SELF-INJECTIVE ALGEBRAS: EXAMPLES AND MORITA EQUIVALENCE

ROLF FARNSTEINER

Let A be a finite dimensional algebra, defined over a field k. The category of finite dimensional
left A-modules and the set of isoclasses of simple A modules will be denoted by mod A and S(A),
respectively. Given a simple A-module S, we let P(S) be its projective cover.

With our previous lectures in hand, it is fairly easy to construct examples of classes of self-
injective algebras:

Examples. (1) The initial example of a Frobenius algebras was the group algebra of a finite group.
Writing A := kG, we consider the linear form 7 : kG — k given by

1 g=e
ﬂ(g).—{o gte

Ifz =3 cqagg belongs to ker m\ {0}, then we have ag, # 0 for some go € G, whence m(gp ') # 0.
Accordingly, ker m does not contain any non-zero left ideals. Moreover, we have

m(gh) = w(hg) V g,h€G,

so that the corresponding non-degenerate associative form (, ), is symmetric.
(2) In contrast to self-injective algebras, the class of Frobenius algebras is not stable under Morita
equivalence. Let

A = K[A]/k[A1] )

be the bound quiver algebra of the quiver A, with cyclic orientation, and with paths of length > 2
being zero. Then A is a Frobenius algebra with Nakayama permutation v(i) = ¢+ 1 mod(2) (cf.
[3, Theorem 3]).

Being Morita equivalent to A, the algebra I' := Endj (2P, @ P,)°P is self-injective. Since the
dimensions of the simple I'-modules S; and S, are 2 and 1, respectively, we have 1 = dimy v(S7) #
dimy, S1. Consequently, [3, Theorem 3] implies that I' is not a Frobenius algebra.

(3) If A is a basic Frobenius algebra, then each simple A-module occurs in Soc(A) with multiplicity
one (cf. [2, Thm.]), so that

Soc(A) = @ S.
SeS(A)
Let m : A — k be a linear form such that 7|g # 0 for each constituent of Soc(A). If J C A is
a non-zero left ideal, then Soc(J) # (0), so that J contains at least one constituent of the above
isotypic decomposition. As a result, J ¢ kerm, and m endows A with the structure of a Frobenius
algebra (cf. [3, Lemma 1]).

In practice, it is often difficult to determine Soc(A). However, if A is given as a bound quiver
algebra k[Q]/I, then we obtain an explicit definition of 7. Let @) be the double of the quiver Ay,
with arrows «; :i+— i+ 1and 3; :i— i — 1 for i € Z/(n). The relations are

I = ({ai—10i — Big10u, cigras, Bi1fi s i € Z/(n)}).
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Letting k[Q](3) be the vector space generated by all paths of length > 3, we define a linear map
w: k[Q] — k via
wle) =0 =w(o) =w(B), wlai-168i) =1=w(fir104),
and
w(aipia;) =0 =w(Bi-18:), w(k[Q]s)) = (0).
Then w induces a linear map = : k[Q]/I — k that endows k[Q]/I with the structure of a Frobenius
algebra.

Definition. The k-algebra A is symmetric if it possesses a non-degenerate, symmetric, associative
form. We say that A is weakly symmetric if Soc(P(S)) = S for every simple A-module S.

Remarks. (i) If A is symmetric, then its Nakyama functor is the identity, so that A is weakly
symmetric (cf. [3]). Example (1) shows that group algebras of finite groups are symmetric. This
fact plays an important role in the classification of tame blocks of group algebras [1].

(ii) The class of weakly symmetric algebras is stable under Morita equivalence.

Example. (4) Let ¢ € k\ {0} and consider

Ag = k(z,9)/({2%, 9%, yx — qzy}).
The algebra is local with Soc(Ay) = kzy. In view of Example (3), the linear forms 7 : A — k
giving A, the structure of a Frobenius algebra satisfy m(xy) # 0. If the corresponding bilinear form
(, )x is symmetric, then

qm(zy) = w(qry) = m(yz) = w(zy),
so that ¢ = 1. Thus, A, is weakly symmetric, but usually not symmetric. A Nakayama automor-
phism p4 : Ay — A4 is given by
pq(z) = gz and pg(y) = 'y,
so that p, usually has infinite order.

Proposition. Let A be a symmetric algebra.
(1) For any idempotent e € A, the algebra eAe is symmetric.
(2) IfT is Morita equivalent to A, then T is symmetric.

Proof. (1) Let (, ) : A x A — k be a non-degenerate, symmetric, associative form. We will show
that the restriction (, ). of (, ) to (eAe) x (eAe) is non-degenerate. Given x € Rad(, )., we obtain
for every y € A:

(:1:7y) = (6(176,’((/) = (exaey) = (ey7 6:1:) = (eyeax) = (eye,x)e = O
Thus, z € Rad(, ) = (0), as desired.
(2) By general theory, there exists a projective A-module P such that
I'°P = Endj (P).

Since T" is symmetric if and only if T'°P enjoys this property, it thus suffices to show that Endx(P)
is symmetric. We may write

A"2pPop P
for a suitable n € N and some P’ € modA. Consequently, the map e : A" PPt A" s an
idempotent of Mat,,(A) such that End (P) = eMat,,(A)e.
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Let m: A — k be a linear map such that (, ), is a non-degenerate symmetric form on A. Then
0:Mat,(A) — k ; A n(tr(A))

satisfies p(AB) = o(BA) and defines a non-degenerate, symmetric, associative form on Mat,,(A).
Owing to (1), the algebra End, (P) is also symmetric. O

Examples. (5) We consider the trivial extension T'(A) := A x A* of A by its bimodule A*. By
definition, the multiplication of T'(A) is given by
(a,) - (b,9) := (ab,a.p + p.b) Y a,beA, o, € A”.
The linear form
T T(A) —k 5 (a,0) = ¢(1)

endows T'(A) with the structure of a symmetric algebra. If n € N is even, then the trivial extension
of the radical square zero algebra k[fln_l] (i.e., the orientation is chosen such that there are no
paths of length 2) is just the algebra discussed in Example (3).

(6) Let (g,[p]) be a restricted Lie algebra over a field k of characteristic p > 0. As usual, we
denote the left multiplication effected by x € g by

adz:g—9 ; y—[z,y].
Given x € g*, the reduced enveloping algebra
Uy(g) == U(g)/({a" — 2 — x(2)"1; = € g})

is a Frobenius algebra, whose Nakayama automorphism is determined by the formula
wlx) =x+tr(adx)l Vazxeg.

The verification of these assertions is more technical and can be found in [6, (V.4)].
(7) According to a theorem by Larson and Sweedler [5], every finite dimensional Hopf algebra H
is a Frobenius algebra. A Nakayama automorphism is given by the formula

p=mn"%0(¢xidy) = (¢xidy) on >
Here 1 denotes the antipode of H, ( : H — k is the right modular function of H, and the
convolution is defined via

(¢*idy)(h) = ((ha)he VheH,
(h)

where A(h) =3 ;) h1) @ hg) (see [4] for more details).
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