Selected topics in representation theory 2 The braid group action on the set of exceptional sequences $\frac{\text{WS }2005/06}{\text{WS }2005/06}$

1 The braid group

Definition. Let $n \geq 2$ be a natural number and define

$$B_n := \langle \sigma_i \mid 1 \leq i < n; \quad \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \quad \sigma_i \sigma_j = \sigma_j \sigma_i \text{ for } |i-j| \geq 2 \rangle$$

the group generated by n-1 elements, with relations as above.

Remark. The groups B_2 is isomorphic to \mathbb{Z} . Morover, there exists a surjective group homomorphism $B_n \longrightarrow S_n$ onto the symmetric group. There is a topological interpretation of this group in terms of equivalence classes of diagrams of braids.

2 The action of the braid group

We consider exceptional sequences of objects in a triangulated category \mathcal{D}^b , as introduced in the first lecture. In particular, we assume that all left and right mutations are defined in this category. We denote by $\operatorname{Hom}^{\bullet}(E,F)$ the finite dimensional vector space $\bigoplus_{l}\operatorname{Hom}(E,F[l])$. Moreover, we write $\varepsilon = (E_1,\ldots,E_r) \simeq \varepsilon' = (E_1,\ldots,E_r')$ if $E_i \simeq E_i'$ for all $i=1,\ldots,r$.

Theorem. Let $\varepsilon = (E_1, \dots, E_r)$ be an exceptional sequence. Then

- 1) $L_i R_i \varepsilon \simeq R_i L_i \varepsilon \simeq \varepsilon$,
- 2) $L_i L_{i+1} L_i \varepsilon \simeq L_{i+1} L_i L_{i+1} \varepsilon$, $R_i R_{i+1} R_i \varepsilon \simeq R_{i+1} R_i R_{i+1} \varepsilon$,
- 3) $L_i L_j \varepsilon \simeq L_j L_i \varepsilon$, and $R_i R_j \varepsilon \simeq R_j R_i \varepsilon$ for all $|i j| \ge 2$.

Corollary. The braid group B_r acts on the set of all exceptional sequences of length r via $\sigma_i \varepsilon := L_i \varepsilon$ and $\sigma_i^{-1} \varepsilon := R_i \varepsilon$.

PROOF. 3) is obvious. We first prove 1). We consider the triangle defining the left mutation of a pair $\varepsilon = (E, F)$, the right mutation of the pair $(L_E F, E)$, and note that for $L\varepsilon = (L_E F, E)$ we have already shown $\operatorname{Hom}^{\bullet}(E, F) \simeq \operatorname{Hom}^{\bullet}(L_E F, E)^*$:

The two triangles are obviously isomorphic in two positions, consequently we obtain $F \simeq R_E L_E F$. The other isomorphism can be shown analogously.

To show 2) we consider first the mutations of a triple (E, F, G) and obtain

$$L_1L_2L_1(E, F, G) = (L_{L_F}L_EG, L_EF, E)$$
 and $L_2L_1L_2(E, F, G) = (L_EL_FG, L_EF, E)$.

So we need to show $L_{L_EF}L_EG \simeq L_EL_FG$. For we need the following lemma.

Lemma. Let A be an exceptional object. Then L_A is a functor $\mathcal{D}^b \longrightarrow \mathcal{D}^b$.

2 Lutz Hille

PROOF. Let $E \longrightarrow F$ be a homomorphism. We can define the objects L_AE and L_AF as the mapping cone of the corresponding canonical map. Then there exists (using one of the axioms of triangulated categories) a map $L_AE \longrightarrow L_AF$. We have to show that this map is unique. For we consider the commutative diagram with triangles in the rows

$$E[-1] \longrightarrow L_A E \xrightarrow{can^*} \operatorname{Hom}(A, E) \otimes A \xrightarrow{can} E$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$F[-1] \longrightarrow L_A F \xrightarrow{can^*} \operatorname{Hom}(A, F) \otimes A \xrightarrow{can} F.$$

A homomorphism $E \longrightarrow F$ defines a homomorphism $E[-1] \longrightarrow L_A F$ via composition. We show $\operatorname{Hom}(L_A E, L_A F[l]) \simeq \operatorname{Hom}(E[-1], L_A F[l])$ for all l, so each homomorphism $E \longrightarrow F[l]$ defines a unique homomorphism $L_A E \longrightarrow L_A F[l]$. For we consider the long exact sequence

$$(A \otimes (A, E), L_A F) \longrightarrow (L_A E, L_A F) \longrightarrow (E[-1], L_A F) \longrightarrow (A[-1] \otimes (A, E), L_A F).$$

Since $(A[l], L_A F) = 0$ for all l we obtain the desired isomorphism $(L_A E, L_A F) \longrightarrow (E[-1], L_A F)$.

We proceed with the proof of the theorem: we have to show $L_{L_EF}L_EG \simeq L_EL_FG$ for any exceptional sequence (E, F, G). We obtain two triangles, the first one obtained by applying the functor L_E to the triangle defining the left mutation L_FG , the second one defines the mutation $L_{L_EF}L_EG$

Since $\operatorname{Hom}^{\bullet}(F,G) \simeq \operatorname{Hom}^{\bullet}(L_{E}F,L_{E}G)$ both triangles are isomorphic, consequently we have proven the result.

3 Exceptional Sequences for hereditary algebras

For finite dimensional hereditary algebras we can use some modification for the mutations of exceptional sequences. Let Λ be a hereditary algebra and C be a complex in the derived category \mathcal{D}^b of bounded complexes of finitely generated Λ -modules. If C is indecomposable then C is isomorphic to an indecomposable module M up to some unique shift. If we define a stronger equivalence relation for exceptional sequences: $\varepsilon = (E_1, \ldots, E_r) \sim \varepsilon' = (E'_1, \ldots, E'_r)$ iff $E_i \simeq E'_i[l]$ for some l, then we can represent each exceptional sequence uniquely, up to isomorphism, by a sequence of modules. Since left and right mutations commute with shifts, we obtain an action of the braid group on the set of all exceptional sequences of Λ -modules. So we have already proven the first assertion of the following result.

Theorem. 1) The braid group B_r acts on the set of all exceptional sequences of Λ -modules of length r (via the modified action).

2) Let n be the number of isomorphism classes of pairwise non-isomorphic simple Λ -modules. Then the braid group B_n acts transitively on the set of all exceptional sequences of Λ -modules of length n.

The proof of the second part is due to Crawley-Boevey ([1]) for basic algebras and due to Ringel ([3]) in general. Instead of mutations the notion of perpendicular categories, developed by Schofield and Geigle, Lenzing ([2]) is used in the proof. The essential step in the proof shows that via a sequence of mutations we can reach the sequence consisting of simple Λ -modules. This sequences is unique, up to reordering. In fact, there is a natural partial order on the set of sequences, so that each sequence of simples is minimal with respect to this order.

References

- [1] W. Crawley-Boevey, Exceptional sequences of representations of quivers. Proceedings of the Sixth International Conference on Representations of Algebras (Ottawa, ON, 1992), Carleton-Ottawa Math. Lecture Note Ser. 14, Carleton Univ., Ottawa, ON, 1992.
- [2] W. Geigle, H. Lenzing, Perpendicular categories with applications to representations and sheaves. J. Algebra 144 (1991), no. 2, 273–343.
- [3] C. M. Ringel, The braid group action on the set of exceptional sequences of a hereditary Artin algebra. Abelian group theory and related topics (Oberwolfach, 1993), 339–352, Contemp. Math. 171, Amer. Math. Soc., Providence, RI, 1994.
- [4] A. N. Rudakov, Exceptional collections, mutations and helices. Helices and vector bundles, 1–6, London Math. Soc. Lecture Note Ser. 148, Cambridge Univ. Press, Cambridge, 1990.