
Sylvester rank functions for rings and universal
localization

William Crawley-Boevey

This is a slightly revised version of the slides for a talk in the BIREP work-
ing seminar on June 2, 2021. Further revised June 15, mainly to give proper
credit to Bergman and Dicks, and June 17, to include an argument of Hen-
ning Krause on the existence of universal localizations. My aim was to discuss
Sylvester rank functions, universal localization and Schofield’s Theorem giv-
ing a 1:1 correspondence between Sylvester rank functions on a ring R and
equivalence classes of homomorphisms from R to a simple artinian ring.

1 Sylvester rank functions

1.1 Definition

Proposition/Definition (Schofield [6, §7], Malcolmson).
Let R be a ring. A Sylvester rank function for R can be defined in two ways:

(1) A function ρ : {maps between f.g. projective left R-modules P
α−→ Q } →

R with

(1a) ρ( α 0
0 β ) = ρ(α) + ρ(β) for ( α 0

0 β ) : P0 ⊕ P ′0 → P1 ⊕ P ′1.
(1b) ρ( α 0

γ β ) ≥ ρ(α) + ρ(β).
(1c) ρ(βα) ≤ min{ρ(α), ρ(β)} for α : P0 → P1 and β : P1 → P2.
(1d) Normalized by ρ(1 : R→ R) = 1.

(2) A function ρ : {finitely presented (f.p.) left R-modules} → R satisfying

(2a) ρ(X ⊕ Y ) = ρ(X) + ρ(Y ).
(2b) If X → Y → Z → 0 is exact, then ρ(Z) ≤ ρ(Y ) ≤ ρ(X) + ρ(Z), or
(2c) Normalized by ρ(R) = 1.

A function on modules defines one on maps by ρ(α) = ρ(Q) − ρ(Cokerα)
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for α : P → Q. A function on maps defines one on modules by ρ(X) =
ρ(1Q)− ρ(α) for a presentation P

α−→ Q→ X → 0.

1.2 Remarks

(i) One can also define a Sylvester rank function by specifying it on maps
between f.g. free modules, so on rectangular matrices over R.

(ii) One can swap between right and left modules by using the duality P ∗ =
HomR(P,R) in a Sylvester map rank function.

(iii) It is automatic that ρ takes only non-negative values.

(iv) A simple artinian ring R = Mn(D) has a unique Sylvester rank function
ρR with ρR(X) = 1

n
length(X).

(v) If R → S is a ring homomorphism, any Sylvester rank function ρS on S
restricts to one on R via ρR(RX) = ρS(S ⊗R X).

(vi) Malcolmson showed that Z-valued Sylvester rank functions are in 1:1
correspondence with Cohn’s ‘prime matrix ideals’. Schofield is mainly inter-
ested in the case when ρ takes values in 1

n
Z for some n. We shall call such ρ

‘discrete’.

(vii) The name perhaps comes from the following observation.

Lemma. Let ρ : {maps between f.g. projective left R-modules} → R satisfy
conditions (1a), (1c), (1d). Then ρ satisfies (1b), so is a Sylvester rank
function, if and only if

(*) For P0
α−→ P1

β−→ P2 we have ρ(βα) ≥ ρ(α) + ρ(β)− ρ(1P1).

Compare this with Sylvester’s law of nullity, which says that nullity(BA) ≤
nullity(A) + nullity(B) for n× n matrices A,B over a field, so rank(BA) ≥
rank(A) + rank(B)− n.

Proof. If α : P → Q, then condition (1c) ensures that ρ(α) = ρ(αφ) =
ρ(ψα) for isomorphisms φ, ψ.

Suppose (1b) holds. As homomorphisms from P1⊕P0 to P1⊕P2 we have an
equality (

1P1 0
0 βα

)(
1P1 α
0 −1P0

)
=

(
0 1P1

1P2 −β

)(
β 0

1P1 α

)
.

The inner two matrices are invertible, so the outer two have the same rank,
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so

ρ(α) + ρ(β) ≤ ρ

(
β 0

1P1 α

)
= ρ

(
1P1 0
0 βα

)
= ρ(1P1) + ρ(βα),

giving (*).

Conversely suppose that (*) holds. We can factorize(
α 0
γ β

)
=

(
α 0
0 1P ′

1

)(
1P0 0
γ 1P ′

1

)(
1P0 0
0 β

)
.

Now the middle matrix is invertible, so if φ is the product of the first two
matrices, then

ρ(φ) = ρ

(
α 0
0 1P ′

1

)
,

and (*) gives

ρ

(
α 0
γ β

)
≥ ρ(φ) + ρ

(
1P0 0
0 β

)
− ρ(1P0⊕P ′

1
) = ρ(α) + ρ(β),

using (1a).

1.3 Characters

As a variation of this, by a character χ for R we mean a Z-valued unnor-
malized Sylvester module rank function, so a function satisfying (2a) and
(2b).

Theorem [5].
(i) Any character can be written uniquely as a sum of ‘irreducible’ characters
(ii) The assigment M 7→ χM with

χM(X) = lengthEndR(M) Hom(X,M)

gives a 1:1 correspondence between isoclasses of indecomposable left R-
modules M such that M has finite length as an EndR(M)-module (finite
‘endolength’) and irreducible characters for R.

Idea of proof. We explain only how, starting with a character, one can
come up with a finite endolenth module. Let D(R) be the category of covari-
ant additive functors from the category of f.p. left R-modules to abelian
groups. Recall that any coherent functor F has a projective resolution
0 → Hom(Z,−) → Hom(Y,−) → Hom(X,−) → F → 0 for some right
exact sequence X → Y → Z → 0.
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Defining χ(F) = χ(X)−χ(Y )+χ(Z) for F as above, any character χ gives a
function from the set of coherent functors to Z≥0. With a little work this can
be extended to a function from all functors to Z≥0 ∪ {∞} which is additive
on short exact sequences.

Given a character χ, one can find a functor F with 0 < χ(F) < ∞, such
that every non-zero subfunctor G of F has χ(G) = χ(F). Now D(R) is a
Grothendieck category, and the injective objects are functors of the form
M ⊗R − with M a pure-injective module. The condition on F ensures that
its injective envelope is of the form M ⊗R − with M of finite endolength.

1.4 Inner projective rank functions

Definition. By a projective rank function we mean a function

ρ : {f.g. projective left R-modules} → R≥0

satisfying ρ(P⊕Q) = ρ(P )+ρ(Q) and normalized by ρ(R) = 1. Equivalently
it is given by a group homomorphism ρ : K0(R-proj) → R with ρ([P ]) ≥ 0
for all P and ρ([R]) = 1.

The inner projective rank function given by a projective rank function ρ is
the mapping

ρ : {maps between f.g. projective left R-modules α : P → Q} → R

defined by

ρ(P
α−→ Q) = inf{ρ(P ′) : α factors as P → P ′ → Q}.

Observe that ρ(1P ) = ρ(P ), for if 1P factors through P ′ then the map P → P ′

is split mono, so ρ(P ) ≤ ρ(P ′).

Clearly conditions (1c) and (1d) hold for any inner projective rank function.

Theorem. An inner projective rank function is a Sylvester rank function if
and only if

(**) For P0
α−→ P1

β−→ P2 with βα = 0 we have ρ(α) + ρ(β) ≤ ρ(1P1).

If so, one says the projective rank function is a Sylvester projective rank
function.

Proof. If ρ is a Sylvester rank function, then (**) is a special case of the
lemma above. For the other direction, if (**) holds, then condition (1b) fol-
lows from [6, Lemma 1.14] and (1a) from [6, Lemma 1.15], so ρ is a Sylvester
rank function.
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Note. (**) is always true over a hereditary (or ‘weakly semihereditary’) ring,
since Im β is a submodule of P2, so projective. Then P1 → Im β is split epi,
so there is a decomposition P1 = Ker β ⊕ P ′. Now α factors through Ker β
and β through P ′, so ρ(α) + ρ(β) ≤ ρ(1Kerβ) + ρ(1P ′) = ρ(1P1).

2 Universal localization

2.1 Inverting things

Let R be a ring and S an R-ring, so a ring equipped with a homomorphism
f : R→ S.

(i) One can ask to invert elements of a ring. If Σ is a subset of R, we say
that S inverts Σ if f(a) is invertible in S for all a ∈ Σ.

(ii) More generally, one can ask to invert matrices over a ring (see Cohn [4,
§7.2]). If Σ is a set of matrices over R, we say that S inverts Σ if the matrix
f(a) := (f(aij)) is invertible over S for all a = (aij) ∈ Σ.

(iii) More generally still, one can ask to invert maps between f.g. projective
modules ([1, 3] and [6, §4]). If Σ is a set of maps α : P → Q between f.g.
projective left R-modules, we say that S inverts Σ if S⊗α : S⊗RP → S⊗RQ
is an isomorphism for all α ∈ Σ.

This last version makes sense for S any right R-module.

Perpendicular categories can arise this way. For example if

0→ P1
f−→ P0 → Y → 0

is a projective resolution of a right R-module Y with P0 and P1 finitely
generated, then S inverts f ∗ : P ∗1 → P ∗0 if and only if S ∈ Y ⊥ := {M :
Hom(Y,M) = Ext1(Y,M) = 0}.

2.2 Definition and existence

The universal localization of R with respect to Σ, if it exists, is an R-ring RΣ

which inverts Σ, and with the property that for any R-ring S which inverts

5



Σ, there is a unique θ : RΣ → S giving a commutative triangle

R RΣ

S

g

f
θ

Existence. (i) To invert elements, if Σ is a multiplicative set with the ‘left
Ore condition’ one can consider the Ore localization Σ−1R.

In general the best we can do is to consider the ring R〈a′ : a ∈ Σ〉 ob-
tained from R by adjoining indeterminates a′ for each a ∈ Σ, not neces-
sarily commuting with each other or with R, and set RΣ = R〈a′ : a ∈
Σ〉/({aa′ − 1, a′a− 1 : a ∈ Σ}).

Then a′ is an inverse for a in RΣ, and given S inverting Σ, θ exists and is
unique because we can and must have θ(a′) = f(a)−1 in S.

(ii) [4, Theorem 7.2.4]. To invert matrices, for each matrix a ∈ Σ we want
an inverse matrix a′, and so we adjoin its entries a′ij as indeterminates, and
then impose relations forcing a′ to be an inverse to a. Thus

RΣ = R〈a′ji : a = (aij) ∈ Σ〉/({aa′ − I, a′a− I : a ∈ Σ}).

Since we have insured the existence of an inverse to each a ∈ Σ, if S inverts
Σ, we obtain a map θ. Moreover θ is unique by the uniqueness of inverses.

(iii) [3, Construction 2.1]. To invert maps between projectives, for each
α : P → Q in Σ, choose idempotent endomorphisms e, f of a free module Rn

with images P,Q. Then a = αe is an endomorphism of Rn with ae = a = fa.
If a′ is an endomorphism of Rn, the following are equivalent

(1) ea′ = a′ = a′f , a′a = e and aa′ = f , and
(2) α is invertible and a′ = α−1f .

Now the equations in (1) are matrix equations, so take RΣ = R〈a′ji : α ∈
Σ〉/(relations (1)). Again, the fact that a′ is uniquely determined by α gives
the uniqueness of θ.

Alternative construction of RΣ in case (iii). Schofield [6, Theorem 4.1]
considers the category R-proj of f.g. projective left R-modules as a ring with
several objects. One has a functor

R-proj
G−→ R-projΣ.

This gives a homomorphism R = EndR(R)op
g−→ EndR-projΣ(G(R))op =: RΣ.
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Given any f : R→ S which inverts Σ, the functor F = S ⊗R − factors as

R-proj R-projΣ

S-proj

G

F
Θ

for a unique Θ. This gives

R = EndR(R)op EndR-projΣ(G(R))op = RΣ

EndS-proj(F (R))op = S

g

f
θ

so the existence of θ. But uniqueness of θ is not obvious.

I am grateful to Henning Krause for the following argument for uniqueness.

Recall that for an additive category C, we write C-Mod for the category of
contravariant additive functors from C to abelian groups. Then (R-proj)-Mod
is equivalent to R-Mod, by the functors sending a functor F in (R-proj)-Mod
to F (R), and sending an R-module M to HomR(−,M).

For the uniqueness of θ, it suffices to show that g is an epimorphism of
rings, or equivalently that the restriction functor RΣ-Mod→ R-Mod is fully
faithful. Now this functor identifies with the composition

(RΣ-proj)-Mod→ (R-projΣ)-Mod→ (R-proj)-Mod.

The right hand functor is restriction via G, and it is fully faithful by the
uniqueness of inverses for elements of Σ. The left hand functor is restriction
via the functor H : (R-proj)Σ → RΣ-proj sending an object of (R-proj)Σ,
say G(P ) with P a projective R-module, to Hom(R-proj)Σ

(G(R), G(P )). Now
every object in (R-proj)Σ is a direct summand of a finite direct sum of copies
of G(R), and every object in RΣ-proj is a direct summand of a finite direct
sum of copies of RΣ. It follows that H is an equivalence ‘up to direct sum-
mands’, so the left hand functor is an equivalence. Thus the composition of
the two functors is fully faithful, as wanted.

2.3 Properties of universal localization

(a) Without the Ore condition there is no nice canonical form for elements of
RΣ. But there are weaker results, ‘Malcolmson’s criterion’ [6, Theorem 4.2]
and ‘Cramer’s rule’ [6, Theorem 4.3].
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(b) Any f.p. left RΣ-module X is induced from some f.p. left R-module, so
of the form X ∼= RΣ ⊗R Y for some f.p. module Y [6, Corollary 4.5].

(c) It follows from the definition that g : R → RΣ is an epimorphism of
rings. Thus the category of right RΣ-modules can be identified with the
full subcategory of Mod-R consisting of the modules M which invert Σ.
The category of right RΣ-modules is closed under extensions in Mod-R [6,
Theorem 4.7].

(d) The epimorphism g : R → RΣ is a ‘pseudo-flat’, meaning that for
RΣ-modules M,N , we have Ext1

R(M,N) = Ext1
RΣ

(M,N), or equivalently

TorR1 (RΣ, RΣ) = 0 [6, Theorem 4.8]. If R is hereditary, so is RΣ.

2.4 Another approach

This is due to Schofield [7]. Recall that the category R-fpmod of f.p. left R-
modules is additive with cokernels, so finite coproducts, but is not necessarily
abelian.

A severe left* Ore set is a set σ of maps in R-fpmod satisfying
(i) σ contains all isomorphisms.
(ii) σ is closed under compositions.
(iii) If s : X → Y is in σ and f : X → Z, then the pushout s′ of s along f is
in σ,
(iv) If s : X → Y is in σ and g : Y → Z satisfies gs = 0, then Z → Coker g
is in σ.

X Y

Z W.

s

f f ′

s′

X Y Z Coker gs g nat

[(*) Schofield says ‘right’, but composes morphisms as if written on the right,
which is the opposite to the notation we use.]

Given Σ, let σ be the severe left Ore set generated by Σ. (Perhaps it is the
set of all maps X → Y such that M ⊗RX →M ⊗R Y is an isomorphism for
all right R-modules M which invert Σ.)

Theorem [S 2007, Thm 4.1]. There is an equivalenceRΣ-fpmod ∼= σ−1(R-fpmod).

The category on the right denotes an Ore localization. It might be nice to
have a direct proof of this, and then to derive other properties of universal
localization from it.
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2.5 Example

Let A,B be R-rings. Recall that there is a pushout in the category of rings

A

R A
∐

RB

B

otherwise known as a free product with amalgamation.

Let T =

(
A A⊗R B
0 B

)
.

We have a map of projective left T -modules µ : Te11 → Te22, t 7→ t ·( 0 1⊗R1
0 0 ).

Theorem [6, Theorem 4.10]. We have T{µ} ∼= M2(A
∐

RB).

Proof. A right T -module M is given by an A-module U = Me11, a B-
module V = Me22 and an B-module map U⊗AA⊗RB → V , or equivalently
an R-module map f : U → V .

Then T{µ}-modules are the same as T -modules M which invert µ, so with
the map M ⊗T Te11 → M ⊗T Te22 an isomorphism, or equivalently with f
is invertible.

Such a module is given by an A-module and a B-module with the same
underlying R-module structure, so by an A

∐
RB-module.

2.6 Localization with a Sylvester rank function

Let R be a ring with a Sylvester rank function ρ.

A map α : P → Q is said to be ρ-full if ρ(α) = ρ(P ) = ρ(Q).

Theorem [6, Theorem 7.4]. If Σ is a collection of maps between projectives
which are ρ-full, then ρ is the restriction of a Sylvester rank function on RΣ

taking values in the same subgroup of R as ρ.

We define Rρ to be the universal localization of R with respect to the set of
all ρ-full maps P → Q.

Theorem [6, Theorem 5.3]. If ρ is discrete and ρ is the inner projective rank
function given by a Sylvester projective rank function, then Rρ is a perfect
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ring.

I don’t know whether this works for arbitrary discrete Sylvester rank func-
tions. But we have the following.

Theorem [6, Theorem 7.5]. If ρ takes values in Z, then Rρ is a local ring
whose residue ring is a division ring.

3 Homomorphisms to simple artinian rings

Let R be a ring.

3.1 Epimorphisms to a division ring

Theorem (P. M. Cohn, see [6, Theorem 7.5]). There is a 1:1 correspondence
between Z-valued Sylvester rank functions for R and epimorphisms from R
to a division ring, up to isomorphism.

Sketch. Given R→ D, consider the restriction ρ of ρD.

Given ρ, consider R→ Rρ → Rρ/RadRρ.

Starting from ρ, we get R → Rρ/RadRρ, and we need that the restriction
to R of the canonical rank function on Rρ/RadRρ is ρ. Schofield says this
is clear.

Starting from R → D, we get ρ, and clearly D inverts all ρ-full maps be-
tween projectives. This induces Rρ → D. Then we need that this map
kills RadRρ. Schofield uses Cramer’s rule for this. Thus get a homomor-
phism R → Rρ/RadRρ → D. But R → D is an epimorphism, hence so is
Rρ/RadRρ → D. But this is a map of division rings, so it is an isomorphism.

Schofield gives another proof using severe left Ore sets [7, Theorem 3.3].

Here is another argument using characters. A Z-valued Sylvester rank func-
tion is the same thing as a character χ of degree 1, meaning that χ(R) = 1. It
follows that χ is irreducible, so comes from some indecomposable R-module
M of endolength 1. Thus if E = EndR(M), then M is a simple E-module,
and hence D = EndE(M)op is a division ring. Now EndR(M) = EndD(M), so
since every D-module is semisimple, the restriction functor ModD → ModR
is fully faithful. This implies that the natural map R→ D is an epimorphism.
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3.2 A key lemma

Theorem. Given a pushout diagram and compatible Sylvester rank func-
tions ρR, ρA, ρB,

A

R A
∐

RB

B

if any two of R,A,B are simple artinian, then A
∐

RB has a Sylvester rank
function ρ which is compatible with the others. If ρR, ρA, ρB take values in
a given subgroup of R, then so does ρ.

This statement actually combines two theorems. The first is [6, Theorem
7.3]. The second is [8, Theorem 3.5], which generalizes [6, Theorem 7.10],
Both are long and difficult, and unfortunately there are many misprints and
ambiguities in [8], so I have not checked the details.

Idea. Consider T =

(
A A⊗R B
0 B

)
.

Using ρA and ρB, one defines a Sylvester rank function ρT on T .

Then one needs to show that the map µ : Te11 → Te22 is ρT -full. In the
case when A,B are simple artinian, which is [6, Theorem 7.3], there is a
simplification of the argument in [2].

Then one gets a Sylvester rank function on R{µ} ∼= M2(A
∐

RB), so also on
A
∐

RB.

3.3 Schofield’s Theorem

Let R be a ring. We say that homomorphisms to simple artinian rings A,B
are equivalent if there is a commutative diagram

A

R S

B
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with S simple artinian.

Theorem [6, Theorem 7.12]. Assume that R is a K-algebra for some field
K. There is a 1:1 correspondence between discrete Sylvester rank functions
on R and equivalence classes of homomorphisms from R to a simple artinian
ring.

More generally if R is not a K-algebra, the theorem still holds provided one
only considers Sylvester rank functions for which the rank of any integer is
0 or 1, see [6, Theorem 7.14].

Sketch. Given a homomorphism R → A, the restriction of ρA is a discrete
Sylvester rank function on R. If R→ A and R→ B are equivalent, then ρA
and ρB are restrictions of ρS, and so they have the same restriction to R.

Given a discrete Sylvester rank function on R, taking values in 1
n
Z, apply

the key lemma to the pushout diagram

A

K A
∐

KMn(K) = C

Mn(K)

Now C contains n×n matrix units, so is of the form Mn(E) for some E. Then
ρC takes values in 1

n
Z, so corresponds to a Z-valued Sylvester rank function

on E. Thus by Cohn’s Theorem, there is a corresponding homomorphism
to a division ring E → D. This gives a homomorphism C → Mn(D), so a
homomorphism A→Mn(D).

If R→ A and R→ B are homomorphisms to simple artinian rings inducing
the same Sylvester rank function ρ on R, then we have a diagram

A

R A
∐

RB

B

By the key lemma, A
∐

RB has a discrete Sylvester rank function, and by
what we have just proved, it is induced by a homomorphism to a simple
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artinian ring S. Now the diagram

A

R A
∐

RB S

B

shows that R→ A and R→ B are equivalent.
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