ([3]). The following statements hold:
(1) dimy [;; = 1.
(2) The antipode n is bijective.

3) n(fh) = [

The main idea of the proof is to endow H* with the structure of a Hopf module and use the
fundamental theorem [2] to show dimy, [ 17;* = 1. Since H* is also a Hopf algebra, the asserted result
follows.

The multiplication and comultiplication on H* are given by the following formulae:

th@ (h@) Ve eH, heH

and
= ) @ e & hh) Z% o) (R') ¥ hh € H.
(¥)

These rules are obtained by dualizing those for H . For instance, the multiplication mpg~+ is the
composite

mH*iH*@)kH* (H@kH) —>f[>k
The counit and the antipode of H* are defined via

e"(¢) = (1) and n*(p) =¢pon Ve H,

respectively. In a similar fashion, the vector space H* obtains the structure of a Hopf module for
H by postulating

(hp)(z) == p(n(h)x)  VhaxeH peH
as well as

= v ®eq) © wv=> blpo)eq VyeH
() (¥)
for every ¢ € H*. Taking these structures for granted, we can prove our Theorem.
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Proof. By the fundamental theorem of Hopf modules (cf. [2]), the multiplication induces an iso-
morphism
d:HQp(HH)! — H* ; h®p— ho.

Given ¢ € (H*)*°H we have V(¢) = 1 ® ¢, so that @i = (1) for all » € H*. Consequently,
(H*)oH ¢ f I;* The reverse inclusion follows analogously. Since dimy H = dimg H*, we obtain
dimyg fg* = 1. Replacing H by H*, while observing (H*)* = H, yields (1).

Let h € kern. Pick ¢g € [;;. \{0}. Then we have ®(h® @) = 0, so that h = 0. As a result, 7 is
injective and hence bijective.

Assertion (3) now follows from direct computation, using the fact that 7 is an anti-homomorphism
of associative algebras. O

Examples. (1) Suppose that H = kG is the group algebra of a finite group. Then z := deGg is
a two-sided integral of kG.

(2) In general, integrals of Hopf algebras are not easy to find. Suppose that char(k) = p > 0 and
let g = kt® kx be the two-dimensional non-abelian restricted Lie algebra with restricted enveloping
algebra Uy(g). Thus, Up(g) is generated by ¢t and x subject to the relations t¥ = ¢, 2P = 0,tx—axt = x.
The generators are primitive elements (that is, they satisfy A(y) =y ® 1 + 1 ® y) and hence are
annihilated by e. Moreover, 7(t) = —t and n(z) = —z. Then

(Pt —1)zPt ¢ /
Uo(g)
is a non-zero (!) left integral and xP~1(t?~! — 1) is a right integral. Since

(P~ — )Pt = (P — 1)aP !

¢

the left integral is not a right integral.

We record an important consequence of the main theorem, namely H being a Frobenius algebra.
Despite the title of their article [3], the authors were apparently not aware of this fact at the time
of writing?.

Corollary 1. Let 7 € ffl be non-zero left integral of H*. Then
(x,y) =m(zy) VazyeH
defines a non-degenerate associative form on H. In particular, H is a Frobenius algebra.

Proof. Writing (h x ¢)(z) := ¢(xh) for h,z € H and ¢ € H*, we consider the canonical homomor-
phism

U:H-—H"; hw— hx*m.
In view of our theorem, ¢ := 7 o 7 is a non-zero right integral of H* and the map
®:H— H" ; h— h.

is an isomorphism. Direct computation shows that 772(ker ¥) C ker ® = (0). Consequently, V¥ is
an isomorphism, and [1, Lemma 1] implies the result. O

10on page 85 of [3] they note: “The referee has pointed out to us that our main theorem implies that every finite
dimensional Hopf algebra with antipode is a Frobenius algebra.”
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Our next application is often referred to as “Maschke’s Theorem for Hopf algebras”. Given two
H-modules M, N, we recall that Homy (M, N) obtains the structure of an H-module via

(he)(m) = heayp(n(hez))m)
(h)

forall h € H, m € M, ¢ € Homy (M, N).

Corollary 2. The following statements are equivalent:
(1) H is semi-simple.

l

(2) e(fy) # (0).

Proof. (1) = (2). By assumption, the exact sequence
(0) — kere — H — k — (0)

splits, so that H = kere @ ffl

(2) = (1). The assumption entails the splitting of the above exact sequence. As a result, the
trivial H-module k is projective. Let P be a projective H-module, M be any H-module. The
adjoint isomorphism

Homy (P ®; M, N) = Homy (P, Homg (M, N))

induces an isomorphism

Homp (P ®y M, N) = Homp (P,Homy (M, N)).

Consequently, Homp (P ®j M, —) is exact, so that P ®j M is projective. Setting P = k, we see
that k ®; M = M is projective. This shows that H is semi-simple. O

Examples. (1) Let G be a finite group and consider the integral x := deGg € kG. Then
g(z) = ord(G).1, so that kG is semi-simple if and only if char(k) { ord(G).

(2) Let g = kt © kx be as above. Then g((t?~! — 1)aP~1) = (0), so that Up(g) is not semi-simple.
In fact, Rad(Up(g)) = Us(g)x.

Corollary 3. If H is semi-simple, then H is separable.

Proof. Let K be an extension field of k. Then H' := H ®;, K obtains the structure of a Hopf algebra
by defining A’ = A®idg. Here we use the identification (H @ K) @k (H @ K) = (H®, H) @ K.
Since the counit & of H' is given by e®idg, we get

[
()= £0,

so that H’ is also semi-simple. Consequently, H is separable. ]

Thus, if H is semi-simple, then
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