STABLE REPRESENTATION QUIVERS: THE RIEDTMANN STRUCTURE
THEOREM

ROLF FARNSTEINER

Given an artin algebra A, it is usually rather difficult to determine the Auslander-Reiten quiver
of A. The purpose of these lectures is to delineate an approach that has proven to provide valuable
information for classes of algebras, such as representation-finite algebras or group algebras of finite
groups.

Proceeding in two steps, we begin by investigating abstract representation quivers. Here Riedt-
mann’s Theorem reduces the problem to the consideration of trees and the so-called admissible
groups of universal covers. In the concrete situation of stable Auslander-Reiten components, func-
tions that are defined in terms of the underlying modules often allow to pin down the possible
trees.

Theorem ([6]). Let Q be a connected stable representation quiver.
(1) There exists a directed tree T and an admissible group II C Aut(Z[Tg]) such that Q =
Z[Tg)/1.
(2) The undirected tree Tgy of Tgy is determined by Q (up to isomorphism,).
(3) The group II C Aut(Z[Tg]) is unique up to conjugation.

In her paper [6], Riedtmann uses this result to obtain the tree classes TQ of the connected com-
ponents of the stable part of the AR-quiver of a representation-finite algebra A, defined over an
algebraically closed field. These turn out to be the simply-laced Dynkin diagrams.

In the sequel, we shall only consider quivers without loops and without multiple arrows. Thus, a
quiver @ = (V, A) consists of a non-empty set V' of vertices and a set A C V x V of arrows. Given
v €V, vt and v~ are the sets of successors and predecessors of v, respectively.

Definition. Let Q be a quiver. An automorphism 7 : Q — Q@ is called a translation if v= = 7(v)™
for every v € V. The pair (@, 7) is called a stable representation quiver.

Remark. The term “stable representation quiver” is a literal translation of Riedtmann’s original
definition [6]. In his book [2] Benson also uses “translation quiver”, while in [1] this notion refers
to a quiver affording a “semitranslation”.

By definition, homomorphisms of stable representation quivers “commute” with the translations.
A stable representation quiver is connected if it is not the disjoint union of two stable subquivers.
This does not necessarily imply the connectedness of the underlying quiver.

A quiver T that does not contain a subquiver of the form e < e and whose graph T is a tree, is
called a directed tree. To each directed tree (T, A) we associate a stable representation quiver Z[T:
The underlying set of vertices is V := Z x T'. For each arrow s — ¢ in T" we define arrows

(n,s) — (n,t) and (n,t) — (n+1,s) VnéeZ
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The translation is given by
T:Z[T] — Z[T] ; (n,t)— (n—1,t).

Here is the stable representation quiver Z[As], where Ay, = (N, {(n,n + 1),n € N}). The dotted
arrows represent the translation.
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The stable representation quiver Z[T] has the following universal property:

Lemma 1. Let T be a directed tree, QQ a stable representation quiver, ¢ : T — @ a morphism of
quivers. For each ng € Z there exists a unique morphism ¢ : Z[T] — @ of stable representation
quivers such that

G(ng,t) =(t) ViteT.

Proof. If ¢ exists, then we necessarily have
p(n,t) =7"""(e(t))  V (n,t) € Z[T].

Hence ¢ is uniquely determined by ¢ and ng. Direct computation shows that the above formula
does in fact define a morphism of stable representation quivers. O

Definition. Let Q = (V, A, 7) be a stable representation quiver. The graph @ with underlying set
of vertices V/(r) (the T-orbits) and edges

a—bs Jreca, yebwithe —-yory —» =z
is called the orbit graph of Q.

Since T is a translation, it suffices to require the existence of an arrow = — y.

Let T be a directed tree. Then Z[T] = T is the undirected tree associated to T. Thus, if Z[T] and
Z[T'] are isomorphic stable representation quivers, then we have an isomorphism 7 = T”. Showing
the converse requires a little more work.

Proposition 2. Let T and T’ be directed trees. If T = T', then Z[T]| = Z[T").
Proof. Let ¢ : T — T’ be an isomorphism. We consider the set
A:={(S,¢) ; S C T subtree, ¥ : S — Z[T’] morphism with pr, o1 = p|s}
and define a partial ordering via
(S,9) < (9, ¢) & S C " and Y'|g = 7).

This set is inductively ordered and Zorn’s Lemma provides a maximal element (Sp, ). Using the
fact that 7" and 7" are trees, one shows Sy = T.
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We may now apply Lemma 1 to obtain a morphism < : Z[T] — Z[T"] with

Po(0,t) = o(t) VteT.
Since pry o g = ¢ there exists a map v : 7T — Z with

do(m,t) = (m+(1),0(t) VieT
Consequently, 1&0 is bijective. O

Definition. Let Q = (V, A, 7) be a stable representation quiver.
(1) A subgroup IT C Aut(Q) is called admissible if

Myn({z}uz™)| <1 and [Ilyn({z}uz7) <1
for every xz,y € V.
(2) I II C Aut(Q) is admissible, then Q/II := (V/II, A/II, 7) with II acting diagonally on A (and
A/TT — (V/II) x (V/II), by admissibility) and 7([v]) = [7(v)] is called the quotient of @ by II.

If T is a directed tree, then any subgroup of (7) is an admissible group of Z[T].
The canonical map 7 : @ — Q/II is a morphism of stable representation quivers such that for
every x € V, the map
(%) gt szt — w(x)t
is bijective. Surjective morphisms with this property are referred to as coverings. This notion as
well as the succeeding results are inspired by topological covering spaces, cf. [5, (1.5)].

Remark. A morphism ¢ : Q — Q' satisfying (x) also induces bijections ¢ : |,- : 27 — p(x)~. If
Q' is connected, then ¢ is surjective.

The following Lemma, whose proof resembles that of Lemma 1, gives a universal property of Z[T:

Lemma 3. Let T be a directed tree, o : Z[T] — Q a morphism of stable representation quivers,
0 :Q — Q a covering. For every vertex (ng,to) of Z[T] and every vertex g, of Q" with ¢(q) =
o(no,to), there exists exactly one morphism ) : Z[T] — Q" with ¢ oy = o and Y (ng,to) = qj-
O

QI

v <p

Z[T] —Z—

Proof of Riedtmann’s Theorem. We outline the proof of (1).
(i) Given a stable representation quiver @ = (V, A, 7), we pick a vertex vy € V and consider the
set Tg of all sectional paths

Vo =Tg — Ly > — Ty 3 T FT(Tig2) 0<i<n—2
The arrows are given by
(’Uozgjo—)l‘lﬁ ...... _)l‘n)_>(’[)0:l‘0—)l‘1_> ...... _)l-n_)anrl)

This makes T(y a directed tree.
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(ii) The map

is a morphism of quivers. By Lemma 1, there is a unique morphism f : ZTg] — Q@ with
£(0,t) = f(t) for all t € Tg. One verifies () and obtains that f is a covering.

(iii) The “fundamental group” I := {g € Aut(Z[Tg]) ; fog = f} is admissible. (The notion
derives from algebraic topology, where this group is also referred to as the group of covering
transformations. Under suitable hypotheses, this group is isomorphic to a fundamental group, see
[5, (I.5.8)].) )

(iv) In view of Lemma 3, the group II acts transitively on the fibres of f. Hence the fibres of
f are just the Il-orbits and f induces an isomorphism f : Z[Tg]/IT — Q of stable representation
quivers. O

The “most common” tree class of an Auslander-Reiten component is T = Ao, (cf. [3, 4, 7]). Since
Aut(Z[Ax]) = (1), a stable component with tree class Ay, is isomorphic to Z[A]/(7™) for some
n > 0.
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