HOPF MODULES AND INTEGRALS: MASCHKE'S THEOREM FOR LIE ALGEBRAS

ROLF FARNSTEINER

Throughout, we will be working over a field k of characteristic p > 0. Let $(\mathfrak{g}, [p])$ be a restricted Lie algebra over k. Recall that for any element $x \in \mathfrak{g}$, the left multiplication by x is denoted

ad
$$x : \mathfrak{g} \longrightarrow \mathfrak{g} \quad ; \quad y \mapsto [x, y].$$

The p-map $\mathfrak{g} \longrightarrow \mathfrak{g}$; $x \mapsto x^{[p]}$ satisfies the formal properties of an associative p-power operator. In particular, we have

- $(\operatorname{ad} x)^p = \operatorname{ad} x^{[p]} \quad \forall \ x \in \mathfrak{g},$ $(\alpha x)^{[p]} = \alpha^p x^{[p]} \quad \forall \ \alpha \in k, \ x \in \mathfrak{g},$ $(x+y)^{[p]} = x^{[p]} + y^{[p]} \text{ for } x, y \in \mathfrak{g} \text{ with } [x,y] = 0.$

Thus, if \mathfrak{g} is an abelian Lie algebra, then the *p*-map is *p*-semilinear. If the ground field k is perfect, this implies that [p] is surjective if and only if [p] is injective.

Let $U(\mathfrak{g})$ be the enveloping algebra of the ordinary Lie algebra \mathfrak{g} . The factor algebra

$$U_0(\mathfrak{g}) := U(\mathfrak{g})/(\{x^p - x^{[p]} ; x \in \mathfrak{g}\})$$

is called the *restricted enveloping algebra* of g. Up to isomorphism it is uniquely determined by the following universal property: Given any associative k-algebra Λ and any linear map $f:\mathfrak{g}\longrightarrow\Lambda$ with

(a) f([x, y]) = f(x)f(y) - f(y)f(x) and

(b) $f(x^{[p]}) = f(x)^p$ for all $x, y \in \mathfrak{g}$

there exists exactly one homomorphism $\hat{f}: U_0(\mathfrak{g}) \longrightarrow \Lambda$ with $\hat{f} \circ \iota = f$. Here, $\iota: \mathfrak{g} \longrightarrow U_0(\mathfrak{g})$ is the composite of the canonical map $\mathfrak{g} \longrightarrow U(\mathfrak{g})$ with the projection $U(\mathfrak{g}) \longrightarrow U_0(\mathfrak{g})$. We take Jacobson's analog [5] of the Theorem of Poincaré-Birkhoff-Witt for granted:

Theorem 1. Let x_1, \ldots, x_n be a basis of \mathfrak{g} . Then the monomials

$$\iota(x_1)^{a_1} \cdots \iota(x_n)^{a_n} ; 0 \le a_i \le p - 1$$

form a basis of $U_0(\mathfrak{g})$ over k.

Remarks. (a) In view of Theorem 1 the canonical map ι is injective and it will henceforth be suppressed.

(b) If $\mathfrak{h} \subset \mathfrak{g}$ is a *p*-subalgebra of \mathfrak{g} , then $U_0(\mathfrak{h})$ is a subalgebra of $U_0(\mathfrak{g})$ and $U_0(\mathfrak{g})$ is a free left and right $U_0(\mathfrak{h})$ -module. Consequently, the canonical restriction functor

$$\operatorname{mod} U_0(\mathfrak{g}) \longrightarrow \operatorname{mod} U_0(\mathfrak{h}) \; ; \; M \mapsto M|_{U_0(\mathfrak{h})}$$

sends projectives to projectives.

(c) Given
$$x \in \mathfrak{g}$$
 with $x^{[p]} = 0$, we have $U_0(kx) \cong \begin{cases} k[X]/(X^p) & \text{for } x \neq 0 \\ k & \text{otherwise.} \end{cases}$

Date: May 24, 2006.

ROLF FARNSTEINER

(d) Using the universal property, one endows $U_0(\mathfrak{g})$ with the structure of a Hopf algebra by defining

 $\Delta(x) = x \otimes 1 + 1 \otimes x \quad , \quad \eta(x) = -x \quad , \quad \varepsilon(x) = 0 \qquad \forall \ x \in \mathfrak{g}.$

The following criterion for the semi-simplicity of $U_0(\mathfrak{g})$ was first established by Hochschild in [4]. His proof was based on his theory of restricted cohomology groups [3]. Subsequently, Hochschild's work was superseded by Nagata's result (cf. [1, IV,§3,3.6]), which provides a criterion for a cocommutative Hopf algebra to be semi-simple. We shall give an elementary proof by exploiting the separability of semi-simple enveloping algebras.

Theorem (Hochschild). Let $(\mathfrak{g}, [p])$ be a finite dimensional restricted Lie algebra. Then the following statements are equivalent:

- (1) The algebra $U_0(\mathfrak{g})$ is semi-simple.
- (2) The Lie algebra \mathfrak{g} is abelian and $\langle \mathfrak{g}^{[p]} \rangle = \mathfrak{g}$.

Proof. (1) \Rightarrow (2). We proceed in several steps, assuming first k to be algebraically closed.

(i) If $x \in \mathfrak{g}$ is an element with $x^{[p]} = 0$, then x = 0.

Consider the *p*-subalgebra $\mathfrak{h} := kx$. By assumption, the trivial $U_0(\mathfrak{h})$ -module $k = k|_{U_0(\mathfrak{h})}$ is projective, so that Remark (c) implies $U_0(\mathfrak{h}) = k$ and x = 0.

(ii) \mathfrak{g} is abelian and [p] is bijective.

Given $x \in \mathfrak{g}$, we consider the abelian *p*-subalgebra $\mathfrak{h} := \sum_{i \geq 0} k x^{[p]^i}$. In view of (i), the *p*-map is injective on \mathfrak{h} and hence bijective. Consequently, there exist $\alpha_1, \ldots, \alpha_n \in k$ with $x = \sum_{i=1}^n \alpha_i x^{[p]^i}$. It follows ad *x* satisfies the polynomial $\sum_{i=1}^n \alpha_i X^{p^i} - X$, so that ad *x* is diagonalizable.

Now let α be an eigenvalue of $\operatorname{ad} x$. Then there exists $y \in \mathfrak{g}$ with $[x, y] = \alpha y$. Since the linear map $\operatorname{ad} y$ is diagonalizable, its restriction to the $(\operatorname{ad} y)$ -invariant subspace V := kx + ky enjoys the same property. As $(\operatorname{ad} y)^2|_V = 0$, we obtain $(\operatorname{ad} y)|_V = 0$, whence $\alpha = 0$. It follows that $\operatorname{ad} x = 0$ for every $x \in \mathfrak{g}$, so that \mathfrak{g} is abelian. Thus, [p] is p-semilinear and (i) yields the bijectivity of [p].

(iii) If k is an arbitrary field, then \mathfrak{g} is abelian and $\mathfrak{g} = \langle \mathfrak{g}^{[p]} \rangle$.

We let K be an algebraic closure of k and consider the restricted Lie algebra $\mathfrak{g}_K := \mathfrak{g} \otimes_k K$, whose Lie bracket and p-map are defined via

 $[x\otimes \alpha,y\otimes \beta]:=[x,y]\otimes \alpha\beta \hspace{3mm} ; \hspace{3mm} (x\otimes \alpha)^{[p]}:=x^{[p]}\otimes \alpha^p \hspace{3mm} \forall \hspace{3mm} x,y\in \mathfrak{g}, \hspace{3mm} \alpha,\beta\in K.$

The universal property provides an isomorphism

$$U_0(\mathfrak{g}_K)\cong U_0(\mathfrak{g})\otimes_k K$$

of Hopf algebras. Thanks to [2, Corollary 3] the algebra $U_0(\mathfrak{g}_K)$ is semi-simple, and (ii) ensures that \mathfrak{g}_K is abelian with surjective *p*-map. Hence \mathfrak{g} is abelian and there are elements x_1, \ldots, x_n of \mathfrak{g} , such that $\{x_1^{[p]} \otimes 1, \ldots, x_n^{[p]} \otimes 1\}$ is *K*-basis of \mathfrak{g}_K . Accordingly, the set $\{x_1^{[p]}, \ldots, x_n^{[p]}\} \subset \mathfrak{g}$ is linearly independent, so that $\mathfrak{g} = \sum_{i=1}^n k x_i^{[p]} = \langle \mathfrak{g}^{[p]} \rangle$.

 $(2) \Rightarrow (1)$. Setting $n := \dim_k \mathfrak{g}$, we pick elements x_1, \ldots, x_n in \mathfrak{g} such that $\{x_1^{[p]}, \ldots, x_n^{[p]}\}$ is a basis of \mathfrak{g} . Since \mathfrak{g} is abelian, $\{x_1, \ldots, x_n\}$ is also a basis of \mathfrak{g} over k. Let $u \in U_0(\mathfrak{g})$ be an element with $u^p = 0$. Using Theorem 1 we write

$$u = \sum \alpha_{a_1,\dots,a_n} x_1^{a_1} \cdots x_n^{a_n}.$$

Since $U_0(\mathfrak{g})$ is abelian, we obtain

$$0 = u^{p} = \sum \alpha_{a_{1},\dots,a_{n}}^{p} (x_{1}^{p})^{a_{1}} \cdots (x_{n}^{p})^{a_{n}} = \sum \alpha_{a_{1},\dots,a_{n}}^{p} (x_{1}^{[p]})^{a_{1}} \cdots (x_{n}^{[p]})^{a_{n}}.$$

Another application of Theorem 1 gives $\alpha_{a_1,\ldots,a_n}^p = 0$, so that u = 0. Consequently, the radical of $U_0(\mathfrak{g})$ is trivial, and the algebra $U_0(\mathfrak{g})$ is semi-simple. \Box

By combining Hochschild's result with the theory of finite group schemes one can show the following result.

Theorem 2 (Nagata). Let H be a finite dimensional cocommutative Hopf algebra. Then H is semisimple if and only if $H \cong \Lambda[G]$ is a skew group algebra, where G is a finite group with $p \nmid \operatorname{ord}(G)$, and $\Lambda \cong K_1 \times \cdots \times K_n$ is a product of finite extension fields of k. \Box

References

- [1] M. Demazure and P. Gabriel. Groupes Algébriques. Masson & Cie, Paris 1970
- [2] R. Farnsteiner. Hopf modules and integrals: The space of integrals. Lecture Notes, available at
- http://www.mathematik.uni-bielefeld.de/~sek/selected.html
- [3] G. Hochschild. Cohomology of restricted Lie algebras. Amer. J. Math. 76 (1954), 555-580
- [4] _____. Representations of restricted Lie algebras of characteristic p. Proc. Amer. Math. Soc. 5 (1954), 603-605
- [5] N. Jacobson. Restricted Lie algebras of characteristic p. Trans. Amer. Math. Soc. 50 (1941), 15-25