The orthogonality relations

Let \mathbb{k} be an algebraically closed field of characteristic zero, and let G be a finite group. The ArtinWedderburn structure theorem implies that we can write $\mathbb{k}_{k}=\bigoplus_{i=1}^{r} \mathbb{k}^{k} G e_{i}$ where the $e_{i} \in Z(\mathbb{k} G)$ are the central primitive idempotents. The algebra $\mathbb{k} G e_{i}$ is simple, and we denote its simple module by V_{i}. Also, let $\chi_{i}:=\chi_{V_{i}}$ be the character of G afforded by V_{i}. Recall that $\chi_{i}(g)=\operatorname{Tr}_{V_{i}}(g)$. If $W \cong \bigoplus_{j=1}^{m} W_{j}$ is a $\mathbb{k} G$-module, the character afforded by W is $\chi_{W}=\chi_{1}+\cdots+\chi_{m}$.

Definition 1

$\varrho:=\chi_{\mathrm{kk} G}$ is called the regular character of G.

Proposition 2

(i) $\varrho(g)=|G| \delta_{g 1}$ for all $g \in G$, where δ denotes the Kronecker deltafunction.
(ii) $\varrho=\sum_{i=1}^{r} \chi_{i}(1) \chi_{i}$.

Proof: (i) Since any $g \in G$ acts on $\mathbb{k} G$ as a permutation matrix with respect to the basis of $\mathbb{k}_{k} G$ consisting of the elements of $G, \varrho(g)$ is equal to the number of fixed points of g on G.
(ii) By the Artin-Wedderburn structure theorem, $\mathbb{k} G \cong \bigoplus_{i=1}^{r} \operatorname{dim}_{\mathbb{k}}\left(V_{i}\right) V_{i}$ as $\mathbb{k} G$-module.

Theorem 3

$e_{i}=\frac{1}{|G|} \sum_{g \in G} \chi_{i}(1) \chi_{i}\left(g^{-1}\right) g$ for all $1 \leq i \leq r$.
Proof: Write $e_{i}=\sum_{g \in G} a_{g} g$. Then $|G| a_{g}=\varrho\left(e_{i} g^{-1}\right)=\sum_{j=1}^{r} \chi_{j}(1) \chi_{j}\left(e_{i} g^{-1}\right)$ by Proposition 2, But e_{i} acts as $\delta_{i j} \operatorname{id}_{V_{j}}$ on V_{j}, hence $\chi_{j}\left(e_{i} g^{-1}\right)=\delta_{i j} \chi_{i}\left(g^{-1}\right)$. Thus $a_{g}=\frac{1}{|G|} \chi_{i}(1) \chi_{i}\left(g^{-1}\right)$.

Theorem 4 (First orthogonality relation)

$\frac{1}{|G|} \sum_{g \in G} \chi_{i}(g) \chi_{j}\left(g^{-1}\right)=\delta_{i j}$ for all $1 \leq i, j \leq r$.
Proof: Applying the above formula for the idempotents to $\delta_{i j} e_{i}=e_{i} e_{j}$, one gets

$$
\begin{aligned}
\frac{\delta_{i j}}{|G|} \sum_{g \in G} \chi_{i}(1) \chi_{i}\left(g^{-1}\right) & =\frac{1}{|G|^{2}} \sum_{g, h \in G} \chi_{i}(1) \chi_{i}\left(g^{-1}\right) \chi_{j}(1) \chi_{j}\left(h^{-1}\right) g h \\
& =\frac{1}{|G|^{2}} \sum_{g, h \in G} \chi_{i}(1) \chi_{i}\left((g h)^{-1}\right) \chi_{j}(1) \chi_{j}(h) g
\end{aligned}
$$

A comparison of the coefficients of $g=1$ yields

$$
\frac{1}{|G|} \sum_{h \in G} \chi_{i}\left(h^{-1}\right) \chi_{j}(h)=\delta_{i j} \frac{\chi_{i}(1)}{\chi_{j}(1)}=\delta_{i j}
$$

as desired.

Definition 5

The \mathbb{k}-vector space $\mathcal{C}(G):=\left\{f: G \rightarrow \mathbb{k} \mid f\left(x^{-1} g x\right)=f(g) \forall x, g \in G\right\}$ is called the space of class functions of G. For $f, f^{\prime} \in \mathcal{C}(G)$, one sets $\left(f, f^{\prime}\right):=\frac{1}{|G|} \sum_{g \in G} f(g) f^{\prime}\left(g^{-1}\right)$. This defines a a symmetric bilinear form (\cdot, \cdot) on $\mathcal{C}(G)$.

Oviously, any character is a class function, and $\operatorname{dim}_{\mathrm{l}} \mathcal{C}(G)=r$, which is the number of conjugacy classes of G, as seen in the lecture on the Artin-Wedderburn structure theorem.

Corollary 6

The irreducible characters of G, namely $\chi_{1}, \ldots, \chi_{r}$, form an orthonormal basis of $\mathcal{C}(G)$ (with respect to $(\cdot, \cdot))$.

Corollary 7

Let V be a finite dimensional $\mathbb{k} G$-module. Then $V \cong \bigoplus_{i=1}^{r}\left(\chi_{V}, \chi_{i}\right) V_{i}$.

Definition 8

Let g_{1}, \ldots, g_{r} be representatives of the conjugacy classes of G. The matrix

$$
X:=\left(\chi_{i}\left(g_{j}\right)\right)_{1 \leq i, j \leq r} \in \mathbb{k}^{r \times r}
$$

is called the character table of G. Of course, X is only defined up to permutation of rows and columns.

Theorem 9 (Second orthogonality relation)

$$
\sum_{i=1}^{r} \chi_{i}(g) \chi_{i}\left(h^{-1}\right)= \begin{cases}0 & g, h \text { not conjugate } \\ \left|C_{G}(g)\right| & g \text { conjugate to } h\end{cases}
$$

for all $g, h \in G$.
Proof: Let $X^{\dagger}:=\left(\chi_{j}\left(g_{i}^{-1}\right)\right)_{1 \leq i, j \leq r}$. The first orthogonality relation asserts

$$
\delta_{i j}=\frac{1}{|G|} \sum_{g \in G} \chi_{i}(g) \chi_{j}\left(g^{-1}\right)=\frac{1}{|G|} \sum_{m=1}^{r} \frac{|G|}{\left|C_{G}\left(g_{m}\right)\right|} \chi_{i}\left(g_{m}\right) \chi_{j}\left(g_{m}^{-1}\right)
$$

This can be written as a matrix identity as follows.

$$
E_{r}=X \operatorname{diag}\left(\frac{1}{\left|C_{G}\left(g_{1}\right)\right|}, \ldots, \frac{1}{\left|C_{G}\left(g_{r}\right)\right|}\right) X^{\dagger}=\operatorname{diag}\left(\frac{1}{\left|C_{G}\left(g_{1}\right)\right|}, \ldots, \frac{1}{\left|C_{G}\left(g_{r}\right)\right|}\right) X^{\dagger} X
$$

Since $\left(X^{\dagger} X\right)_{i, j}=\sum_{m=1}^{r} \chi_{m}\left(g_{i}^{-1}\right) \chi_{m}\left(g_{j}\right)$, the theorem is proved.
Although the second orthogonality relation is an easy consequence of the first, it is quite useful in the construction of character tables.

Suppose $\mathbb{k} \subseteq \mathbb{C}$. Then $\chi\left(g^{-1}\right)=\overline{\chi(g)}$, since any matrix of finite order is diagonalizable with roots of unity as eigenvalues. In this situation, (\cdot, \cdot) is a Hermitian form on $\mathcal{C}(G)$. The first orthogonality relation asserts that the rows of the character table of G are orthonormal with respect to the standard Hermitian form on \mathbb{k}^{r}, if the $i^{\text {th }}$ column gets multiplied with $\frac{1}{\sqrt{\left|C_{G}\left(g_{i}\right)\right|}}$. The second orthogonality relation states that the columns of the character table are orthogonal.

Example: Let G be non-Abelian group of order eight. Since the centre of G is non-trivial and $G / Z(G)$ is not cyclic, $Z(G)=\langle z\rangle$ has order two and $G / Z(G)=\langle a Z(G), b Z(G)\rangle$ is the Klein four group. Hence

$$
\{1\}\{z\}\{a, a z\}\{b, b z\}\{a b, a b z\}
$$

are the conjugacy classes of G. The characters of the Klein four group yield this

	1	z	a	b	$a b$
χ_{1}	1	1	1	1	1
χ_{2}	1	1	-1	-1	1
χ_{3}	1	1	1	-1	-1
χ_{4}	1	1	-1	1	-1

part of the character table of G. Since there five conjugacy classes, there is one more irreducible character χ_{5} of G. The values of χ_{5} are easily computed using the second orthogonality relation. The complete character table of G is:

	1	z	a	b	$a b$
χ_{1}	1	1	1	1	1
χ_{2}	1	1	-1	-1	1
χ_{3}	1	1	1	-1	-1
χ_{4}	1	1	-1	1	-1
χ_{5}	2	-2	0	0	0

It is not to hard to determine the values of χ_{5} without the orthogonality relations. Indeed, it follows from the Artin-Wedderburn structure theorem that $\chi_{5}(1)$ equals two. Since z acts as a scalar on the module affording χ_{5}, we have $\chi_{5}(z)= \pm 2$. However, if $\chi_{5}(z)=2$, the centre of G would act trivially on any $\mathbb{k}_{k} G$-module, which cannot happen (it does act non-trivially on $\mathbb{k} G$). If V and W are $\mathbb{k} G$-modules, then so is $V \otimes_{\mathbb{k}^{\prime} G} W$, where G acts via $g(v \otimes w):=(g v) \otimes(g w)$. The Character afforded by $V \otimes_{\mathrm{k}} W$ is $\chi_{V} \chi_{W}$, the product of the characters afforded by V and W, respectively. Since there is only one simple two dimenional $\mathbb{k} G$-module, $\chi_{i} \chi_{5}=\chi_{5}$ for $1 \leq i \leq 4$. Thus, the remaining values of χ_{5} are equal to zero.

REmARK: The fact that the tensor product of two $\mathbb{k} G$-modules is again a $\mathbb{k} G$-module is due to the coalgebra structure of $\mathbb{k} G$.

