The ladder construction of Prüfer modules.

Claus Michael Ringel

Let R be any ring. We deal with (left) R-modules. Our aim is to consider pairs of maps $w, v: U \rightarrow V$ with w a proper monomorphism.

Let M be a module. If there exists an endomorphism ϕ of M which is surjective, locally nilpotent, and with non-zero kernel W of finite length, then M will be said to be a Prüfer module (with respect to ϕ, and with basis W).

1. The basic construction. A pair of exact sequences

$$
0 \rightarrow U_{0} \xrightarrow{w_{0}} U_{1} \rightarrow W \rightarrow 0 \quad \text { and } \quad 0 \rightarrow K \rightarrow U_{0} \xrightarrow{v_{0}} U_{1} \rightarrow Q \rightarrow 0
$$

yields a module U_{2} and a pair of exact sequences

$$
0 \rightarrow U_{1} \xrightarrow{w_{1}} U_{2} \rightarrow W \rightarrow 0 \quad \text { and } \quad 0 \rightarrow K \rightarrow U_{1} \xrightarrow{v_{1}} U_{2} \rightarrow Q \rightarrow 0
$$

by forming the induced exact sequence of $0 \rightarrow U_{0} \xrightarrow{w_{0}} U_{1} \rightarrow W \rightarrow 0$ using the map v_{0} :

2. The ladder. Using induction, we obtain in this way modules U_{i} and pairs of exact sequences

$$
0 \rightarrow U_{i} \xrightarrow{w_{i}} U_{i+1} \rightarrow W \rightarrow 0 \quad \text { and } \quad 0 \rightarrow K \rightarrow U_{i} \xrightarrow{v_{i}} U_{i+1} \rightarrow Q \rightarrow 0
$$

for all $i \geq 0$.
We may combine the pushout diagrams constructed inductively and obtain the following ladder of commutative squares:

We form the inductive limit $U_{\infty}=\bigcup_{i} U_{i}$ (along the maps w_{i}).
Since all the squares commute, the maps v_{i} induce a map $U_{\infty} \rightarrow U_{\infty}$ which we denote by v_{∞} :

We also may consider the factor modules U_{∞} / U_{0} and U_{∞} / U_{1}. The map $v_{\infty}: U_{\infty} \rightarrow U_{\infty}$ maps U_{0} into U_{1}, thus it induces a map

$$
\bar{v}: U_{\infty} / U_{0} \longrightarrow U_{\infty} / U_{1}
$$

Claim. The map \bar{v} is an isomorphism. Namely, the commutative diagrams

can be rewritten as

with an isomorphism $\bar{v}_{i}: U_{i} / U_{i-1} \rightarrow U_{i+1} / U_{i}$. The map \bar{v} is a map from a filtered module with factors U_{i} / U_{i-1} (where $i \geq 1$) to a filtered module with factors U_{i+1} / U_{i} (again with $i \geq 1$), and the maps $\overline{v_{i}}$ are just those induced on the factors.

It follows: The composition of maps

$$
U_{\infty} / U_{0} \xrightarrow{p} U_{\infty} / U_{1} \xrightarrow{\bar{v}^{-1}} U_{\infty} / U_{0}
$$

with p the projection map is an epimorphism ϕ with kernel U_{1} / U_{0}. It is easy to see that ϕ is locally nilpotent.

Summery. The maps v_{i} yield a map

$$
v_{\infty}: U_{\infty} \rightarrow U_{\infty}
$$

with kernel K and cokernel Q. This map v_{∞} induces an isomorphism $\bar{v}: U_{\infty} / U_{0} \rightarrow U_{\infty} / U_{1}$. Composing the inverse of this isomorphism with the canonical projection p, we obtain an endomorphism ϕ

$$
U_{\infty} / U_{0} \xrightarrow{p} U_{\infty} / U_{1} \xrightarrow{\bar{v}^{-1}} U_{\infty} / U_{0}
$$

and U_{∞} / U_{0} is a Prüfer module with respect to ϕ, with basis W.
(Using a terminology introduced for string algebras, we also can say: U_{∞} is expanding, U_{∞} / U_{0} is contracting.)

If necessary, we will use the following notation: $U_{i}(w ; v)=U_{i}$, for all $i \in \mathbb{N}$ and also for $i=\infty$, and $P(w ; v)=U_{\infty} / U_{0}$ for the Prüfer module (here, $\left.w=w_{0}, v=v_{0}\right)$. Since $P(w ; v)$ is a Prüfer module with basis the cokernel W of w, we will sometimes write $W[n]=U_{n} / U_{0}$.

Examples.

(1) The classical example: Let $R=\mathbb{Z}$, and also $U_{0}=U_{1}=\mathbb{Z}$. Maps $\mathbb{Z} \rightarrow \mathbb{Z}$ are given by the multiplication with some integer n, thus we denote it just by n. Let $w_{0}=2$ and $v_{0}=n$. If n is odd, then $P(2 ; n)$ is the ordinary Prüfer group for the prime 2 , and $U_{\infty}(2 ; n)=\mathbb{Z}\left[\frac{1}{2}\right]$ (the subring of \mathbb{Q} generated by $\frac{1}{2}$). If n is even, then $P(2 ; n)$ is an elementary abelian 2 -group.
(2) Let $R=K(2)$ be the Kronecker algebra over some field k. Let U_{0} be simple projective, U_{1} indecomposable projective of length 3 and $w_{0}: U_{0} \rightarrow U_{1}$ a non-zero map with cokernel W (one of the indecomposable modules of length 2). The module $P\left(w_{0} ; v_{0}\right)$ is the Prüfer module for W if and only if $v_{0} \notin k w_{0}$, otherwise it is a direct sum of copies of W.
(3) Trivial cases: First, let w be a split monomorphism. Then the Prüfer module with respect to any map $\alpha: U_{0} \rightarrow U_{1}$ is just the countable sum of copies of W. Second, let $w: U_{0} \rightarrow U_{1}$ be an arbitrary monomorphism, let $\beta: U_{1} \rightarrow U_{1}$ be an endomorphism. Then $P(w ; \beta w)$ is the countable sum of copies of W.
(4) Assume there exists a split monomorphism $\alpha: U_{0} \rightarrow U_{1}$, say $U_{1}=U_{0} \oplus X$ and $\alpha=\left[\begin{array}{l}1 \\ 0\end{array}\right]: U_{0} \rightarrow U_{1}$. Then

$$
0 \rightarrow U_{0} \xrightarrow{w} U_{0} \oplus X \rightarrow W \rightarrow 0
$$

is a Riedtmann-Zwara sequence, thus W is a degeneration of X. According to Zwara, there is n_{0} such that $W[n+1] \simeq W[n] \oplus X$ for all $n \geq n_{0}$.

The chessboard. Assume now that both maps $w_{0}, v_{0}: U_{0} \rightarrow U_{1}$ are monomorphisms. Then we get the following arrangement of commutative squares:

We see both horizontally as well as vertically ladders: the horizontal ladders yield $U_{\infty}\left(w_{0} ; v_{0}\right)$ (and its endomorphism v_{∞}); the vertical ladders yield $U_{\infty}\left(v_{0} ; w_{0}\right)$ (and its endomorphism $\left.w_{\infty}\right)$.

Let Λ be an artin algebra.

3. First application: Degenerations.

Proposition 1. Let U, V be modules, and let W and W^{\prime} be cokernels of monomorphisms $U \rightarrow V$. If $\operatorname{Ext}^{1}(W, W)=0$, then there exists a module X and an exact sequence

$$
0 \rightarrow X \rightarrow X \oplus W \rightarrow W^{\prime} \rightarrow 0
$$

Note that the existence of an exact sequence of the form $0 \rightarrow X \rightarrow X \oplus W \rightarrow W^{\prime} \rightarrow 0$ may be interpreted as asserting that W^{\prime} is a degeneration of W, according to Riedtmann and Zwara [Z].

Corollary. Let U, V be modules, and let W and W^{\prime} be cokernels of monomorphisms $U \rightarrow V$. Assume that both $\operatorname{Ext}^{1}(W, W)=0$ and $\operatorname{Ext}^{1}\left(W^{\prime}, W^{\prime}\right)=0$. Then the modules W and W^{\prime} are isomorphic.

Both assertions are well-known in case k is an algebraically closed field: in this case, the conclusion of proposition 1 just asserts that W^{\prime} is a degeneration of W in the sense of algebraic geometry. The main point here is to deal with the general case when Λ is an arbitrary artin algebra. Our interest in this question was raised by a series of lectures by Sverre Smalø at the Mar del Plata conference, March 2006. The corollary stated above (under the additional assumptions that V is projective and that $w(U), w^{\prime}(U)$ are contained
in the radical of V) is due to Bautista and Perrez [BP] and this result was presented by Smalø with a new proof $[\mathrm{S}]$ at Mar del Plata.

Lemma. Let W be a module with $\operatorname{Ext}^{1}(W, W)=0$. Let $U_{0} \subset U_{1} \subset U_{2} \subset \cdots$ be a sequence of inclusions of modules with $U_{i} / U_{i-1}=W$ for all $i \geq 1$. Then there is a natural number n_{0} such that $U_{n} \subset U_{n+1}$ is a split monomorphism for all $n \geq n_{0}$.

Lemma is well-known, it is based on the fact that $\operatorname{Ext}^{1}\left(W, U_{0}\right)$ when considered as a k-module is of finite length. A proof will be given below. Let us use it in order to finish the proof of proposition 1.

We apply Lemma to the chain of inclusions

$$
U_{0} \xrightarrow{w_{0}} U_{1} \xrightarrow{w_{1}} U_{2} \xrightarrow{w_{2}} \cdots
$$

and see that there is n such that $w_{n}: U_{n} \rightarrow U_{n+1}$ splits. This shows that U_{n+1} is isomorphic to $U_{n} \oplus W$. But we also have the exact sequence

$$
0 \rightarrow U_{n} \xrightarrow{v_{n}} U_{n+1} \rightarrow W^{\prime} \rightarrow 0 .
$$

Replacing U_{n+1} by $U_{n} \oplus W$, we see that we get an exact sequence of the form

$$
0 \rightarrow U_{n} \xrightarrow{v_{n}} U_{n} \oplus W \rightarrow W^{\prime} \rightarrow 0
$$

(a Riedtmann-Zwara sequence), as asserted.
Proof of Corollary. It is well-known that the existence of exact sequences

$$
0 \rightarrow X \rightarrow X \oplus W \rightarrow W^{\prime} \rightarrow 0 \quad \text { and } \quad 0 \rightarrow Y \rightarrow Y \oplus W^{\prime} \rightarrow W \rightarrow 0
$$

implies that the modules W - and W^{\prime} are isomorphic. But in our case we just have to change one line in the proof of proposition 1 in order to get the required isomorphism. Thus, assume that both $\operatorname{Ext}^{1}(W, W)=0$ and $\operatorname{Ext}^{1}\left(W^{\prime}, W^{\prime}\right)=0$. Choose n such that both the inclusion maps

$$
w_{n}: U_{n} \rightarrow U_{n+1} \quad \text { and } \quad v_{n}: U_{n} \rightarrow U_{n+1}
$$

split. Then U_{n+1} is isomorphic both to $U_{n} \oplus W$ and to $U_{n} \oplus W^{\prime}$, thus it follows from the Krull-Remak-Schmidt theorem that W and W^{\prime} are isomorphic.

Remark. Assume that $w, w^{\prime}: U, V$ are monomorphisms with cokernels W and W^{\prime}, respectively, and that $\operatorname{Ext}^{1}(W, W)=0$ and $\operatorname{Ext}^{1}\left(W^{\prime}, W^{\prime}\right)=0$. Then w splits if and only if w^{\prime} splits.

Proof: According to the corollary, we can assume $W=W^{\prime}$. Assume that w splits, thus V is isomorphic to $U \oplus W$. Look at the exact sequence $0 \rightarrow U \xrightarrow{w^{\prime}} V \rightarrow W \rightarrow 0$. If it does not split, then $\operatorname{dim} \operatorname{End}(V)<\operatorname{dim} \operatorname{End}(U \oplus W)$, but V is isomorphic to $U \oplus W$.

Proof of Lemma. An assertion equivalent to Lemma was used for example by Roiter in his proof of the first Brauer-Thrall conjecture, a corresponding proof can be found in $[\mathrm{R}]$. We include here a slightly different proof.

Applying the functor $\operatorname{Hom}(W,-)$ to the short exact sequence $0 \rightarrow U_{i-1} \xrightarrow{w_{i-1}} U_{i} \rightarrow$ $W \rightarrow 0$, we obtain the exact sequence

$$
\operatorname{Ext}^{1}\left(W, U_{i-1}\right) \rightarrow \operatorname{Ext}^{1}\left(W, U_{i}\right) \rightarrow \operatorname{Ext}^{1}(W, W)
$$

Since the latter term is zero, we see that we have a sequence of surjective maps

$$
\operatorname{Ext}^{1}\left(W, U_{0}\right) \rightarrow \operatorname{Ext}^{1}\left(W, U_{1}\right) \rightarrow \cdots \rightarrow \operatorname{Ext}^{1}\left(W, U_{i}\right) \rightarrow \cdots,
$$

being induced by the inclusion maps $U_{0} \rightarrow U_{1} \rightarrow \cdots \rightarrow U_{i} \rightarrow \cdots$. The maps between the Ext-groups are k-linear. Since $\operatorname{Ext}^{1}\left(W, U_{0}\right)$ is a k-module of finite length, the sequence of surjective maps must stabilize: there is some n_{0} such that the inclusion $U_{n} \rightarrow U_{n+1}$ induces an isomorphism

$$
\operatorname{Ext}^{1}\left(W, U_{n}\right) \rightarrow \operatorname{Ext}^{1}\left(W, U_{n+1}\right)
$$

for all $n \geq n_{0}$. Now we consider also some Hom-terms: the exactness of

$$
\operatorname{Hom}\left(W, U_{n+1}\right) \rightarrow \operatorname{Hom}(W, W) \rightarrow \operatorname{Ext}^{1}\left(W, U_{n}\right) \rightarrow \operatorname{Ext}^{1}\left(W, U_{n+1}\right)
$$

shows that the connecting homomorphism is zero, and thus that the map $\operatorname{Hom}\left(W, U_{n+1}\right) \rightarrow$ $\operatorname{Hom}(W, W)$ (induced by the projection map $\left.p: U_{n+1} \rightarrow W\right)$ is surjective. But this means that there is a map $h \in \operatorname{Hom}\left(W, U_{n+1}\right)$ with $p h=1_{W}$, thus $p: U_{n+1} \rightarrow W$ is a split epimorphism and therefore the inclusion map $U_{n} \rightarrow U_{n+1}$ is a split monomorphism.

Remark. In general, there is no actual bound on the number n_{0}. However, in case of dealing with the chain of inclusions

$$
U_{0} \xrightarrow{w_{0}} U_{1} \xrightarrow{w_{1}} U_{2} \xrightarrow{w_{n}} \cdots
$$

such a bound exists, namely the length of $\operatorname{Ext}^{1}\left(W, U_{0}\right)$ as a k-module, or, even better, the length of $\operatorname{Ext}^{1}\left(W, U_{0}\right)$ as an E-module, where $E=\operatorname{End}(W)$.

Proof: Look at the surjective maps

$$
\operatorname{Ext}^{1}\left(W, U_{0}\right) \rightarrow \operatorname{Ext}^{1}\left(W, U_{1}\right) \rightarrow \cdots \rightarrow \operatorname{Ext}^{1}\left(W, U_{i}\right) \rightarrow \cdots,
$$

being induced by the maps $U_{n} \xrightarrow{w_{n}} U_{n+1}$ (and these maps are not only k-linear, but even E-linear). Assume that $\operatorname{Ext}^{1}\left(W, U_{n}\right) \rightarrow \operatorname{Ext}^{1}\left(W, U_{n+1}\right)$ is bijective, for some n. As we have seen above, this implies that the sequence

$$
\begin{equation*}
0 \rightarrow U_{n} \xrightarrow{w_{n}} U_{n+1} \rightarrow W \rightarrow 0 \tag{*}
\end{equation*}
$$

splits. Now the map w_{n+1} is obtained from $(*)$ as the induced exact sequence using the map w_{n}^{\prime}. With $(*)$ also any induced exact sequence will split. Thus w_{n+1} is a split monomorphism (and $\operatorname{Ext}^{1}\left(W, U_{n+1}\right) \rightarrow \operatorname{Ext}^{1}\left(W, U_{n+2}\right)$ will be bijective, again). Thus, as soon as we get a bijection $\operatorname{Ext}^{1}\left(W, U_{n}\right) \rightarrow \operatorname{Ext}^{1}\left(W, U_{n+1}\right)$ for some n, then also all the following maps $\operatorname{Ext}^{1}\left(W, U_{m}\right) \rightarrow \operatorname{Ext}^{1}\left(W, U_{m+1}\right)$ with $m>n$ are bijective.

Example. Consider the D_{4}-quiver with subspace orientation:

and let Λ be its path algebra over some field k. We denote the indecomposable Λ-modules by the corresponding dimension vectors. Let

$$
U_{0}=\begin{gathered}
0 \\
1 \\
0 \\
0
\end{gathered}, \quad U_{1}=\begin{gathered}
1 \\
2 \\
1 \\
1
\end{gathered}, \quad W=1 \begin{gathered}
1 \\
1 \\
1
\end{gathered}, \quad W^{\prime}=\begin{array}{r}
0 \\
1 \\
1
\end{array} \bigoplus \begin{array}{r}
1 \\
0
\end{array}
$$

Note that a map $w_{0}: U_{0} \rightarrow U_{1}$ with cokernel W exists only in case the base-field k has at least 3 elements; of course, there is always a map $w_{0}^{\prime}: U_{0} \rightarrow U_{1}$ with cokernel W^{\prime}.

We have $\operatorname{dim} \operatorname{Ext}^{1}\left(W, U_{0}\right)=2$, and it turns out that the module U_{2} is the following:

The pushout diagram involving the modules U_{0}, U_{1} (twice) and U_{2} is constructed as follows: denote by $\mu_{a}, \mu_{b}, \mu_{c}$ monomorphisms $U_{0} \rightarrow U_{1}$ which factor through the indecomposable projective modules $P(a), P(b), P(c)$, respectively. We can assume that $\mu_{c}=-\mu_{a}-\mu_{b}$, so that a mesh relation is satisfied. Denote the 3 summands of U_{2} by M_{a}, M_{b}, M_{c}, with non-zero maps $\nu_{a}: U_{1} \rightarrow M_{a}, \nu_{b}: U_{1} \rightarrow M_{b}, \nu_{c}: U_{1} \rightarrow M_{c}$, such that $\nu_{a} \mu_{a}=0, \nu_{b} \mu_{b}=0, \nu_{c} \mu_{c}=0$. There is the following commutative square, for any $q \in k$, we are interested when $q \notin\{0,1\}$:

$$
\begin{array}{cc}
U_{0} \xrightarrow{v_{0}=\mu_{a}+q \mu_{b}} & U_{1} \\
v_{0}=\mu_{a} \\
U_{1} \\
U_{w_{1}=\left[\begin{array}{c}
\nu_{a} \\
\nu_{b} \\
(1-q) \nu_{c}
\end{array}\right]} & \downarrow^{v_{1}=\left[\begin{array}{c}
0 \\
\nu_{b} \\
\nu_{c}
\end{array}\right]} U_{2}
\end{array}
$$

(the only calculation which has to be done concerns the third entries: $\nu_{c}\left(\mu_{a}+q \mu_{b}\right)=$ $(1-q) \nu_{c} \mu_{a}$). Note that w_{1} (as well as w_{1}^{\prime}) does not split.

But now we deal with a module U_{2} such that $\operatorname{Ext}^{1}\left(W, U_{2}\right)=0$. This implies that U_{3} is isomorphic to $U_{2} \oplus W$. Thus the next pushout construction yields an exact sequence of the form

$$
0 \rightarrow U_{2} \rightarrow U_{2} \oplus W \rightarrow W^{\prime} \rightarrow 0
$$

4. Second application: Non-degeneration.

Proposition 2. Let $w, w^{\prime}: U \rightarrow V$ be monomorphisms with cokernel W, W^{\prime}, respectively. Assume $\operatorname{End}(W)$ is a brick, W, W^{\prime} are non-isomorphic, and $\operatorname{dim} \operatorname{End}(W)=$ $\operatorname{dim} \operatorname{End}\left(W^{\prime}\right)$. Then Λ is not of finite representation type.

Proof: Let $\mathcal{F}=\mathcal{F}(W)$ be the full category of modules with a filtration with factors isomorphic to W. This is an abelian category nwith a unique simple object. It is sufficient to show that \mathcal{F} has infinitely many isomorphism clases of indecomposable objects. If not, then \mathcal{F} is a serial category, say with l indecomposable objects. It follows that the \mathcal{F}-length of any object in \mathcal{F} is bounded by l times its socle length.

We consider the chain of inclusions $U_{0} \subset U_{1} \subset U_{2} \subset \cdots$ corresponding to w (thus, with all factors isomorphic to W). Claim: one of the inclusions has to split! Note that U_{i} / U_{0} is an object of \mathcal{F}-length i. Denote by $s(i)$ the \mathcal{F}-socle length of U_{i} / U_{0}. We see

$$
1=s(1) \leq s(2) \leq \cdots
$$

with $i \leq l \cdot s(i)$, thus $s(i) \geq i / l$. In particular, this is an unbounded sequence. Let U_{i}^{\prime} be the submodule of U_{i} containing U_{0} such that U_{i}^{\prime} / U_{0} is the \mathcal{F}-socle of U_{i} / U_{0}. The chain $U_{0} \subset U_{1}^{\prime} \subseteq U_{2}^{\prime} \subseteq U_{3}^{\prime} \subseteq \cdots$ is a sequence of extensions of U_{0} by direct sums of copies of W, thus after a while all the inclusions split. Let n be an index such that $U_{n}^{\prime} \subset U_{n+1}^{\prime}$ is a proper inclusion which splits. Then $U_{n}+U_{n+1}^{\prime}=U_{n+1}$ and the splitting of the inclusion $U_{n}^{\prime} \subset U_{n+1}^{\prime}$ implies the splitting of $U_{n} \subset U_{n+1}$ as we wanted to show.

But the splitting of w_{n} implies that W^{\prime} is a degeneration of W. Since $\operatorname{dim} \operatorname{End}(W)=$ $\operatorname{dim} \operatorname{End}\left(W^{\prime}\right)$, it follows that W and W^{\prime} are isomorphic, a contradiction.

References.

[BP] Raymundo Bautista and Efren Perez: On modules and complexes without self-extensions. Communications in Algebra (to appear)
[R] Ringel: The Gabriel-Roiter measure. Bull. Sci. math. 129 (2005). 726-748.
[S] Smalø: Homological conjectures and degenerations of modules. Lectures. Mar del Plata 2006.
[Z] Zwara. G. Zwara: A degeneration-like order for modules. Arch. Math. 71 (1998), 437444

