SELF-INJECTIVE ALGEBRAS: THE NAKAYAMA PERMUTATION

ROLF FARNSTEINER

Let A be a finite dimensional algebra, defined over a field k. The category of finite dimensional
left A-modules and the set of isoclasses of simple A modules will be denoted by mod A and S(A),
respectively. We will occasionally identify S(A) with a complete set of its representatives. Given a
simple A-module S, we consider its projective cover P(S) and its injective envelope E(S). Recall
that Top(P(S)) = S and Soc(E(S)) = S. Moreover, for every projective (injective) indecomposable
A-module @ there exists exactly one S € S(A) with Q@ = P(S) (Q = E(S)) (cf. [1, (1.4),(I1.4)]).

What can be said about the structure of Soc(P(S)) (or Top(E(S)))? Let us consider simple
examples.

Examples. (1) Let A = k[1 — 2]. Setting P; := P(S;), we obtain Soc(Py) = Sy = Soc(Ps).
(2) If A = k[1 < 2 — 3], then

Soc(P) =51 ; Soc(Py) =51®S3 ; Soc(Ps) = Ps.

In general, one can thus not hope for a fixed pattern. We are going to introduce a class of algebras
where such a pattern exists and show that this class is in fact determined by the presence of a
correspondence between tops and socles of the principal indecomposable modules P(.S). These so-
called quasi-Frobenius algebras were introduced and studied by Nakayama [3, 4], whose work was
inspired by results of Brauer and Nesbitt [2]. Nowadays, the following notion is commonly used.

Definition. The algebra A is self-injective if A € mod A is injective.
The principal result of this lecture was proved by Nakayama in the context of basic algebras.

Theorem. The following statements are equivalent:
(1) The algebra A is self-injective.
(2) The rule [S] — [Soc(P(S))] defines a permutation v : S(A) — S(A).

The permutation v is referred to as the Nakayama permutation of the self-injective algebra A.

Given M € mod A, its dual M* := Homy (M, k) has the structure of a right A-module. Thus,
M — M* is a duality between the categories mod A and mod A°P, where A°P denotes the opposite
algebra of A. In particular, 7* takes projectives to injectives and vice versa.

Lemma 1. Let A be self-injective.
(1) A A-module M is projective if and only if it is injective.
(2) Soc(P(S)) is simple for every S € S(A).
(3) P(S) = E(Soc(P(S)) for every S € S(A).
(4) Let S, T be simple A-modules. If Soc(P(S)) = Soc(P(T)), then S = T.
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Proof. If M is projective, then M is a direct summand of a free module A™. Thus, M is, as a direct
summand of an injective module, injective.

It follows that {[P(S)] ; [S] € S(A)} is a set of isoclasses of injective indecomposable A modules
of cardinality |S(A)|. It thus coincides with the set of isoclasses of indecomposable injectives, and
there exists a permutation v : S(A) — S(A) such that

P(S)= E(w(S)) ¥ [S] e S(A).

In particular, we have:

e Every indecomposable injective module is projective, so that (1) follows.
e [Soc(P(9))] = [Soc(E(r(S)))] = [v(5)] V¥ [S] € S(A). Thus, we obtain (2)-(4).

Remarks. (a) Owing to (1), the class of self-injective algebras is stable under Morita equivalence.
(b) Since the right module A € mod A°P is projective, its dual is injective, hence projective, so
that Ap is injective. In other words, the algebra A°P is self-injective.

By general theory, the principal indecomposable A modules are of the form
P = Ae,
where e € A is a primitive idempotent. If M € mod A, then
Homp(P,M) — eM ; f+— f(e)

is an isomorphism of vector spaces, which is right A-linear in case M is a (A, A)-bimodule.

The Nakayama permutation is a combinatorial tool that does not provide any information con-
cerning the endomorphism rings of S and v(S) (these are actually isomorphic). For algebras over
algebraically closed fields, this is of course not a problem. However, a better understanding of v
necessitates a module theoretic (functorial) description.

Definition. Let A be a k-algebra. The functor

e modA — mod A
' M —  Homp (M, A)*

is called the Nakayama functor of A.

The above observations yield
N(Ae) 2 (eA)",

so that N sends indecomposable projectives to indecomposable injectives. (However, it does in
general not send indecomposables to indecomposables.)

Lemma 2. Let A be a k-algebra that affords a Nakayama permutation v : S(A) — S(A). Then
the following statements hold:

(1) N(P(S)) X E(S) VSeSA).

(2) N(S)=v=I(S) VSeSA).
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Proof. (1) Let S be a simple A-module. Pick a primitive idempotent eg € A with P(S) = Aeg.
Since

Hompop (egA, S*) = (S*eg) = (e5S5)* =2 Homp (P(S),S)* # (0),
it follows that the principal indecomposable right A-module egA has top S*. As the duality 7*
maps tops to socles, we obtain

S = Top(esA)* = Soc((egA)*) = Soc(N (Aeg)) = Soc(N(P(S))),

so that the indecomposable injective A-module N'(P(S)) is isomorphic to E(S).
(2) Let S,T be simple A-modules, eg, ep the corresponding primitive idempotents. Given any
A-module M, we have

dimg Homp (P(T), M) = [M : T| dimy End, (7)),
where [M : T] denotes the multiplicity of 7" in M. From the k- vector space isomorphisms
Homp (P(T),N(S)) = erN(S) = erHomy(S,A)* = (Homy (S, A)er)”
=~ Homy (S, Aer)* = Homy (S, v(T))*
{ Enda(S) if T=v~1(9)

(0) otherwise ’

1

we see that v~ 1(S) is the only composition factor of A(S). By the same token, we have
N(S) : v™1(S)] dimy, Enda (v 1(S)) = dimy, Homp (P(r~1(S)), N(S)) = dimy, End, (S).
By applying this formula successively to the modules v~%(S), we obtain, observing v~"(S) = S for
some n € N, a natural number m € N such that
dimy Endy (S) = m[N(S) : v~ 1(S)] dimy, End, (S).
Thus, [N(S) : v71(9)] =1, and N(S) =2 v=1(8S). O

Proof of the Theorem. In view of Lemma 1, it suffices to verify (2) = (1). Let ¢(M) denote the
length of the A-module M. The Nakayama functor is right exact and Lemma 2 ensures that it
takes simples to simples. Induction on ¢(M) then implies

ON(M)) <l(M) V M emodA.
Lemma 2 now yields
UE(S)) <L(P(S)) VS eS(A).
Since Soc(P(S)) = v(S), we have an embedding vg : P(S) — E(v(5)). Iteration gives rise to a

chain

UE(S)) < UP(S)) < UEW(S))) < UP@(S)) < UBW(S)) < - < UB(S)),
so that £(P(S)) = {(E(v(S5))). As a result, tg is bijective, showing that P( ) is injective. This
implies the self-injectivity of A. O
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