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Minimal infinite cogeneration-closed subcategories.

Claus Michael Ringel

Let A be an artin algebra, and mod A the category of A-modules of finite length. The
subcategories to be considered will be full subcategories closed under isomorphisms, direct
sums and dirct summands, we call such subcategories additive subcategories. Let C be
an additive subcategory. We say that C is finite provided it contains only finitely many
isomorphism classes of indecomposable modules, otherwise C is said to be infinite. We say
that C is minimal infinite provided C is infinite, but any proper additive subcategory D C C
is finite. Finally, C is cogeneration-closed, provided it is also closed under submodules.
Given a class X of modules (or of isomorphism classes of modules), we denote by add X
the smallest additive subcategory containing X'

Theorem. Let C be an infinite cogeneration-closed subcategory of mod A. Then C
contains a minimal infinite cogeneration-closed subcategory C’.

Proof. We denote by N = N; the natural numbers starting with 1. Given a Gabriel-
Roiter measure I, let C(I) be the set of isomorphism classes of indecomposable objects in
C with Gabriel-Roiter measure I. An obvious adaption of one of the main results of [R1]
asserts:

There is an infinite sequence of Gabriel-Roiter measures Iy < Iy < -+ such that C(I)
is non-empty for any t € N and such that for any J with C(J) # 0, either J = I; for some
t orelse J > I; for allt. Moreover, all the sets C(I;) are finite. (Note that the sequence of
measures I; depends on C, thus one should write I¢ = I;; the papers [R1,R2] were dealing
only with the case C = mod A, but the proofs carry over to the more general case of dealing
with a cogeneration-closed subcategory C).

Since add | J,cy C(I¢) is cogeneration-closed, we can assume that C = addJ,cy C(1¢).
In order to construct C’, we will construct a sequence of subcategories

C=C2C2CD---

with the following properties:
(a) Any subcategory C; is infinite and cogeneration-closed,

(c) If D C C; is infinite and cogeneration-closed, then

D(It> == Ct(It> for t S 1.



We start with Cy = C (the ¢ in conditions (b) and (c) satisfies ¢ > 1, thus nothing has
to be verified). Assume, we have constructed C; for some i > 0, satisfying the conditions
(a), and the conditions (b), (c) for all pairs (i,t) with ¢ < i. We are going to construct
Ci+1.

Call a subset X of C;(I;+1) good, provided there is a subcategory Dy of C; which is
infinite and cogeneration-closed and such that Dy ([;+1) = X. For example C;(I;41) itself
is good (with Dy = C;). Since C;([;11) is a finite set, we can choose a minimal good
subset X/ C X. For X’, there is an infinite and cogeneration-closed subcategory Dy of
C; such that Dy (I[;41) = X’. (Note that in general neither X’ nor Dys will be uniquely
determined: usually, there may be several possible choices. Also note that X’ may be
empty.) Let C;11 = Dys. By assumption, C;4; is infinite and cogeneration-closed, thus (a)
is satisfied. In order to show (b) for all pairs (i + 1,¢) with ¢ < i + 1, we first consider
some ¢t < i. We can apply (c) for D = C;y1 C C; and see that D(I;) = C¢(I;), as required.
But for t = i + 1, nothing has to be shown. Finally, let us show (c). Thus let D C C; 4
be an infinite cogeneration-closed subcategory. Since D C C;, we know by induction that
D(Iy) = Ci(1;) for t < i. It remains to show that D(I;41) = Cit1(Li41). Since D C Ciyq,
we have D(I;11) C Cij+1(L;41). But if this would be a proper inclusion, then X = D(l;11)
would be a good subset of C;(I;41) which is properly contained in C;11(Z;+1) = D+ (Li11),
a contradiction to the minimality of X’. This completes the inductive construction of the
various C;.

Now let
[ .
C'= | |Z,GN Ci.

Of course, C’ is cogeneration-closed. Also, we see immediately
(b/) C/(It) = Ct(It> for all t,

since C'(I;) = ;>4 Ci(Iy) = C¢(1;), according to (b).

First, we show that C’ is infinite. Of course, C'(I1) # 0, since I; = {1} and a good
subset of Cy(I7) has to contain at least one simple module. Assume that C’(Is) # () for some
s, we want to see that there is t > s with C'(I;) # (). For every Gabriel-Roiter measure I,
let n(I) be the minimal number n with I C [1,n], thus n(I) is the length of the modules in
C(I). Let n(s) be the maximum of n(I;) with j < s, thus n(s) is the maximal length of the
modules in (J;.,C(I;). Let s’ be a natural number such that n(I;) > n(s)pg for all j > &'
(such a number exists, since the modules in I; with j large, have large length); here p is
the maximal length of an indecomposable projective module, ¢ that of an indecomposable
injective module.

We claim that C'(I;) # 0 for some j with s < j < s’. Assume for the contrary
that C'(I;) = 0 for all s < j < s’. We consider Cy . Since Cy is infinite, there is some
t > s with Cy (I;) # 0, and we choose ¢t minimal. Now for s < j < s’, we know that
Cs (I;) = Cj(I;) = C'(I;) = 0, according to (b) and (b"). This shows that ¢t > s’. Let Y be
an indecomposable module with isomorphism class in Cy (I;). Let X be a Gabriel-Roiter
submodule of Y. Then X belongs to Cy(I;) with j < ¢t. If j < s, then the length of X
is bounded by n(s), and therefore Y is bounded by n(s)pg (see [R2], 3.1 Corollary), in
contrast to the fact that n(I;) > n(s)pg. Thus j > s. Buth then s < j < t and Cy (I;) # 0
— this contradicts the minimality of ¢. This final contradiction shows that C’ is infinite.
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Now, let D be an infinite cogeneration-closed subcategory of C’. We show that D[I;] =
C'[I;] for all t. Consider some fixed ¢ and choose an i with i > ¢. Since C’ C C;, we see that
D[t] = C¢]t] the given ¢, according to (b) for C;. But according to (b’), we also know that
C'[t] = C¢[t]. This completes the proof.

Example 1. Any tame concealed algebras has a unique minimal infinite cogeneration-
closed subcategory C, namely the subcategory of all preprojective modules.

Example 2. Let I be a twosided ideal in A. The category of A-modules annihilated by
I is obviously cogeneration-closed and of course equivalent (or even equal) to the category
of all A/I-modules. If A/I is representation-finite, then mod A/I will contain a minimal
infinite cogeneration-closed subcategory. Consider for example the generalized Kronecker-
algebra K (3) with three arrows «, 3,v. The one-dimensional ideals of K(3) correspond
bijectively to the elements of the projective plane P2, say a = (ag : a; : as) € P? yields the
ideal I, = (apa+a18+az7). Let C, be additive subcategory of mod K (3) of all preprojecti-
ve K (3)/I,-modules. Then these are pairwise different minimal infinite cogeneration-closed
subcategories (the intersection of any two of these subcategories is the subcategory of se-
misimple projective modules). In particular, if the base field is finite, there are infinitely
many subcategories in mod K (3) which are minimal infinite and cogeneration-closed. (No-
te that the preprojective K (3)-modules provide a further subcategory which is minimal
infinite and cogeneration-closed.)

Example 3. There can be several different take-off categories containing all the inde-
composable projective modules: Take the take-off part, as well as the preprojective com-
ponent of the algebra with 3 vertices a, b, ¢, two arrows b — a, and two arrows ¢ — b.
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