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Abstract. Chase’s lemma provides a powerful tool for translating properties

of (co)products in abelian categories into chain conditions. This note discusses
the context in which the lemma is used, making explicit what is often neglected

in the literature because of its technical nature.

1. The context of Chase’s lemma

In this note we discuss a technical lemma due to Chase [3, 4] which provides
a relation between direct products and direct sums of modules. This lemma has
several interesting consequences. Chase used this for the study of products of
projective modules, but it was then noticed by Gruson and Jensen [9] that it also
applies to the study of Σ-pure-injective modules. Recall that a module X is Σ-
pure-injective if any coproduct of copies of X is pure-injective.

Theorem 1 (Gruson–Jensen). For a module X over a ring the following conditions
are equivalent:

(1) The module X is Σ-pure-injective.
(2) There exists a cardinal κ such that every product of copies of X is a pure

submodule of a coproduct of modules of cardinality at most κ.
(3) There exists a module Y such that every product of copies of X is a pure

submodule of a coproduct of copies of Y .

The equivalence (1) ⇔ (2) is stated in [9] and the proof is rather short; it says
(2) ⇒ (1) s’obtiennent par extension des méthodes de [3]. Further equivalent con-
ditions are formulated in [9] and also studied in independent work by Zimmermann
[18] and Zimmermann-Huisgen [19]. There are many references to this result in
the literature, but it took more than 20 years until a full proof was published
by Huisgen-Zimmermann [10, Theorem 10] in a special volume devoted to infinite
length modules [13], using Chase’s lemma.

Condition (3) is actually useful in other categorical settings where no obvious
notion of cardinality is available. Clearly, (2) and (3) are equivalent, because the
isomorphism classes of modules of cardinality bounded by κ form a set and we can
take the coproduct of a set of representatives.

Replacing elements of modules with morphisms, Chase’s lemma can be formu-
lated more generally for abelian categories, cf. Lemma 4. Then one obtains as a
consequence a characterisation of locally noetherian Grothendieck categories which
is due to Roos [16]. In particular, we see that properties of (co)products translate
into chain conditions; this seems to be the real essence of Chase’s lemma.

Theorem 2 (Roos). A locally finitely generated Grothendieck category is locally
noetherian (so has a generating set of noetherian objects) if and only if there is an
object E such that every object is a subobject of a coproduct of copies of E.

For such a cogenerating object E we have that every product of copies of E is a
subobject of a coproduct of copies of E. Also, we may assume that E is injective,
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because one may replace E with its injective envelope. Then E satisfies condition
(3) in Theorem 1, and this yields a first connection between the two theorems.

Getting back to work of Gruson and Jensen [8] one knows that for any ring Λ
the fully faithful transfer functor

T : Mod Λ −→ Add(mod(Λop),Ab), X 7→ X ⊗Λ −

identifies pure-injective Λ-modules with injective objects in the category of additive
functors mod(Λop) → Ab. Here, Mod Λ denotes the category of right Λ-modules
and mod Λ the full subcategory of finitely presented modules. In particular, a Λ-
module X is Σ-pure-injective if and only if any coproduct of copies of T (X) is
injective.

In order to explain the relevance of Chase’s lemma and the close connection
between the two theorems we adopt a more general approach, following Crawley-
Boevey [5]. We fix a locally finitely presented additive category A and have a fully
faithful functor

T : A −→ P(A)

into its purity category P(A) which is a locally finitely presented Grothendieck
category.1 The functor T preserves all (co)products and identifies pure-injective
objects in A with injective objects in P(A) [5, §3]. For example, we can take
A = Mod Λ for a ring Λ and then the functor A→ P(A) identifies with the above
functor X 7→ X ⊗Λ −.

Each object X ∈ A gives rise to a localising subcategory CX ⊆ P(A) that is
generated by all finitely presented objects C ∈ P(A) satisfying Hom(C, T (X)) = 0.
We write ProdX for the full subcategory of products of copies of X and their direct
summands.

Lemma 3. An object X ∈ A is Σ-pure-injective if and only if the localised category
P(A)/CX is locally noetherian. In this case T induces an equivalence

ProdX ∼−−→ Inj(P(A)/CX)

onto the full subcategory of injective objects in P(A)/CX .

This lemma is useful because properties of Σ-pure-injective objects (for example
essentially unique decompositions into indecomposable objects) can now be derived
from a well developed theory of injective objects in locally noetherian Grothendieck
categories [7]. For a proof we refer to [11, §9], which combines the ideas from
[5, 8, 17] with the localisation theory for Grothendieck categories [7].

The above approach towards the study of pure-injectivity works equally well for
a compactly generated triangulated category T via the restricted Yoneda functor

T −→ Add((Tc)op,Ab), X 7→ Hom(−, X)

where Tc denotes the full subcategory of compact objects [12].

2. Chase’s lemma for additive categories

In the context of modules over a ring, Chase’s lemma goes back to an argument
in the proof of Theorem 3.1 in [3], though it is not stated explicitly as a lemma. In
a subsequent paper [4] Chase formulated this as follows.

1P(A) = Lex(Fp(fpA,Ab),Ab), where fpA denotes the full subcategory of finitely presented
objects in A, Fp(C,Ab) denotes the abelian category of finitely presented functors C → Ab,
and Lex(D,Ab) denotes the category of additive functors D → Ab which send each short exact
sequence in D to a left exact sequence in Ab. The functor T maps X ∈ fpA to Hom(Hom(X,−),−)
and preserves filtered colimits.



CHASE’S LEMMA AND ITS CONTEXT 3

We continue with a version of Chase’s lemma for additive categories which seems
to be new. For a sequence of morphisms γ = (Cn → Cn+1)n∈N we denote by
γn : C0 → Cn the composite of the first n morphisms. An object C is called finitely
generated if any morphism C →

∐
i∈I Xi factors through

∐
i∈J Xi for some finite

subset J ⊆ I.

Lemma 4 (Chase). Let (Xn)n∈N and (Yi)i∈I be families of objects in an additive
category and

φ :
∏
n∈N

Xn −→
∐
i∈I

Yi

a morphism. If γ = (Cn → Cn+1)n∈N is a sequence of morphisms and C = C0

is finitely generated, then there exists m ∈ N such that for almost all j ∈ I each
composite

C
γm−−−→ Cm

θ−−→
∏
n∈N

Xn
φ−−→
∐
i∈I

Yi � Yj

with θn = 0 for n < m factors through γn : C → Cn for all n ∈ N.

It is convenient to introduce further notation. For a morphism γ : C → D and
an object X we denote by Xγ the image of the map

Hom(D,X)
−◦γ−−−−→ Hom(C,X).

Then a sequence of morphisms γ = (Cn → Cn+1)n∈N yields a descending chain

· · · ⊆ Xγ2 ⊆ Xγ1 ⊆ Xγ0 = Hom(C0, X).

We can now rephrase the statement of the lemma as follows. There exists m ∈ N
such that

φi
(
(
∏
n≥m

Xn)γm
)
⊆
⋂
n≥0

(Yi)γn

for almost all i ∈ I, where

φi : Hom(C,X)
φ◦−−−−−→ Hom(C, Y ) −→ Hom(C, Yi).

Proof. We follow closely the proof of Theorem 1.2 in [4]. Assume the conclusion
to be false. We set X =

∏
n∈NXn and construct inductively sequences of elements

nj ∈ N, ij ∈ I, and θj ∈ Hom(C,X) with j ∈ N and satisfying

(1) nj+1 > nj ,
(2) θj ∈ (

∏
n≥nj

Xn)γnj
,

(3) φij (θj) 6∈ (Yij )γnj+1
,

(4) φij (θk) = 0 for k < j.

We proceed as follows. Set n0 = 0. Then there exists i0 ∈ I such that

φi0(Xγ0) 6⊆
⋂
n≥0

(Yi0)γn ,
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and hence we may select θ0 ∈ Xγ0 and n1 > 0 such that φi0(θ0) 6∈ (Yi0)γn1
. Thus

conditions (1)–(4) are satisfied for j = 0.
Proceeding by induction on j, assume that elements nk+1 ∈ N, ik ∈ I and

θk ∈ Hom(C,X) have been constructed for k < j such that conditions (1)–(4) are
satisfied. Using that C is finitely generated, there exists a finite subset I ′ ⊆ I such
that for i ∈ I \ I ′ we have φi(θk) = 0 for k < j. We may then select ij ∈ I \ I ′ such
that

φij
(
(
∏
n≥nj

Xn)γnj

)
6⊆
⋂
n≥0

(Yij )γn ,

because otherwise the lemma would be true. Thus there exists θj ∈ (
∏
n≥nj

Xn)γnj

and nj+1 > nj such that φij (θj) 6∈ (Yij )γnj+1
. It is then clear that the elements

nk+1 ∈ N, ik ∈ I, and θk ∈ Hom(C,X) for k ≤ j satisfy the conditions (1)–(4).
Now let θ =

∑
j∈N θj ∈ Hom(C,X), which is well-defined since the sum for

each component C → Xn is finite. For each j ∈ N we have φij (θ) = φij (θj) +
φij (

∑
k>j θk) 6= 0, since the second summand lies in (Yij )γnj+1

, whereas the first

does not. On the other hand, the morphism φθ factors through a finite sum
∐
i∈J Yi

for some J ⊆ I, since C is finitely generated. This contradiction finishes the
proof. �

We include the application from [3] about products of projective modules. Note
that the descending chain condition on principal right ideals characterises rings that
are left perfect [1].
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3. Coproducts of injective objects

A motivation for Chase’s study of products of projective modules in [3] was the
fact that coproducts of injective modules are again injective over a noetherian ring.
In fact, this property for right modules characterises right noetherian rings [14, 15].
There are similar results for Grothendieck categories, and this brings us back to
Theorem 2. Roos stated this theorem in [16], but again the proof is short: La
démonstration du théorème 1 est analogue à celle du théorème B de [6]. For this
reason it seems appropriate to include a complete proof which is based on Chase’s
lemma; it is different from that in [6], though the authors do refer to the work of
Chase [3].

Proof of Theorem 2. Let A be a Grothendieck category and fix a generator G.
When A is locally noetherian, then every injective object decomposes into a co-
product of indecomposable objects [7, IV.2]. Each indecomposable injective object
arises as injective envelope E(G/U) for some subobject U ⊆ G. The subobjects
of any object in a Grothendieck form a set. Thus E =

∐
U⊆GE(G/U) has the

property that every object of A is a subobject of a coproduct of copies of E, since
A admits injective envelopes.

To prove the converse we need to assume that the Grothendieck category is
locally finitely generated, so it has a set of finitely generated generators. Let C ∈ A

be a finitely generated object. We wish to show that C is noetherian. To this
end fix a chain of finitely generated subobjects 0 = B0 ⊆ B1 ⊆ B2 ⊆ · · · and set
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Cn = C/Bn. This yields a sequence of epimorphisms γ = (Cn � Cn+1)n∈N. For
X ∈ A we set Xγ̄n = Hom(Bn+1/Bn, X) and obtain an exact sequence

0 −→ Xγn+1
−→ Xγn −→ Xγ̄n −→ 0

provided that X is injective or a coproduct of injective objects.
Now consider a cogenerator E such that each object of A embeds into a coproduct

of copies of E. We may assume that E is injective by replacing E with its injective
envelope. Let κ = max(ℵ0, card Hom(C,E)) and choose a monomorphism

φ :
∏
n∈N

Eκ −→
∐
i∈I

E.

For each m ∈ N we apply Hom(Cm,−) and obtain a monomorphism

φm :
∏
n∈N

(Eγm)κ −→
∐
i∈I

Eγm

since X 7→ Xγm preserves products and coproducts. Then it follows from Lemma 4
that for some m ∈ N the map φm restricts to an embedding∏

n≥m

(Eγm)κ −→ (
∐
i∈J

Eγ∞)q (
∐

finite

Eγm)

for some cofinite subset J ⊆ I, where Eγ∞ =
⋂
n≥0Eγn . Comparing this with φm+1

and passing to the quotient yields a commutative diagram with exact rows

0
∏
n≥m

(Eγm+1)κ
∏
n≥m

(Eγm)κ
∏
n≥m

(Eγ̄m)κ 0

0 (
∐
i∈J

Eγ∞)q (
∐

finite

Eγm+1
) (

∐
i∈J

Eγ∞)q (
∐

finite

Eγm)
∐

finite

Eγ̄m 0

where we use the fact that E is injective. The vertical map on the right is a
monomorphism because it is a restriction of Hom(Bm+1/Bm, φ). From the choice
of κ it follows that Eγ̄m = 0, cf. Lemma 5 below. Thus Cm = Cm+1 since E
cogenerates A. We conclude that C is noetherian. �

Lemma 5. Let A be an abelian group with α = cardA and let κ ≥ max(ℵ0, α). If
there is a monomorphism Aκ → An for some n ∈ N, then A = 0.

Proof. Suppose A 6= 0. Then we have

card(Aκ) = ακ ≥ 2κ > κ = κn ≥ αn = card(An).

This contradicts the fact that there is an injective map Aκ → An. �

Remark 6. The paper of Roos [16] formulates Theorem 2 for Grothendieck cate-
gories satisfying Grothendieck’s condition (AB6).

We end this note with some further references. Huisgen-Zimmermann provides in
[10] a detailed survey about pure-injective modules, emphasising the role of Chase’s
lemma. For a more recent treatment of Chase’s lemma and its generalisations we
refer to work of Bergman [2].
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