SELF-INJECTIVE ALGEBRAS: EXAMPLES AND MORITA EQUIVALENCE

ROLF FARNSTEINER

Let Λ be a finite dimensional algebra, defined over a field k. The category of finite dimensional left Λ -modules and the set of isoclasses of simple Λ modules will be denoted by mod Λ and $\mathcal{S}(\Lambda)$, respectively. Given a simple Λ -module S, we let P(S) be its projective cover.

With our previous lectures in hand, it is fairly easy to construct examples of classes of selfinjective algebras:

Examples. (1) The initial example of a Frobenius algebras was the group algebra of a finite group. Writing $\Lambda := kG$, we consider the linear form $\pi : kG \longrightarrow k$ given by

$$\pi(g) := \begin{cases} 1 & g = e \\ 0 & g \neq e \end{cases}$$

If $x = \sum_{g \in G} \alpha_g g$ belongs to ker $\pi \setminus \{0\}$, then we have $\alpha_{g_0} \neq 0$ for some $g_0 \in G$, whence $\pi(g_0^{-1}x) \neq 0$. Accordingly, ker π does not contain any non-zero left ideals. Moreover, we have

$$\pi(gh) = \pi(hg) \quad \forall \ g, h \in G,$$

so that the corresponding non-degenerate associative form $(,)_{\pi}$ is symmetric.

(2) In contrast to self-injective algebras, the class of Frobenius algebras is not stable under Morita equivalence. Let

$$\Lambda := k[A_1]/k[A_1]_{(2)}$$

be the bound quiver algebra of the quiver \tilde{A}_1 with cyclic orientation, and with paths of length ≥ 2 being zero. Then Λ is a Frobenius algebra with Nakayama permutation $\nu(i) = i + 1 \mod(2)$ (cf. [3, Theorem 3]).

Being Morita equivalent to Λ , the algebra $\Gamma := \operatorname{End}_{\Lambda}(2P_1 \oplus P_2)^{\operatorname{op}}$ is self-injective. Since the dimensions of the simple Γ -modules S_1 and S_2 are 2 and 1, respectively, we have $1 = \dim_k \nu(S_1) \neq \dim_k S_1$. Consequently, [3, Theorem 3] implies that Γ is not a Frobenius algebra.

(3) If Λ is a basic Frobenius algebra, then each simple Λ -module occurs in Soc(Λ) with multiplicity one (cf. [2, Thm.]), so that

$$\operatorname{Soc}(\Lambda) = \bigoplus_{S \in \mathcal{S}(\Lambda)} S.$$

Let $\pi : \Lambda \longrightarrow k$ be a linear form such that $\pi|_S \neq 0$ for each constituent of Soc(Λ). If $J \subset \Lambda$ is a non-zero left ideal, then Soc(J) \neq (0), so that J contains at least one constituent of the above isotypic decomposition. As a result, $J \not\subset \ker \pi$, and π endows Λ with the structure of a Frobenius algebra (cf. [3, Lemma 1]).

In practice, it is often difficult to determine $\operatorname{Soc}(\Lambda)$. However, if Λ is given as a bound quiver algebra k[Q]/I, then we obtain an explicit definition of π . Let Q be the double of the quiver \tilde{A}_{n-1} , with arrows $\alpha_i : i \mapsto i+1$ and $\beta_i : i \mapsto i-1$ for $i \in \mathbb{Z}/(n)$. The relations are

$$I = (\{\alpha_{i-1}\beta_i - \beta_{i+1}\alpha_i, \alpha_{i+1}\alpha_i, \beta_{i-1}\beta_i ; i \in \mathbb{Z}/(n)\}).$$

Date: November 14, 2005.

Letting $k[Q]_{(3)}$ be the vector space generated by all paths of length ≥ 3 , we define a linear map $\omega: k[Q] \longrightarrow k$ via

$$\omega(e_i) = 0 = \omega(\alpha_i) = \omega(\beta_i), \quad \omega(\alpha_{i-1}\beta_i) = 1 = \omega(\beta_{i+1}\alpha_i),$$

and

$$\omega(\alpha_{i+1}\alpha_i) = 0 = \omega(\beta_{i-1}\beta_i), \ \ \omega(k[Q]_{(3)}) = (0).$$

Then ω induces a linear map $\pi: k[Q]/I \longrightarrow k$ that endows k[Q]/I with the structure of a Frobenius algebra.

Definition. The k-algebra Λ is symmetric if it possesses a non-degenerate, symmetric, associative form. We say that Λ is weakly symmetric if $Soc(P(S)) \cong S$ for every simple Λ -module S.

Remarks. (i) If Λ is symmetric, then its Nakyama functor is the identity, so that Λ is weakly symmetric (cf. [3]). Example (1) shows that group algebras of finite groups are symmetric. This fact plays an important rôle in the classification of tame blocks of group algebras [1].

(ii) The class of weakly symmetric algebras is stable under Morita equivalence.

Example. (4) Let $q \in k \setminus \{0\}$ and consider

 $\Lambda_q := k \langle x, y \rangle / (\{x^2, y^2, yx - qxy\}).$

The algebra is local with $\operatorname{Soc}(\Lambda_q) = kxy$. In view of Example (3), the linear forms $\pi : \Lambda \longrightarrow k$ giving Λ_q the structure of a Frobenius algebra satisfy $\pi(xy) \neq 0$. If the corresponding bilinear form $(,)_{\pi}$ is symmetric, then

$$q \pi(xy) = \pi(qxy) = \pi(yx) = \pi(xy),$$

so that q = 1. Thus, Λ_q is weakly symmetric, but usually not symmetric. A Nakayama automorphism $\mu_q : \Lambda_q \longrightarrow \Lambda_q$ is given by

$$\mu_q(x) = qx$$
 and $\mu_q(y) = q^{-1}y$,

so that μ_q usually has infinite order.

Proposition. Let Λ be a symmetric algebra.

- (1) For any idempotent $e \in \Lambda$, the algebra $e\Lambda e$ is symmetric.
- (2) If Γ is Morita equivalent to Λ , then Γ is symmetric.

Proof. (1) Let $(,) : \Lambda \times \Lambda \longrightarrow k$ be a non-degenerate, symmetric, associative form. We will show that the restriction $(,)_e$ of (,) to $(e\Lambda e) \times (e\Lambda e)$ is non-degenerate. Given $x \in \text{Rad}(,)_e$, we obtain for every $y \in \Lambda$:

$$(x,y) = (exe,y) = (ex,ey) = (ey,ex) = (eye,x) = (eye,x)_e = 0.$$

Thus, $x \in \text{Rad}(,) = (0)$, as desired.

(2) By general theory, there exists a projective Λ -module P such that

$$\Gamma^{\mathrm{op}} \cong \mathrm{End}_{\Lambda}(P).$$

Since Γ is symmetric if and only if Γ^{op} enjoys this property, it thus suffices to show that $\text{End}_{\Lambda}(P)$ is symmetric. We may write

$$\Lambda^n \cong P \oplus P'$$

for a suitable $n \in \mathbb{N}$ and some $P' \in \text{mod}\Lambda$. Consequently, the map $e : \Lambda^n \xrightarrow{\text{pr}} P \xrightarrow{\iota} \Lambda^n$ is an idempotent of $\text{Mat}_n(\Lambda)$ such that $\text{End}_{\Lambda}(P) \cong e \text{Mat}_n(\Lambda)e$.

Let $\pi : \Lambda \longrightarrow k$ be a linear map such that $(,)_{\pi}$ is a non-degenerate symmetric form on Λ . Then $\varrho : \operatorname{Mat}_{n}(\Lambda) \longrightarrow k \; ; \; \Lambda \mapsto \pi(\operatorname{tr}(\Lambda))$

satisfies $\rho(AB) = \rho(BA)$ and defines a non-degenerate, symmetric, associative form on $\operatorname{Mat}_n(\Lambda)$. Owing to (1), the algebra $\operatorname{End}_{\Lambda}(P)$ is also symmetric.

Examples. (5) We consider the trivial extension $T(\Lambda) := \Lambda \ltimes \Lambda^*$ of Λ by its bimodule Λ^* . By definition, the multiplication of $T(\Lambda)$ is given by

$$(a,\varphi)\cdot(b,\psi):=(ab,a.\psi+\varphi.b)\quad\forall\ a,b\in\Lambda,\ \varphi,\psi\in\Lambda^*.$$

The linear form

$$\pi: T(\Lambda) \longrightarrow k \ ; \ (a, \varphi) \mapsto \varphi(1)$$

endows $T(\Lambda)$ with the structure of a symmetric algebra. If $n \in \mathbb{N}$ is even, then the trivial extension of the radical square zero algebra $k[\tilde{A}_{n-1}]$ (i.e., the orientation is chosen such that there are no paths of length 2) is just the algebra discussed in Example (3).

(6) Let $(\mathfrak{g}, [p])$ be a restricted Lie algebra over a field k of characteristic p > 0. As usual, we denote the left multiplication effected by $x \in \mathfrak{g}$ by

$$\operatorname{ad} x: \mathfrak{g} \longrightarrow \mathfrak{g} \;\; ; \;\; y \mapsto [x, y].$$

Given $\chi \in \mathfrak{g}^*$, the reduced enveloping algebra

$$U_{\chi}(\mathfrak{g}) := U(\mathfrak{g})/(\{x^p - x^{[p]} - \chi(x)^{p}1 ; x \in \mathfrak{g}\})$$

is a Frobenius algebra, whose Nakayama automorphism is determined by the formula

$$\mu(x) = x + \operatorname{tr}(\operatorname{ad} x) 1 \quad \forall \ x \in \mathfrak{g}$$

The verification of these assertions is more technical and can be found in [6, (V.4)].

(7) According to a theorem by Larson and Sweedler [5], every finite dimensional Hopf algebra H is a Frobenius algebra. A Nakayama automorphism is given by the formula

$$\mu = \eta^{-2} \circ (\zeta * \mathrm{id}_H) = (\zeta * \mathrm{id}_H) \circ \eta^{-2}.$$

Here η denotes the antipode of $H, \zeta : H \longrightarrow k$ is the *right modular function* of H, and the convolution is defined via

$$(\zeta * \mathrm{id}_H)(h) = \sum_{(h)} \zeta(h_{(1)})h_{(2)} \quad \forall h \in H,$$

where $\Delta(h) = \sum_{(h)} h_{(1)} \otimes h_{(2)}$ (see [4] for more details).

References

- K. Erdmann. Blocks of Tame Representation Type and Related Algebras. Lecture Notes in Mathematics 1428. Springer Verlag, 1990
- [2] R. Farnsteiner. Self-injective algebras: The Nakayama permutation. Lecture Notes, available at http://www.mathematik.uni-bielefeld.de/~sek/selected.html
- [3] _____. Self-injective algebras: Comparison with Frobenius algebras. Lecture Notes, available at http://www.mathematik.uni-bielefeld.de/~sek/selected.html
- [4] D. Fischman, S. Montgomery and H. Schneider. Frobenius extensions of subalgebras of Hopf algebras. Trans. Amer. Math. Soc. 349 (1996), 4857-4895
- [5] R. Larson and M. Sweedler. An associative orthogonal bilinear form for Hopf algebras. Amer. J. Math. 91 (1969), 75-93
- [6] H. Strade and R. Farnsteiner. Modular Lie Algebras and their Representations. Pure and Applied Mathematics 116. Marcel Dekker 1988