The ladder construction of Prüfer modules.

Claus Michael Ringel

Let R be any ring. We deal with (left) R-modules. Our aim is to consider pairs of maps $w, v: U \to V$ with w a proper monomorphism.

Let M be a module. If there exists an endomorphism ϕ of M which is surjective, locally nilpotent, and with non-zero kernel W of finite length, then M will be said to be a *Prüfer* module (with respect to ϕ , and with basis W).

1. The basic construction. A pair of exact sequences

$$0 \to U_0 \xrightarrow{w_0} U_1 \to W \to 0$$
 and $0 \to K \to U_0 \xrightarrow{v_0} U_1 \to Q \to 0$

yields a module U_2 and a pair of exact sequences

$$0 \to U_1 \xrightarrow{w_1} U_2 \to W \to 0$$
 and $0 \to K \to U_1 \xrightarrow{v_1} U_2 \to Q \to 0$

by forming the induced exact sequence of $0 \to U_0 \xrightarrow{w_0} U_1 \to W \to 0$ using the map v_0 :

2. The ladder. Using induction, we obtain in this way modules U_i and pairs of exact sequences

$$0 \to U_i \xrightarrow{w_i} U_{i+1} \to W \to 0 \quad \text{and} \quad 0 \to K \to U_i \xrightarrow{v_i} U_{i+1} \to Q \to 0$$

for all $i \ge 0$.

We may combine the pushout diagrams constructed inductively and obtain the following ladder of commutative squares:

We form the inductive limit $U_{\infty} = \bigcup_{i} U_{i}$ (along the maps w_{i}).

Since all the squares commute, the maps v_i induce a map $U_{\infty} \to U_{\infty}$ which we denote by v_{∞} :

We also may consider the factor modules U_{∞}/U_0 and U_{∞}/U_1 . The map $v_{\infty}: U_{\infty} \to U_{\infty}$ maps U_0 into U_1 , thus it induces a map

$$\overline{v} \colon U_{\infty}/U_0 \longrightarrow U_{\infty}/U_1$$

Claim. The map \overline{v} is an isomorphism. Namely, the commutative diagrams

can be rewritten as

with an isomorphism $\overline{v}_i: U_i/U_{i-1} \to U_{i+1}/U_i$. The map \overline{v} is a map from a filtered module with factors U_i/U_{i-1} (where $i \ge 1$) to a filtered module with factors U_{i+1}/U_i (again with $i \ge 1$), and the maps \overline{v}_i are just those induced on the factors.

It follows: The composition of maps

$$U_{\infty}/U_0 \xrightarrow{p} U_{\infty}/U_1 \xrightarrow{\overline{v}^{-1}} U_{\infty}/U_0$$

with p the projection map is an epimorphism ϕ with kernel U_1/U_0 . It is easy to see that ϕ is locally nilpotent.

Summery. The maps v_i yield a map

$$v_\infty \colon U_\infty \to U_\infty$$

with kernel K and cokernel Q. This map v_{∞} induces an isomorphism $\overline{v}: U_{\infty}/U_0 \to U_{\infty}/U_1$. Composing the inverse of this isomorphism with the canonical projection p, we obtain an endomorphism ϕ

$$U_{\infty}/U_0 \xrightarrow{p} U_{\infty}/U_1 \xrightarrow{\overline{v}^{-1}} U_{\infty}/U_0$$

and U_{∞}/U_0 is a Prüfer module with respect to ϕ , with basis W.

(Using a terminology introduced for string algebras, we also can say: U_{∞} is expanding, U_{∞}/U_0 is contracting.)

If necessary, we will use the following notation: $U_i(w; v) = U_i$, for all $i \in \mathbb{N}$ and also for $i = \infty$, and $P(w; v) = U_{\infty}/U_0$ for the Prüfer module (here, $w = w_0$, $v = v_0$). Since P(w; v) is a Prüfer module with basis the cokernel W of w, we will sometimes write $W[n] = U_n/U_0$.

Examples.

(1) The classical example: Let $R = \mathbb{Z}$, and also $U_0 = U_1 = \mathbb{Z}$. Maps $\mathbb{Z} \to \mathbb{Z}$ are given by the multiplication with some integer n, thus we denote it just by n. Let $w_0 = 2$ and $v_0 = n$. If n is odd, then P(2; n) is the ordinary Prüfer group for the prime 2, and $U_{\infty}(2; n) = \mathbb{Z}[\frac{1}{2}]$ (the subring of \mathbb{Q} generated by $\frac{1}{2}$). If n is even, then P(2; n) is an elementary abelian 2-group.

(2) Let R = K(2) be the Kronecker algebra over some field k. Let U_0 be simple projective, U_1 indecomposable projective of length 3 and $w_0: U_0 \to U_1$ a non-zero map with cokernel W (one of the indecomposable modules of length 2). The module $P(w_0; v_0)$ is the Prüfer module for W if and only if $v_0 \notin kw_0$, otherwise it is a direct sum of copies of W.

(3) Trivial cases: First, let w be a split monomorphism. Then the Prüfer module with respect to any map $\alpha: U_0 \to U_1$ is just the countable sum of copies of W. Second, let $w: U_0 \to U_1$ be an arbitrary monomorphism, let $\beta: U_1 \to U_1$ be an endomorphism. Then $P(w; \beta w)$ is the countable sum of copies of W.

(4) Assume there exists a split monomorphism $\alpha \colon U_0 \to U_1$, say $U_1 = U_0 \oplus X$ and $\alpha = \begin{bmatrix} 1\\ 0 \end{bmatrix} \colon U_0 \to U_1$. Then

$$0 \to U_0 \xrightarrow{w} U_0 \oplus X \to W \to 0$$

is a Riedtmann-Zwara sequence, thus W is a degeneration of X. According to Zwara, there is n_0 such that $W[n+1] \simeq W[n] \oplus X$ for all $n \ge n_0$.

The chessboard. Assume now that both maps $w_0, v_0 : U_0 \to U_1$ are monomorphisms. Then we get the following arrangement of commutative squares:

We see both horizontally as well as vertically ladders: the horizontal ladders yield $U_{\infty}(w_0; v_0)$ (and its endomorphism v_{∞}); the vertical ladders yield $U_{\infty}(v_0; w_0)$ (and its endomorphism w_{∞}).

Let Λ be an artin algebra.

3. First application: Degenerations.

Proposition 1. Let U, V be modules, and let W and W' be cohernels of monomorphisms $U \to V$. If $\text{Ext}^1(W, W) = 0$, then there exists a module X and an exact sequence

$$0 \to X \to X \oplus W \to W' \to 0.$$

Note that the existence of an exact sequence of the form $0 \to X \to X \oplus W \to W' \to 0$ may be interpreted as asserting that W' is a *degeneration* of W, according to Riedtmann and Zwara [Z].

Corollary. Let U, V be modules, and let W and W' be cohernels of monomorphisms $U \to V$. Assume that both $\text{Ext}^1(W, W) = 0$ and $\text{Ext}^1(W', W') = 0$. Then the modules W and W' are isomorphic.

Both assertions are well-known in case k is an algebraically closed field: in this case, the conclusion of proposition 1 just asserts that W' is a degeneration of W in the sense of algebraic geometry. The main point here is to deal with the general case when Λ is an arbitrary artin algebra. Our interest in this question was raised by a series of lectures by Sverre Smalø at the Mar del Plata conference, March 2006. The corollary stated above (under the additional assumptions that V is projective and that w(U), w'(U) are contained in the radical of V) is due to Bautista and Perrez [BP] and this result was presented by Smalø with a new proof [S] at Mar del Plata.

Lemma. Let W be a module with $\text{Ext}^1(W, W) = 0$. Let $U_0 \subset U_1 \subset U_2 \subset \cdots$ be a sequence of inclusions of modules with $U_i/U_{i-1} = W$ for all $i \ge 1$. Then there is a natural number n_0 such that $U_n \subset U_{n+1}$ is a split monomorphism for all $n \ge n_0$.

Lemma is well-known, it is based on the fact that $\text{Ext}^1(W, U_0)$ when considered as a k-module is of finite length. A proof will be given below. Let us use it in order to finish the proof of proposition 1.

We apply Lemma to the chain of inclusions

$$U_0 \xrightarrow{w_0} U_1 \xrightarrow{w_1} U_2 \xrightarrow{w_2} \cdots$$

and see that there is n such that $w_n \colon U_n \to U_{n+1}$ splits. This shows that U_{n+1} is isomorphic to $U_n \oplus W$. But we also have the exact sequence

$$0 \to U_n \xrightarrow{v_n} U_{n+1} \to W' \to 0.$$

Replacing U_{n+1} by $U_n \oplus W$, we see that we get an exact sequence of the form

$$0 \to U_n \xrightarrow{v_n} U_n \oplus W \to W' \to 0$$

(a Riedtmann-Zwara sequence), as asserted.

Proof of Corollary. It is well-known that the existence of exact sequences

$$0 \to X \to X \oplus W \to W' \to 0$$
 and $0 \to Y \to Y \oplus W' \to W \to 0$

implies that the modules W- and W' are isomorphic. But in our case we just have to change one line in the proof of proposition 1 in order to get the required isomorphism. Thus, assume that both $\text{Ext}^1(W, W) = 0$ and $\text{Ext}^1(W', W') = 0$. Choose n such that **both** the inclusion maps

$$w_n \colon U_n \to U_{n+1}$$
 and $v_n \colon U_n \to U_{n+1}$

split. Then U_{n+1} is isomorphic both to $U_n \oplus W$ and to $U_n \oplus W'$, thus it follows from the Krull-Remak-Schmidt theorem that W and W' are isomorphic.

Remark. Assume that w, w' : U, V are monomorphisms with cokernels W and W', respectively, and that $\text{Ext}^1(W, W) = 0$ and $\text{Ext}^1(W', W') = 0$. Then w splits if and only if w' splits.

Proof: According to the corollary, we can assume W = W'. Assume that w splits, thus V is isomorphic to $U \oplus W$. Look at the exact sequence $0 \to U \xrightarrow{w'} V \to W \to 0$. If it does not split, then dim $\operatorname{End}(V) < \dim \operatorname{End}(U \oplus W)$, but V is isomorphic to $U \oplus W$.

Proof of Lemma. An assertion equivalent to Lemma was used for example by Roiter in his proof of the first Brauer-Thrall conjecture, a corresponding proof can be found in [R]. We include here a slightly different proof.

Applying the functor $\operatorname{Hom}(W, -)$ to the short exact sequence $0 \to U_{i-1} \xrightarrow{w_{i-1}} U_i \to W \to 0$, we obtain the exact sequence

$$\operatorname{Ext}^{1}(W, U_{i-1}) \to \operatorname{Ext}^{1}(W, U_{i}) \to \operatorname{Ext}^{1}(W, W).$$

Since the latter term is zero, we see that we have a sequence of surjective maps

$$\operatorname{Ext}^{1}(W, U_{0}) \to \operatorname{Ext}^{1}(W, U_{1}) \to \cdots \to \operatorname{Ext}^{1}(W, U_{i}) \to \cdots,$$

being induced by the inclusion maps $U_0 \to U_1 \to \cdots \to U_i \to \cdots$. The maps between the Ext-groups are k-linear. Since $\operatorname{Ext}^1(W, U_0)$ is a k-module of finite length, the sequence of surjective maps must stabilize: there is some n_0 such that the inclusion $U_n \to U_{n+1}$ induces an isomorphism

$$\operatorname{Ext}^{1}(W, U_{n}) \to \operatorname{Ext}^{1}(W, U_{n+1})$$

for all $n \ge n_0$. Now we consider also some Hom-terms: the exactness of

$$\operatorname{Hom}(W, U_{n+1}) \to \operatorname{Hom}(W, W) \to \operatorname{Ext}^1(W, U_n) \to \operatorname{Ext}^1(W, U_{n+1})$$

shows that the connecting homomorphism is zero, and thus that the map $\operatorname{Hom}(W, U_{n+1}) \to \operatorname{Hom}(W, W)$ (induced by the projection map $p: U_{n+1} \to W$) is surjective. But this means that there is a map $h \in \operatorname{Hom}(W, U_{n+1})$ with $ph = 1_W$, thus $p: U_{n+1} \to W$ is a split epimorphism and therefore the inclusion map $U_n \to U_{n+1}$ is a split monomorphism.

Remark. In general, there is no actual bound on the number n_0 . However, in case of dealing with the chain of inclusions

$$U_0 \xrightarrow{w_0} U_1 \xrightarrow{w_1} U_2 \xrightarrow{w_n} \cdots$$

such a bound exists, namely the length of $\text{Ext}^1(W, U_0)$ as a k-module, or, even better, the length of $\text{Ext}^1(W, U_0)$ as an E-module, where E = End(W).

Proof: Look at the surjective maps

$$\operatorname{Ext}^{1}(W, U_{0}) \to \operatorname{Ext}^{1}(W, U_{1}) \to \cdots \to \operatorname{Ext}^{1}(W, U_{i}) \to \cdots,$$

being induced by the maps $U_n \xrightarrow{w_n} U_{n+1}$ (and these maps are not only k-linear, but even *E*-linear). Assume that $\operatorname{Ext}^1(W, U_n) \to \operatorname{Ext}^1(W, U_{n+1})$ is bijective, for some n. As we have seen above, this implies that the sequence

$$(*) 0 \to U_n \xrightarrow{w_n} U_{n+1} \to W \to 0$$

splits. Now the map w_{n+1} is obtained from (*) as the induced exact sequence using the map w'_n . With (*) also any induced exact sequence will split. Thus w_{n+1} is a split monomorphism (and $\operatorname{Ext}^1(W, U_{n+1}) \to \operatorname{Ext}^1(W, U_{n+2})$ will be bijective, again). Thus, as soon as we get a bijection $\operatorname{Ext}^1(W, U_n) \to \operatorname{Ext}^1(W, U_{n+1})$ for some *n*, then also all the following maps $\operatorname{Ext}^1(W, U_m) \to \operatorname{Ext}^1(W, U_{m+1})$ with m > n are bijective.

Example. Consider the D_4 -quiver with subspace orientation:

and let Λ be its path algebra over some field k. We denote the indecomposable Λ -modules by the corresponding dimension vectors. Let

$$U_0 = \begin{smallmatrix} 0 \\ 1 & 0 \\ 0 \end{smallmatrix}, \quad U_1 = \begin{smallmatrix} 1 \\ 2 & 1 \\ 1 \end{smallmatrix}, \quad W = \begin{smallmatrix} 1 \\ 1 \\ 1 \end{smallmatrix}, \quad W' = \begin{smallmatrix} 0 \\ 1 & 1 \\ 0 \end{smallmatrix}, \quad \begin{smallmatrix} 0 \\ 1 \\ 0 \end{smallmatrix}$$

Note that a map $w_0: U_0 \to U_1$ with cokernel W exists only in case the base-field k has at least 3 elements; of course, there is always a map $w'_0: U_0 \to U_1$ with cokernel W'.

We have dim $\text{Ext}^1(W, U_0) = 2$, and it turns out that the module U_2 is the following:

The pushout diagram involving the modules U_0 , U_1 (twice) and U_2 is constructed as follows: denote by μ_a, μ_b, μ_c monomorphisms $U_0 \to U_1$ which factor through the indecomposable projective modules P(a), P(b), P(c), respectively. We can assume that $\mu_c = -\mu_a - \mu_b$, so that a mesh relation is satisfied. Denote the 3 summands of U_2 by M_a, M_b, M_c , with non-zero maps $\nu_a \colon U_1 \to M_a, \nu_b \colon U_1 \to M_b, \nu_c \colon U_1 \to M_c$, such that $\nu_a \mu_a = 0, \nu_b \mu_b = 0, \nu_c \mu_c = 0$. There is the following commutative square, for any $q \in k$, we are interested when $q \notin \{0, 1\}$:

(the only calculation which has to be done concerns the third entries: $\nu_c(\mu_a + q\mu_b) = (1-q)\nu_c\mu_a$). Note that w_1 (as well as w'_1) does not split.

But now we deal with a module U_2 such that $\text{Ext}^1(W, U_2) = 0$. This implies that U_3 is isomorphic to $U_2 \oplus W$. Thus the next pushout construction yields an exact sequence of the form

$$0 \to U_2 \to U_2 \oplus W \to W' \to 0.$$

4. Second application: Non-degeneration.

Proposition 2. Let $w, w' \colon U \to V$ be monomorphisms with cokernel W, W', respectively. Assume End(W) is a brick, W, W' are non-isomorphic, and dim End(W) = dim End(W'). Then Λ is not of finite representation type.

Proof: Let $\mathcal{F} = \mathcal{F}(W)$ be the full category of modules with a filtration with factors isomorphic to W. This is an abelian category nwith a unique simple object. It is sufficient to show that \mathcal{F} has infinitely many isomorphism clases of indecomposable objects. If not, then \mathcal{F} is a serial category, say with l indecomposable objects. It follows that the \mathcal{F} -length of any object in \mathcal{F} is bounded by l times its socle length.

We consider the chain of inclusions $U_0 \subset U_1 \subset U_2 \subset \cdots$ corresponding to w (thus, with all factors isomorphic to W). Claim: one of the inclusions has to split! Note that U_i/U_0 is an object of \mathcal{F} -length i. Denote by s(i) the \mathcal{F} -socle length of U_i/U_0 . We see

$$1 = s(1) \le s(2) \le \cdots$$

with $i \leq l \cdot s(i)$, thus $s(i) \geq i/l$. In particular, this is an unbounded sequence. Let U'_i be the submodule of U_i containing U_0 such that U'_i/U_0 is the \mathcal{F} -socle of U_i/U_0 . The chain $U_0 \subset U'_1 \subseteq U'_2 \subseteq U'_3 \subseteq \cdots$ is a sequence of extensions of U_0 by direct sums of copies of W, thus after a while all the inclusions split. Let n be an index such that $U'_n \subset U'_{n+1}$ is a proper inclusion which splits. Then $U_n + U'_{n+1} = U_{n+1}$ and the splitting of the inclusion $U'_n \subset U'_{n+1}$ implies the splitting of $U_n \subset U_{n+1}$ as we wanted to show.

But the splitting of w_n implies that W' is a degeneration of W. Since dim $\text{End}(W) = \dim \text{End}(W')$, it follows that W and W' are isomorphic, a contradiction.

References.

- [BP] Raymundo Bautista and Efren Perez: On modules and complexes without self-extensions. Communications in Algebra (to appear)
 - [R] Ringel: The Gabriel-Roiter measure. Bull. Sci. math. 129 (2005). 726-748.
 - [S] Smalø: Homological conjectures and degenerations of modules. Lectures. Mar del Plata 2006.
 - [Z] Zwara. G. Zwara: A degeneration-like order for modules. Arch. Math. 71 (1998), 437-444