Zwara's Degeneration Theory.

Reference: G. Zwara: A degeneration-like order for modules. Arch. Math. 71 (1998), 437444.

Definition: Call Y a degeneration of X provided there is an exact sequence of the form $0 \rightarrow U \rightarrow X \oplus U \rightarrow Y \rightarrow 0$ (such a sequence should be called a Riedtmann-Zwara sequence). The map $U \rightarrow U$ is called a corresponding steering map.

Some preliminary definitions and results. A commutative square

is said to be exact provided it is both a pushout and a pullback, thus if and only if the sequence

$$
0 \rightarrow X \xrightarrow{\left[\begin{array}{l}
f \\
g
\end{array}\right]} Y_{1} \oplus Y_{2} \xrightarrow{\left[g^{\prime}-f^{\prime}\right]} Z \rightarrow 0
$$

is exact.
(1) The composition of two exact squares

yields an exact square

(2) For any map $a: U \rightarrow V$, and any module X, the following diagram is exact:

(3) Let

be exact. Then f^{\prime} is split mono.
(4) Assume we have the following exact square

and b is a split monomorphism, then the sequence

$$
0 \rightarrow U \xrightarrow{\left[\begin{array}{l}
a \\
b
\end{array}\right]} V \oplus W \xrightarrow{\left[b^{\prime} a^{\prime}\right]} X \rightarrow 0
$$

splits.
Proofs. (1) and (2): Well-known (and obvious). (3): Since $\left[\begin{array}{l}f \\ 0\end{array}\right]$ is injective, $f: X \rightarrow Y_{1}$ is injective. Let Q be the cokernel of f. We obtain the map f^{\prime} by forming the induced exact sequence of $0 \rightarrow X \xrightarrow{f} Y_{1} \rightarrow Q \rightarrow 0$, using the zero map $X \rightarrow Y_{1}$. But such an induced exact sequence splits. (4) Assume $p b=1_{U}$. Then $\left[\begin{array}{ll}0 & p\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]=1_{U}$.

Lemma. (There is always a nilpotent steering map.) If there is an exact sequence $0 \rightarrow U \rightarrow X \oplus U \rightarrow Y \rightarrow 0$, then there is an exact sequence $0 \rightarrow U^{\prime} \rightarrow$ $X \oplus U^{\prime} \rightarrow Y \rightarrow 0$ such that the map $U^{\prime} \rightarrow U^{\prime}$ is nilpotent.

Proof: We can decompose $U=U_{1} \oplus U_{2}=U_{1}^{\prime} \oplus U_{2}^{\prime}$ such that the given map $f: U \rightarrow U$ maps U_{1} into U_{1}^{\prime}, U_{2} into U_{2}^{\prime} and such that the induced maps $f_{1}: U_{1} \rightarrow U_{1}^{\prime}$ belongs to the radical of the category, whereas the induced map $f_{2}: U_{2} \rightarrow U_{2}^{\prime}$ is an isomorphism. We obtain the following pair of exact squares

(the left square is exact according to (2)). The composition of the squares is the desired exact square (note that U_{1}^{\prime} is isomorphic to U_{1}).

The relationship between degenerations and iterating self-extensions.

We say that $Y[\infty]=(Y[\infty], \psi)$ is a Prüfer module, provided ψ is a surjective, locally nilpotent endomorphism of the module $Y[\infty]$ with kernel Y. Given such a module, let $Y[n]$ be the kernel of ψ^{n}.

Theorem (Zwara). Assume Y is a degeneration of X, steered by a nilpotent map ϕ with $\phi^{t}=0$. Then there is a Prüfer module $Y[\infty]$ such that $Y[t+1] \simeq Y[t] \oplus X$.

Corollary. Assume Y is a degeneration of X and $\operatorname{Ext}^{1}(Y, Y)=0$. Then X and Y are isomorphic.

Proof of Corollary: The theorem asserts that $Y[t+1] \simeq Y[t] \oplus X$. If $\operatorname{Ext}^{1}(Y, Y)=0$, then $Y[n] \simeq Y^{n}$ for all n. Thus $Y^{t+1} \simeq Y^{t} \oplus X$, thus $Y \simeq X$.

Converse of Theorem: Assume there is a Prüfer module $Y[\infty]$ such that $Y[t+1] \simeq$ $Y[t] \oplus X$. We get the following two exact sequences

$$
\begin{aligned}
& 0 \rightarrow Y[t] \rightarrow Y[t+1] \rightarrow Y[1] \rightarrow 0 \\
& 0 \rightarrow Y[1] \rightarrow Y[t+1] \rightarrow Y[t] \rightarrow 0
\end{aligned}
$$

in the first, the map $Y[t+1] \rightarrow Y[1]$ is given by applying ψ^{t}, in the second the map $Y[t+1] \rightarrow Y[t]$ is given by applying ψ. In both sequences, we can replace $Y[t+1]$ by $Y[t] \oplus X$. Thus we obtain as first sequence a new Riedtmann-Zwara sequence, and as second sequence a dual Riedtmann-Zwara sequence:

$$
\begin{aligned}
& 0 \rightarrow Y[t] \rightarrow Y[t] \oplus X \rightarrow Y \rightarrow 0 \\
& 0 \rightarrow Y \rightarrow Y[t] \oplus X \rightarrow Y[t] \rightarrow 0
\end{aligned}
$$

note that both use the same steering module, namely $Y[t]$. Thus:
Reformulation. The module Y is a degeneration of X if and only if there is a Prüfer module $Y[\infty]$ such that $Y[t+1] \simeq Y[t] \oplus X$ for some t.

Also: The module Y is a degeneration of X if and only if there exists a module V and an exact sequence $0 \rightarrow Y \rightarrow V \oplus X \rightarrow V \rightarrow 0$ (A co-Riedtmann-Zwara sequence).

Proof of Theorem: Assume a monomorphism $w=\left[\begin{array}{l}\phi \\ g\end{array}\right]: U \rightarrow U \oplus X$ with cokernel Y and $\phi^{t}=0$ is given. Consider also the canonical embedding $v=\left[\begin{array}{l}1 \\ 0\end{array}\right]: U \rightarrow U \oplus X$ and form the towers for this pair of monomorphisms $M_{i}(w, v)$ and the quotients $R_{i}(w, v)=$ $M_{i}(w, v) / M_{0}(w, v)$. The latter modules are just the modules $Y[i]=R_{i}(m, v)$ we are looking for. As we know, there is a Prüfer module $(Y[\infty], \psi)$ with $Y[i]$ being the kernel of ψ^{i}.

We construct the maps w_{n}, v_{n} explicitly as follows:

$$
w_{n}=\left[\begin{array}{ll}
\phi & \\
g & \\
& 1_{X^{n}}
\end{array}\right]=\left[\begin{array}{ll}
w & \\
& 1_{X^{n}}
\end{array}\right]: U \oplus X^{n} \rightarrow(U \oplus X) \oplus X^{n}
$$

and

$$
v_{n}=\left[\begin{array}{c}
1_{U \oplus X_{n}} \\
0
\end{array}\right]: U \oplus X^{n} \rightarrow U \oplus X^{n} \oplus X
$$

using the recipe (2). Thus we obtain the following sequence of exact squares:

In particular, we have $M_{n}=M_{n}(w, v)=U \oplus X^{n}$.
Note that the composition $w_{n-1} \cdots w_{0}: U \rightarrow U \oplus X^{n}$ is of the form $\left[\begin{array}{c}\phi^{n} \\ g_{n}\end{array}\right]$ for some $g_{n}: U \rightarrow X^{n}$.

We also have the following sequence of exact squares:

where the vertical maps are of the form

$$
M_{n}=U \oplus X^{n} \xrightarrow{\left[h_{n} q_{n}\right]} Y[n] .
$$

The composition of these exact squares yields an exact square

Here we may insert the following observation: This sequence shows that the module $Y[n]$ is a degeneration of the module X^{n}.

Since the composition $w_{n-1} \cdots w_{0}: U \rightarrow U \oplus X^{n}$ is of the form $\left[\begin{array}{l}\phi^{n} \\ g_{n}\end{array}\right]$, and $\phi^{t}=0$, it follows that h_{t} is a split monomorphism, see (3).

Also, we can consider the following two exact squares, with $w=\left[\begin{array}{l}\phi \\ g\end{array}\right]: U \rightarrow V=$ $U \oplus X$ (the upper square is exact, according to (2)):

$$
\begin{aligned}
& U \quad \xrightarrow{w} V \\
& {\left[\begin{array}{l}
1 \\
0
\end{array}\right] \downarrow \quad \downarrow\left[\begin{array}{l}
1 \\
0
\end{array}\right]} \\
& U \oplus X^{t} \xrightarrow{\left[\begin{array}{c}
w \\
1
\end{array}\right]} V \oplus X^{t} \\
& {\left[\begin{array}{ll}
h_{t} & q_{t}
\end{array}\right] \downarrow\left\lfloor\begin{array}{ll}
h_{t+1} & q_{t+1}
\end{array}\right]} \\
& Y[t] \longrightarrow Y[t+1]
\end{aligned}
$$

The vertical composition on the left is h_{t}, thus, as we have shown, a split monomorphism. This shows that the exact sequence corresponding to the composed square splits (4): This yields

$$
U \oplus Y[t+1] \simeq Y[t] \oplus V=Y[t] \oplus U \oplus X
$$

Cancellation of U gives the desired isomorphism:

$$
Y[t+1] \simeq Y[t] \oplus X
$$

Remark to the proof. Given the Riedtmann-Zwara sequence

$$
0 \rightarrow U \xrightarrow{\left[\begin{array}{l}
\phi \\
g
\end{array}\right]} U \oplus X \rightarrow Y \rightarrow 0
$$

we have considered the following pair of monomorphisms

$$
w=\left[\begin{array}{l}
1 \\
0
\end{array}\right], w^{\prime}=\left[\begin{array}{l}
\phi \\
g
\end{array}\right]: U \rightarrow U \oplus X .
$$

The corresponding Prüfer modules are $X^{(\infty)}$ and $Y[\infty]$, respectively. And $U_{n}\left(w, w^{\prime}\right)=$ $U \oplus X^{n}$. As we know, we can assume that ϕ is nilpotent. Then all the linear combinations

$$
w+\lambda w^{\prime}=\left[\begin{array}{c}
1+\lambda \phi \\
g
\end{array}\right]
$$

with $\lambda \in k$ are also split monomorphisms (with retraction [$\eta 0$], where $\eta=(1+\lambda \phi)^{-1}$).

Transitivity of the degeneration relation.

Lemma. Assume that there are exact sequences

$$
0 \rightarrow Y \rightarrow X \oplus U \rightarrow U \rightarrow 0, \quad 0 \rightarrow Z \rightarrow Y \oplus V \rightarrow V \rightarrow 0
$$

and such that the steering map $\phi: V \rightarrow V$ is nilpotent, say $\phi^{t}=0$. Then there is an exact sequence

$$
0 \rightarrow Z \rightarrow X \oplus W \rightarrow W \rightarrow 0
$$

where W has a filtration with factors of the form U and V.
Proof. Denote by $f: Y \rightarrow V$ the map used in the second exact sequence. The first exact sequence yields the following induced exact sequence:

We compose the left square with the exact square given by the second given RiedtmannZwara sequence:

and obtain by composition and reflection an exact square of the form
(*)

Now we form the tower for the pair $v_{0}, v_{0} \phi: V \rightarrow V_{1}$. It is of the form

Since $\phi^{t}=0$, we know that the inclusion $v_{t}: V_{t} \rightarrow V_{t+1}$ splits, see the following lemma. Note that the cokernels of all the maps $v_{i}: V_{i} \rightarrow V_{i+1}$ are equal, and the cokernel of v_{0} is U. Thus we see

$$
V_{t+1}=V_{t} \oplus U
$$

Composing the exact square $(*)$ with the all the squares $(* *)$, we obtain an exact sequence

$$
0 \rightarrow Z \rightarrow V_{t} \oplus X \oplus U \rightarrow V_{t+1} \rightarrow 0
$$

Thus $W=V_{t+1}=V_{t} \oplus U$ is the desired module.

Remark. We can analyse the module $W=U \oplus V_{t}$ more carefully: V_{t} has V as submodule and V_{t} / V is a t-fold iterated self-extension of U.

Lemma. Let $w_{0}: U_{0} \rightarrow U_{1}$ be a monomorphism. Let $\gamma: U_{0} \rightarrow U_{0}$ be a nilpotent endomorphism, say with $\gamma^{t}=0$.. Form the tower $U_{i}=U_{i}\left(w_{0} ; w_{0} \gamma\right)$ with $i \geq 0$ and inclusion maps $w_{i}: U_{i} \rightarrow U_{i+1}$. Then $w_{t}: U_{t} \rightarrow U_{t+1}$ splits. (If W is the cokernel of w_{0}, then the cokernel of w_{t} is also isomorphic to W, thus $U_{t+1} \simeq U_{t} \oplus W$.)

Proof: The towers is formed by the following exact squares:

Using induction, one shows that

$$
w_{n-1}^{\prime} \cdots w_{1}^{\prime} w_{0} \gamma=w_{n-1} \cdots w_{1} w_{0} \gamma^{n}
$$

The assertion is true for $n=1$ (namely $w_{0} \gamma=w_{0} \gamma$). Assume it is true for some $n \geq 1$. Then

$$
w_{n}^{\prime} w_{n-1}^{\prime} \cdots w_{1}^{\prime} w_{0} \gamma=w_{n}^{\prime} w_{n-1} \cdots w_{1} w_{0} \gamma^{n}=w_{n} w_{n-1} \cdots w_{1} w_{0} \gamma \cdot \gamma^{n}
$$

(the first equality sign is by induction, the second uses the commutativity of the squares). Thus, we see that $w_{t-1}^{\prime} \cdots w_{1}^{\prime} w_{0} \gamma=0$.

But we obtain w_{n} by forming the induced exact sequence

(now we arrange the squares of the tower vertically, and not horizontally).
Since $w_{t-1}^{\prime} \cdots w_{1}^{\prime} w_{0} \gamma=0$, we see that w_{t} is a split monomorphism.
We assume now that we deal with modules over an artin algebra Λ, say a modulefinite k-algebra, where k is an artinian commutative ring. By $|-|$ we denote the length over the ground ring k.

Proposition. Assume there is an exact sequence $0 \rightarrow U \rightarrow U \oplus X \xrightarrow{g} Y \rightarrow 0$. Then

$$
|\operatorname{End}(X)| \leq|\operatorname{Hom}(Y, X)| \leq|\operatorname{End}(Y)| \quad \text { and } \quad|\operatorname{End}(X)| \leq|\operatorname{Hom}(X, Y)| \leq|\operatorname{End}(Y)|
$$

If X, Y are not isomorphic, then the sequence does not split, and we have both

$$
|\operatorname{Hom}(Y, X)|<|\operatorname{End}(Y)| \quad \text { and } \quad|\operatorname{Hom}(X, Y)|<|\operatorname{End}(Y)|,
$$

and thus also $|\operatorname{End}(X)|<|\operatorname{End}(Y)|$.
Proof (I learnt it from Smalø): Apply $\operatorname{Hom}(Y,-)$, we get

$$
0 \rightarrow(Y, U) \rightarrow(Y, U) \oplus(Y, X) \xrightarrow{(Y, g)}(Y, Y),
$$

thus $|(Y, X)| \leq|(Y, Y)|$. Also, apply $\operatorname{Hom}(-, X)$, we get

$$
0 \rightarrow(Y, X) \rightarrow(U, X) \oplus(X, X) \rightarrow(U, X)
$$

thus $|(Y, X)| \geq|(X, X)|$. Altogether, we have

$$
|(X, X)| \leq|(Y, X)| \leq|(Y, Y)|
$$

This yields the first assertion.
If $|(Y, X)|=|(Y, Y)|$, then it follows that (Y, g) is surjective, thus 1_{Y} can be lifted: there is a map $f: Y \rightarrow U \oplus X$ with $g f=1_{Y}$, that means: g splits. But if g splits, then $U \oplus X$ is isomorphic to $U \oplus Y$, and thus X and Y are isomorphic. This (and the dual) yield the second assertion.

Example 1. Let A be a submodule of B. Then B degenerates to $A \oplus B / A$ with Riedtmann-Zwara sequence

$$
0 \rightarrow A \xrightarrow{\left[\begin{array}{l}
u \\
0
\end{array}\right]} B \oplus A \xrightarrow{p \oplus 1_{A}} B / A \oplus A,
$$

where $u: A \rightarrow B$ is the inclusion map, $p: B \rightarrow B / A$ the canonical projection.
Example 2. Consider the algebra with an arrow $1 \rightarrow 2$ and a loop $\alpha: 2 \rightarrow 2$ with $\alpha^{2}=0$. There are two indecomposable modules $P(1)$ and M with composion factors $1,2,2$, with top $M=1 \oplus 2$, and M being a degeneration of $P(1)$. There is a corresponding Riedtmann-Zwara sequence

$$
0 \rightarrow P(2) \rightarrow P(1) \oplus P(2) \rightarrow M \rightarrow 0
$$

Thus M is a degeneration of $P(1)$. Note that both $P(1)$ and M are indecomposable.

Further reference. For the construction and the properties of the tower of a pair of maps $w, v: U_{0} \rightarrow U_{1}$ with w being a monomorphism, see Ringel: Degenerations of modules (in preparation). In particular, such a pair w, v gives rise to a Prüfer module $W[\infty]$, where W is the cokernel of w.

