HOPF MODULES AND INTEGRALS: THE SPACE OF INTEGRALS

ROLF FARNSTEINER

Throughout, H denotes a finite dimensional Hopf algebra over a field k. As usual, the comultiplication, the counit and the antipode of H are denoted Δ, ε and η, respectively. Recall that

$$
\int_{H}^{\ell}:=\{x \in H ; h x=\varepsilon(h) x \quad \forall h \in H\} \text { and } \int_{H}^{r}:=\{x \in H ; x h=\varepsilon(h) x \quad \forall h \in H\}
$$

are the subspaces of left and right integrals of H, respectively. The object of this lecture is the ensuing

Theorem ([3]). The following statements hold:
(1) $\operatorname{dim}_{k} \int_{H}^{r}=1$.
(2) The antipode η is bijective.
(3) $\eta\left(\int_{H}^{r}\right)=\int_{H}^{\ell}$.

The main idea of the proof is to endow H^{*} with the structure of a Hopf module and use the fundamental theorem [2] to show $\operatorname{dim}_{k} \int_{H^{*}}^{r}=1$. Since H^{*} is also a Hopf algebra, the asserted result follows.

The multiplication and comultiplication on H^{*} are given by the following formulae:

$$
(\varphi \psi)(h):=\sum_{(h)} \varphi\left(h_{(1)}\right) \psi\left(h_{(2)}\right) \quad \forall \varphi, \psi \in H^{*}, h \in H
$$

and

$$
\Delta(\varphi)=\sum_{(\varphi)} \varphi_{(1)} \otimes \varphi_{(2)} \Leftrightarrow \varphi\left(h h^{\prime}\right)=\sum_{(h)} \varphi_{(1)}(h) \varphi_{(2)}\left(h^{\prime}\right) \quad \forall h, h^{\prime} \in H
$$

These rules are obtained by dualizing those for H. For instance, the multiplication $m_{H^{*}}$ is the composite

$$
m_{H^{*}}: H^{*} \otimes_{k} H^{*} \longrightarrow\left(H \otimes_{k} H\right)^{*} \xrightarrow{\Delta_{H}^{*}} H^{*}
$$

The counit and the antipode of H^{*} are defined via

$$
\varepsilon^{*}(\varphi)=\varphi(1) \text { and } \eta^{*}(\varphi)=\varphi \circ \eta \quad \forall \varphi \in H^{*}
$$

respectively. In a similar fashion, the vector space H^{*} obtains the structure of a Hopf module for H by postulating

$$
(h . \varphi)(x):=\varphi(\eta(h) x) \quad \forall h, x \in H, \varphi \in H^{*}
$$

as well as

$$
\nabla(\varphi)=\sum_{(\varphi)} \varphi_{(0)} \otimes \varphi_{(1)} \Leftrightarrow \varphi \psi=\sum_{(\varphi)} \psi\left(\varphi_{(0)}\right) \varphi_{(1)} \quad \forall \psi \in H^{*}
$$

for every $\varphi \in H^{*}$. Taking these structures for granted, we can prove our Theorem.

Proof. By the fundamental theorem of Hopf modules (cf. [2]), the multiplication induces an isomorphism

$$
\Phi: H \otimes_{k}\left(H^{*}\right)^{\mathrm{co} H} \longrightarrow H^{*} \quad ; \quad h \otimes \varphi \mapsto h . \varphi .
$$

Given $\varphi \in\left(H^{*}\right)^{\operatorname{co} H}$, we have $\nabla(\varphi)=1 \otimes \varphi$, so that $\varphi \psi=\psi(1) \varphi$ for all $\psi \in H^{*}$. Consequently, $\left(H^{*}\right)^{\mathrm{co} H} \subset \int_{H^{*}}^{r}$. The reverse inclusion follows analogously. Since $\operatorname{dim}_{k} H=\operatorname{dim}_{k} H^{*}$, we obtain $\operatorname{dim}_{k} \int_{H^{*}}^{r}=1$. Replacing H by H^{*}, while observing $\left(H^{*}\right)^{*} \cong H$, yields (1).

Let $h \in \operatorname{ker} \eta$. Pick $\varphi_{0} \in \int_{H^{*}}^{r} \backslash\{0\}$. Then we have $\Phi\left(h \otimes \varphi_{0}\right)=0$, so that $h=0$. As a result, η is injective and hence bijective.

Assertion (3) now follows from direct computation, using the fact that η is an anti-homomorphism of associative algebras.

Examples. (1) Suppose that $H=k G$ is the group algebra of a finite group. Then $x:=\sum_{g \in G} g$ is a two-sided integral of $k G$.
(2) In general, integrals of Hopf algebras are not easy to find. Suppose that $\operatorname{char}(k)=p>0$ and let $\mathfrak{g}=k t \oplus k x$ be the two-dimensional non-abelian restricted Lie algebra with restricted enveloping algebra $U_{0}(\mathfrak{g})$. Thus, $U_{0}(\mathfrak{g})$ is generated by t and x subject to the relations $t^{p}=t, x^{p}=0, t x-x t=x$. The generators are primitive elements (that is, they satisfy $\Delta(y)=y \otimes 1+1 \otimes y$) and hence are annihilated by ε. Moreover, $\eta(t)=-t$ and $\eta(x)=-x$. Then

$$
\left(t^{p-1}-1\right) x^{p-1} \in \int_{U_{0}(\mathfrak{g})}^{\ell}
$$

is a non-zero (!) left integral and $x^{p-1}\left(t^{p-1}-1\right)$ is a right integral. Since

$$
\left(t^{p-1}-1\right) x^{p-1} t=\left(t^{p-1}-1\right) x^{p-1}
$$

the left integral is not a right integral.

We record an important consequence of the main theorem, namely H being a Frobenius algebra. Despite the title of their article [3], the authors were apparently not aware of this fact at the time of writing ${ }^{1}$.

Corollary 1. Let $\pi \in \int_{H^{*}}^{\ell}$ be non-zero left integral of H^{*}. Then

$$
(x, y):=\pi(x y) \quad \forall x, y \in H
$$

defines a non-degenerate associative form on H. In particular, H is a Frobenius algebra.
Proof. Writing $(h * \varphi)(x):=\varphi(x h)$ for $h, x \in H$ and $\varphi \in H^{*}$, we consider the canonical homomorphism

$$
\Psi: H \longrightarrow H^{*} \quad ; \quad h \mapsto h * \pi
$$

In view of our theorem, $\varphi_{0}:=\pi \circ \eta$ is a non-zero right integral of H^{*} and the map

$$
\Phi: H \longrightarrow H^{*} \quad ; \quad h \mapsto h \cdot \varphi_{0}
$$

is an isomorphism. Direct computation shows that $\eta^{-2}(\operatorname{ker} \Psi) \subset \operatorname{ker} \Phi=(0)$. Consequently, Ψ is an isomorphism, and [1, Lemma 1] implies the result.

[^0]Our next application is often referred to as "Maschke's Theorem for Hopf algebras". Given two H-modules M, N, we recall that $\operatorname{Hom}_{k}(M, N)$ obtains the structure of an H-module via

$$
(h . \varphi)(m)=\sum_{(h)} h_{(1)} \varphi\left(\eta\left(h_{(2)}\right) m\right)
$$

for all $h \in H, m \in M, \varphi \in \operatorname{Hom}_{k}(M, N)$.

Corollary 2. The following statements are equivalent:
(1) H is semi-simple.
(2) $\varepsilon\left(\int_{H}^{\ell}\right) \neq(0)$.

Proof. (1) \Rightarrow (2). By assumption, the exact sequence

$$
(0) \longrightarrow \operatorname{ker} \varepsilon \longrightarrow H \longrightarrow k \longrightarrow(0)
$$

splits, so that $H=\operatorname{ker} \varepsilon \oplus \int_{H}^{\ell}$.
$(2) \Rightarrow(1)$. The assumption entails the splitting of the above exact sequence. As a result, the trivial H-module k is projective. Let P be a projective H-module, M be any H-module. The adjoint isomorphism

$$
\operatorname{Hom}_{k}\left(P \otimes_{k} M, N\right) \cong \operatorname{Hom}_{k}\left(P, \operatorname{Hom}_{k}(M, N)\right)
$$

induces an isomorphism

$$
\operatorname{Hom}_{H}\left(P \otimes_{k} M, N\right) \cong \operatorname{Hom}_{H}\left(P, \operatorname{Hom}_{k}(M, N)\right) .
$$

Consequently, $\operatorname{Hom}_{H}\left(P \otimes_{k} M,-\right)$ is exact, so that $P \otimes_{k} M$ is projective. Setting $P=k$, we see that $k \otimes_{k} M \cong M$ is projective. This shows that H is semi-simple.

Examples. (1) Let G be a finite group and consider the integral $x:=\sum_{g \in G} g \in k G$. Then $\varepsilon(x)=\operatorname{ord}(G) .1$, so that $k G$ is semi-simple if and only if $\operatorname{char}(k) \nmid \operatorname{ord}(G)$.
(2) Let $\mathfrak{g}=k t \oplus k x$ be as above. Then $\varepsilon\left(\left(t^{p-1}-1\right) x^{p-1}\right)=(0)$, so that $U_{0}(\mathfrak{g})$ is not semi-simple. In fact, $\operatorname{Rad}\left(U_{0}(\mathfrak{g})\right)=U_{0}(\mathfrak{g}) x$.

Corollary 3. If H is semi-simple, then H is separable.
Proof. Let K be an extension field of k. Then $H^{\prime}:=H \otimes_{k} K$ obtains the structure of a Hopf algebra by defining $\Delta^{\prime}=\Delta \otimes \operatorname{id}_{K}$. Here we use the identification $\left(H \otimes_{k} K\right) \otimes_{K}\left(H \otimes_{k} K\right) \cong\left(H \otimes_{k} H\right) \otimes_{k} K$. Since the counit ε^{\prime} of H^{\prime} is given by $\varepsilon \bar{\otimes} \mathrm{id}_{K}$, we get

$$
\int_{H^{\prime}}^{\ell}=\int_{H}^{\ell} \otimes_{k} K .
$$

Thus, if H is semi-simple, then

$$
\varepsilon^{\prime}\left(\int_{H^{\prime}}^{\ell}\right)=\varepsilon\left(\int_{H}^{\ell}\right) K \neq(0),
$$

so that H^{\prime} is also semi-simple. Consequently, H is separable.

References

[1] R. Farnsteiner. Self-injective algebras: Comparison with Frobenius algebras. Lecture Notes, available at http://www.mathematik.uni-bielefeld.de/~sek/selected.html
[2] ___ Hopf modules and integrals: The fundamental theorem. Lecture Notes, available at http://www.mathematik.uni-bielefeld.de/~sek/selected.html
[3] R. Larson and M. Sweedler. An associative orthogonal form for Hopf algebras. Amer. J. Math. 91 (1969), 75-94

[^0]: ${ }^{1}$ On page 85 of [3] they note: "The referee has pointed out to us that our main theorem implies that every finite dimensional Hopf algebra with antipode is a Frobenius algebra."

