## Zwara's Degeneration Theory.

Reference: G. Zwara: A degeneration-like order for modules. Arch. Math. 71 (1998), 437-444.

Definition: Call Y a degeneration of X provided there is an exact sequence of the form  $0 \to U \to X \oplus U \to Y \to 0$  (such a sequence should be called a *Riedtmann-Zwara* sequence). The map  $U \to U$  is called a corresponding steering map.

Some preliminary definitions and results. A commutative square



is said to be *exact* provided it is both a pushout and a pullback, thus if and only if the sequence

$$0 \to X \xrightarrow{\left[ \begin{array}{c} f \\ g \end{array} \right]} Y_1 \oplus Y_2 \xrightarrow{\left[ \begin{array}{c} g' \\ -f' \end{array} \right]} Z \to 0$$

is exact.

(1) The composition of two exact squares

yields an exact square

$$\begin{array}{cccc} X & \longrightarrow & Z_1 \\ & \downarrow & & \downarrow \\ Y_2 & \longrightarrow & A \end{array}$$

(2) For any map  $a: U \to V$ , and any module X, the following diagram is exact:

$$\begin{array}{cccc} U & \stackrel{a}{\longrightarrow} & V \\ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \downarrow & & \downarrow \begin{bmatrix} 1 \\ 0 \end{bmatrix} \\ U \oplus X & \stackrel{a \oplus 1_X}{\longrightarrow} & V \oplus X. \end{array}$$

(3) Let

$$\begin{array}{cccc} X & \stackrel{f}{\longrightarrow} & Y_1 \\ 0 & & \downarrow \\ Y_2 & \stackrel{f'}{\longrightarrow} & Z \end{array}$$

be exact. Then f' is split mono.

(4) Assume we have the following exact square

$$U \xrightarrow{a} V$$

$$b \downarrow \qquad b' \downarrow$$

$$W \xrightarrow{a'} X$$

and b is a split monomorphism, then the sequence

$$0 \to U \xrightarrow{\begin{bmatrix} a \\ b \end{bmatrix}} V \oplus W \xrightarrow{\begin{bmatrix} b' & a' \end{bmatrix}} X \to 0$$

splits.

Proofs. (1) and (2): Well-known (and obvious). (3): Since  $\begin{bmatrix} f \\ 0 \end{bmatrix}$  is injective,  $f: X \to Y_1$  is injective. Let Q be the cokernel of f. We obtain the map f' by forming the induced exact sequence of  $0 \to X \xrightarrow{f} Y_1 \to Q \to 0$ , using the zero map  $X \to Y_1$ . But such an induced exact sequence splits. (4) Assume  $pb = 1_U$ . Then  $\begin{bmatrix} 0 \\ p \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = 1_U$ .

**Lemma.** (There is always a nilpotent steering map.) If there is an exact sequence  $0 \to U \to X \oplus U \to Y \to 0$ , then there is an exact sequence  $0 \to U' \to X \oplus U' \to Y \to 0$  such that the map  $U' \to U'$  is nilpotent.

Proof: We can decompose  $U = U_1 \oplus U_2 = U'_1 \oplus U'_2$  such that the given map  $f: U \to U$ maps  $U_1$  into  $U'_1$ ,  $U_2$  into  $U'_2$  and such that the induced maps  $f_1: U_1 \to U'_1$  belongs to the radical of the category, whereas the induced map  $f_2: U_2 \to U'_2$  is an isomorphism. We obtain the following pair of exact squares

$$U_{1} \xrightarrow{\begin{bmatrix} 1\\0 \end{bmatrix}} U_{1} \oplus U_{2} \longrightarrow X$$

$$f_{1} \downarrow \qquad f_{1} \oplus f_{2} \downarrow \qquad \qquad \downarrow$$

$$U'_{1} \xrightarrow{f_{1} \oplus f_{2}} U'_{1} \oplus U'_{2} \longrightarrow Y$$

(the left square is exact according to (2)). The composition of the squares is the desired exact square (note that  $U'_1$  is isomorphic to  $U_1$ ).

## The relationship between degenerations and iterating self-extensions.

We say that  $Y[\infty] = (Y[\infty], \psi)$  is a *Prüfer module*, provided  $\psi$  is a surjective, locally nilpotent endomorphism of the module  $Y[\infty]$  with kernel Y. Given such a module, let Y[n] be the kernel of  $\psi^n$ .

**Theorem (Zwara).** Assume Y is a degeneration of X, steered by a nilpotent map  $\phi$  with  $\phi^t = 0$ . Then there is a Prüfer module  $Y[\infty]$  such that  $Y[t+1] \simeq Y[t] \oplus X$ .

**Corollary.** Assume Y is a degeneration of X and  $\text{Ext}^1(Y, Y) = 0$ . Then X and Y are isomorphic.

Proof of Corollary: The theorem asserts that  $Y[t+1] \simeq Y[t] \oplus X$ . If  $\text{Ext}^1(Y,Y) = 0$ , then  $Y[n] \simeq Y^n$  for all n. Thus  $Y^{t+1} \simeq Y^t \oplus X$ , thus  $Y \simeq X$ .

**Converse of Theorem:** Assume there is a Prüfer module  $Y[\infty]$  such that  $Y[t+1] \simeq Y[t] \oplus X$ . We get the following two exact sequences

$$\begin{split} 0 &\to Y[t] \to Y[t+1] \to Y[1] \to 0, \\ 0 &\to Y[1] \to Y[t+1] \to Y[t] \to 0, \end{split}$$

in the first, the map  $Y[t+1] \to Y[1]$  is given by applying  $\psi^t$ , in the second the map  $Y[t+1] \to Y[t]$  is given by applying  $\psi$ . In both sequences, we can replace Y[t+1] by  $Y[t] \oplus X$ . Thus we obtain as first sequence a new Riedtmann-Zwara sequence, and as second sequence a dual Riedtmann-Zwara sequence:

$$\begin{split} 0 &\to Y[t] \to Y[t] \oplus X \to Y \to 0, \\ 0 &\to Y \to Y[t] \oplus X \to Y[t] \to 0, \end{split}$$

note that both use the same steering module, namely Y[t]. Thus:

**Reformulation.** The module Y is a degeneration of X if and only if there is a Prüfer module  $Y[\infty]$  such that  $Y[t+1] \simeq Y[t] \oplus X$  for some t.

**Also:** The module Y is a degeneration of X if and only if there exists a module V and an exact sequence  $0 \to Y \to V \oplus X \to V \to 0$  (A co-Riedtmann-Zwara sequence).

Proof of Theorem: Assume a monomorphism  $w = \begin{bmatrix} \phi \\ g \end{bmatrix} : U \to U \oplus X$  with cokernel Y and  $\phi^t = 0$  is given. Consider also the canonical embedding  $v = \begin{bmatrix} 1 \\ 0 \end{bmatrix} : U \to U \oplus X$  and form the towers for this pair of monomorphisms  $M_i(w, v)$  and the quotients  $R_i(w, v) = M_i(w, v)/M_0(w, v)$ . The latter modules are just the modules  $Y[i] = R_i(m, v)$  we are looking for. As we know, there is a Prüfer module  $(Y[\infty], \psi)$  with Y[i] being the kernel of  $\psi^i$ .

We construct the maps  $w_n, v_n$  explicitly as follows:

$$w_n = \begin{bmatrix} \phi \\ g \\ 1_{X^n} \end{bmatrix} = \begin{bmatrix} w \\ 1_{X^n} \end{bmatrix} : U \oplus X^n \to (U \oplus X) \oplus X^n$$

and

$$v_n = \begin{bmatrix} 1_{U \oplus X_n} \\ 0 \end{bmatrix} : U \oplus X^n \to U \oplus X^n \oplus X,$$

using the recipe (2). Thus we obtain the following sequence of exact squares:

In particular, we have  $M_n = M_n(w, v) = U \oplus X^n$ .

Note that the composition  $w_{n-1} \cdots w_0 \colon U \to U \oplus X^n$  is of the form  $\begin{bmatrix} \phi^n \\ g_n \end{bmatrix}$  for some  $g_n \colon U \to X^n$ .

We also have the following sequence of exact squares:

where the vertical maps are of the form

$$M_n = U \oplus X^n \xrightarrow{[h_n \ q_n]} Y[n].$$

The composition of these exact squares yields an exact square

Here we may insert the following observation: This sequence shows that the module Y[n] is a degeneration of the module  $X^n$ .

Since the composition  $w_{n-1} \cdots w_0 \colon U \to U \oplus X^n$  is of the form  $\begin{bmatrix} \phi^n \\ g_n \end{bmatrix}$ , and  $\phi^t = 0$ , it follows that  $h_t$  is a split monomorphism, see (3).

Also, we can consider the following two exact squares, with  $w = \begin{bmatrix} \phi \\ g \end{bmatrix} : U \to V = U \oplus X$  (the upper square is exact, according to (2)):

$$\begin{array}{cccc} U & \stackrel{w}{\longrightarrow} & V \\ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \downarrow & & \downarrow \begin{bmatrix} 1 \\ 0 \end{bmatrix} \\ U \oplus X^t & \stackrel{\begin{bmatrix} w \\ 1 \end{bmatrix}}{\longrightarrow} & V \oplus X^t \\ \begin{bmatrix} h_t & q_t \end{bmatrix} \downarrow & & \downarrow \begin{bmatrix} h_{t+1} & q_{t+1} \end{bmatrix} \\ Y[t] & \stackrel{\longrightarrow}{\longrightarrow} & Y[t+1] \end{array}$$

The vertical composition on the left is  $h_t$ , thus, as we have shown, a split monomorphism. This shows that the exact sequence corresponding to the composed square splits (4): This yields

$$U \oplus Y[t+1] \simeq Y[t] \oplus V = Y[t] \oplus U \oplus X.$$

Cancellation of U gives the desired isomorphism:

$$Y[t+1] \simeq Y[t] \oplus X.$$

Remark to the proof. Given the Riedtmann-Zwara sequence

$$0 \to U \xrightarrow{\left[ \begin{array}{c} \phi \\ g \end{array} \right]} U \oplus X \to Y \to 0,$$

we have considered the following pair of monomorphisms

$$w = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, w' = \begin{bmatrix} \phi \\ g \end{bmatrix} : U \to U \oplus X.$$

The corresponding Prüfer modules are  $X^{(\infty)}$  and  $Y[\infty]$ , respectively. And  $U_n(w, w') = U \oplus X^n$ . As we know, we can assume that  $\phi$  is nilpotent. Then all the linear combinations

$$w + \lambda w' = \begin{bmatrix} 1 + \lambda \phi \\ g \end{bmatrix}$$

with  $\lambda \in k$  are also split monomorphisms (with retraction  $[\eta \ 0]$ , where  $\eta = (1 + \lambda \phi)^{-1}$ ).

## Transitivity of the degeneration relation.

Lemma. Assume that there are exact sequences

$$0 \to Y \to X \oplus U \to U \to 0, \quad 0 \to Z \to Y \oplus V \to V \to 0$$

and such that the steering map  $\phi: V \to V$  is nilpotent, say  $\phi^t = 0$ . Then there is an exact sequence

$$0 \to Z \to X \oplus W \to W \to 0$$

where W has a filtration with factors of the form U and V.

Proof. Denote by  $f: Y \to V$  the map used in the second exact sequence. The first exact sequence yields the following induced exact sequence:

We compose the left square with the exact square given by the second given Riedtmann-Zwara sequence:



and obtain by composition and reflection an exact square of the form

$$(*) \qquad \begin{array}{c} Z & \longrightarrow & V \\ \downarrow & & \downarrow v_0 \phi \\ X \oplus U & \longrightarrow & V_1. \end{array}$$

Now we form the tower for the pair  $v_0, v_0\phi \colon V \to V_1$ . It is of the form

Since  $\phi^t = 0$ , we know that the inclusion  $v_t \colon V_t \to V_{t+1}$  splits, see the following lemma. Note that the cokernels of all the maps  $v_i \colon V_i \to V_{i+1}$  are equal, and the cokernel of  $v_0$  is U. Thus we see

$$V_{t+1} = V_t \oplus U.$$

Composing the exact square (\*) with the all the squares (\*\*), we obtain an exact sequence

$$0 \to Z \to V_t \oplus X \oplus U \to V_{t+1} \to 0.$$

Thus  $W = V_{t+1} = V_t \oplus U$  is the desired module.

**Remark.** We can analyse the module  $W = U \oplus V_t$  more carefully:  $V_t$  has V as submodule and  $V_t/V$  is a *t*-fold iterated self-extension of U.

**Lemma.** Let  $w_0: U_0 \to U_1$  be a monomorphism. Let  $\gamma: U_0 \to U_0$  be a nilpotent endomorphism, say with  $\gamma^t = 0$ . Form the tower  $U_i = U_i(w_0; w_0 \gamma)$  with  $i \ge 0$  and inclusion maps  $w_i: U_i \to U_{i+1}$ . Then  $w_t: U_t \to U_{t+1}$  splits. (If W is the cokernel of  $w_0$ , then the cokernel of  $w_t$  is also isomorphic to W, thus  $U_{t+1} \simeq U_t \oplus W$ .)

Proof: The towers is formed by the following exact squares:

Using induction, one shows that

$$w_{n-1}'\cdots w_1'w_0\gamma = w_{n-1}\cdots w_1w_0\gamma^n.$$

The assertion is true for n = 1 (namely  $w_0 \gamma = w_0 \gamma$ ). Assume it is true for some  $n \ge 1$ . Then

$$w'_n w'_{n-1} \cdots w'_1 w_0 \gamma = w'_n w_{n-1} \cdots w_1 w_0 \gamma^n = w_n w_{n-1} \cdots w_1 w_0 \gamma \cdot \gamma^n$$

(the first equality sign is by induction, the second uses the commutativity of the squares). Thus, we see that  $w'_{t-1} \cdots w'_1 w_0 \gamma = 0$ .

But we obtain  $w_n$  by forming the induced exact sequence

(now we arrange the squares of the tower vertically, and not horizontally).

Since  $w'_{t-1} \cdots w'_1 w_0 \gamma = 0$ , we see that  $w_t$  is a split monomorphism.

We assume now that we deal with modules over an artin algebra  $\Lambda$ , say a modulefinite k-algebra, where k is an artinian commutative ring. By |-| we denote the length over the ground ring k.

**Proposition.** Assume there is an exact sequence  $0 \to U \to U \oplus X \xrightarrow{g} Y \to 0$ . Then

 $|\operatorname{End}(X)| \le |\operatorname{Hom}(Y,X)| \le |\operatorname{End}(Y)| \quad and \quad |\operatorname{End}(X)| \le |\operatorname{Hom}(X,Y)| \le |\operatorname{End}(Y)|.$ 

If X, Y are not isomorphic, then the sequence does not split, and we have both

 $|\operatorname{Hom}(Y,X)| < |\operatorname{End}(Y)| \quad and \quad |\operatorname{Hom}(X,Y)| < |\operatorname{End}(Y)|,$ 

and thus also  $|\operatorname{End}(X)| < |\operatorname{End}(Y)|$ .

Proof (I learnt it from Smal $\emptyset$ ): Apply Hom(Y, -), we get

$$0 \to (Y,U) \to (Y,U) \oplus (Y,X) \xrightarrow{(Y,g)} (Y,Y),$$

thus  $|(Y,X)| \leq |(Y,Y)|$ . Also, apply  $\operatorname{Hom}(-,X)$ , we get

$$0 \to (Y, X) \to (U, X) \oplus (X, X) \to (U, X),$$

thus  $|(Y,X)| \ge |(X,X)|$ . Altogether, we have

$$|(X,X)| \le |(Y,X)| \le |(Y,Y)|.$$

This yields the first assertion.

If |(Y,X)| = |(Y,Y)|, then it follows that (Y,g) is surjective, thus  $1_Y$  can be lifted: there is a map  $f: Y \to U \oplus X$  with  $gf = 1_Y$ , that means: g splits. But if g splits, then  $U \oplus X$  is isomorphic to  $U \oplus Y$ , and thus X and Y are isomorphic. This (and the dual) yield the second assertion.

**Example 1.** Let A be a submodule of B. Then B degenerates to  $A \oplus B/A$  with Riedtmann-Zwara sequence

$$0 \to A \xrightarrow{\begin{bmatrix} u \\ 0 \end{bmatrix}} B \oplus A \xrightarrow{p \oplus 1_A} B/A \oplus A,$$

where  $u: A \to B$  is the inclusion map,  $p: B \to B/A$  the canonical projection.

**Example 2.** Consider the algebra with an arrow  $1 \to 2$  and a loop  $\alpha: 2 \to 2$  with  $\alpha^2 = 0$ . There are two indecomposable modules P(1) and M with composion factors 1, 2, 2, with top  $M = 1 \oplus 2$ , and M being a degeneration of P(1). There is a corresponding Riedtmann-Zwara sequence

$$0 \to P(2) \to P(1) \oplus P(2) \to M \to 0.$$

Thus M is a degeneration of P(1). Note that both P(1) and M are indecomposable.

**Further reference.** For the construction and the properties of the tower of a pair of maps  $w, v: U_0 \to U_1$  with w being a monomorphism, see Ringel: Degenerations of modules (in preparation). In particular, such a pair w, v gives rise to a Prüfer module  $W[\infty]$ , where W is the cokernel of w.