Elementary Modules

(Selected Topics in

Representation Theory)
30 January 2008

Contents

1 Definitions 1
2 Properties 2
3 Different lengths 4
4 Finiteness condition 4

1 Definitions

Let k be an algebraically closed field. Throughout A will denote a finite-dimensional, basic, connected, hereditary k-algebra. Recall that a module $M \in \bmod -A$ is called a brick, provided $\operatorname{End}(M) \cong k$.

An indecomposable regular module M is called quasi-simple, if in the AuslanderReiten sequence $0 \rightarrow \tau M \rightarrow X \rightarrow M \rightarrow 0, X$ is indecomposable, where τ denotes the Auslander-Reiten translate. If A is a tame algebra, then quasi-simple modules lie at the mouth of the tubes in the regular components of the Auslander-Reiten quiver. If A is wild, the quasi-simple modules lie at the bottom of the $\mathbb{Z} A_{\infty}$ components.

Definition 1.1. Let A be a representation-infinite, hereditary algebra. A regular module $E \neq 0$ is called elementary, if there exists no short exact sequence $0 \rightarrow$ $U \rightarrow E \rightarrow V \rightarrow 0$, with U, V nonzero regular A-modules.
W. Crawley-Boevey suggested the study of elementary modules. First results were published by F. Lukas and O. Kerner in [L2] and [KL]. The following are easy to show:

1. If E is elementary, then so is $\tau^{n} E$, for all $n \in \mathbb{Z}$.
2. Elementary modules are quasi-simple.
3. If A is tame and E is a quasi-simple, regular A-module, then E is elementary.

Elementary modules are of intereset, since any nonzero regular module has a filtration whose subfactors are elementary: If A is a representation-infinite, hereditary algebra, let R be a nonzero regular A-module. Let $\mathcal{U}_{R}=\{$ all proper regular submodules $U \subset R$, such that R / U is regular $\}$. Choose a maximal submodule from \mathcal{U}_{R}, say R_{1} and consider $\mathcal{U}_{R_{1}}=\left\{\right.$ all proper regular submodules $U \subset R_{1}$, such that R_{1} / U is regular $\}$. Continuing we get a descending chain of regular submodules of R :

$$
R=R_{0} \supset R_{1} \supset \ldots \supset R_{l} \supset R_{l+1}=0
$$

For $1 \leq i \leq l+1$, let $X=R_{i-1} / R_{i}$. Then X is nonzero regular and not a middle term of a short exact sequence of regular modules, i.e., there is no exact sequence $0 \rightarrow S \rightarrow X \rightarrow T \rightarrow 0, S \neq 0, T \neq 0$ and both S, T regular. So X is elementary.

2 Properties

Lemma 2.1. Let A be a wild, hereditary algebra.
(a) Let $X \neq 0$ be regular. Then there exists $N \in \mathbb{N}_{1}$, such that for all regular modules R and all $f \in \operatorname{Hom}\left(\tau^{l} X, R\right)$, with $l \geq N$, Ker f is regular.
(a^{\prime}) Let $X^{\prime} \neq 0$ be regular. Then there exists $M \in \mathbb{N}_{1}$, such that for all regular modules S and all $f \in \operatorname{Hom}\left(S, \tau^{-m} X^{\prime}\right)$, with $m \geq N, \operatorname{Cok} f$ is regular.
(b) Let Y be regular. If Y has no nontrivial regular factor modules, then so has $\tau^{l} Y$, for all $l \geq 0$.
Proof. (a) It is well-known that the dimensions $\operatorname{dim}_{k} \tau^{-l} P$ grow expoentially with l for P projective. So there exists an $N \in \mathbb{N}$, such that $\operatorname{dim}_{k} \tau^{-l} P>\operatorname{dim}_{k} X$, for all $l \geq N$ and for all nonzero projective modules P. For $l \geq N$ and R regular, consider a nonzero $f \in \operatorname{Hom}\left(\tau^{l} X, R\right)$. We have a short exact sequence $0 \rightarrow \operatorname{Ker} f \rightarrow$ $\tau^{l} \rightarrow \operatorname{Im} f \rightarrow 0$ with $\operatorname{Im} f$ regular and $\operatorname{Ker} f$ without nonzero preinjective direct summand. Apply τ^{-l} :

$$
0 \rightarrow \tau^{-l} \operatorname{Ker} f \rightarrow X \rightarrow \tau^{-l} \operatorname{Im} f \rightarrow 0
$$

But $\tau^{-l} \operatorname{Ker} f$ being a regular submodule of X, is, by the dimension inequality, only possible, if $\operatorname{Ker} f$ is regular.
(a^{\prime}) This is dual to (a).
(b) Assume, to get a contradiction, $\tau^{l} Y$ has a nontrivial regular factor module Z. Then we get an exact sequence:

$$
0 \rightarrow U \rightarrow \tau^{l} Y \rightarrow Z \rightarrow 0
$$

Apply τ^{-l} :

$$
0 \rightarrow \tau^{-l} U \rightarrow Y \rightarrow \tau^{-l} Z \rightarrow 0
$$

contradicting the fact that Y has no nontrivial regular factor module.

Proposition 2.2. Let A be a representation-infinite, hereditary algebra. Let E be an indecomposable regular A-module. Then the following are equivalent:

1. E is elementary.
2. There exists $N \in \mathbb{N}_{1}$, such that $\tau^{l} E$ has no nontrivial regular factor module for all $l \geq N$.
3. There exists $M \in \mathbb{N}_{1}$, such that $\tau^{-l} E$ has no nontrivial regular submodule for all $l \geq M$.
4. If $Y \neq 0$ is a regular submodule of E, then E / Y is preinjective.
5. If X is a proper submodule of E with E / X regular, then X is preprojective.

Proof. (4) $\Rightarrow(1)$ and $(5) \Rightarrow(1)$ are clear by definition of elementary modules.
$(1) \Rightarrow(2)$: Assume V is a nontrivial regular factor module of $\tau^{l} E$ for $l \geq N$. Then in $0 \rightarrow U \rightarrow \tau^{l} E \rightarrow V \rightarrow 0, U$ is regular by the lemma. So, by applying τ^{-l}, we get an exact sequence $0 \rightarrow \tau^{-l} U \rightarrow E \rightarrow \tau^{-l} V \rightarrow 0$ with $\tau^{-l} U$ and $\tau^{-l} V$ nonzero regular, contradicting that E is elementary.
$(1) \Rightarrow(3)$ is dual to $(1) \Rightarrow(2)$ and we immediately get $(2) \Rightarrow(1)$ and $(3) \Rightarrow(1)$.
$(1) \Rightarrow(4): E$ is elementary and suppose $E / Y=Z_{1} \oplus Z_{2}$ with $Z_{1} \neq 0$ regular and Z_{2} preinjective. We get the following diagram:

Since K is a submodule of E, it has no nonzero preinjective direct summand. From $\operatorname{dim} K=\operatorname{dim} Y+\operatorname{dim} Z_{2}$ we have that K is regular. But this contradicts the fact that E is elementary. So E / Y is preinjective.
$(1) \Rightarrow(5)$ is the dual situation to $(1) \Rightarrow(4)$.
Corollary 2.3. If E is elementary, Y regular with $\operatorname{dim} Y=\operatorname{dim} E$, then either $Y \cong E$ or Y and E are orthogonal, i.e., $\operatorname{Hom}(E, Y)=0=\operatorname{Hom}(Y, E)$.

If S is indecomposable and regular, such that $\operatorname{dim} S$ or $\operatorname{dim}_{k} S$ is minimal among all nonzero regular modules, then S is elementary. One can further show that if E is elementary, then E is a brick. Note that in contrast to the tame case, if A is wild hereditary, then there are quasi-simple modules which are not bricks, thus cannot be elementary.

3 Different lengths

Let $K(2)$ be the Kronecker quiver with path algebra $B=k K(2)$. Let $K(3)$ be the extended Kronecker quiver with three arrows (α, β, γ) in the same direction, and let $A=k K(3)$ be its path algebra. A is wild hereditary, whereas B is tame hereditary. Note that any representation over $K(2)$ can be considered as a representation over $K(3)$ by letting one arrow correspond the zero map (e.g. $\gamma=0$). There is an embedding $\bmod -B \hookrightarrow \bmod -A$.

Consider the following two representations $P_{2}(B), R(B)$ in $\bmod -B$:

where $C=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right) \cdot P_{2}(B)$ with $\operatorname{dim} P_{2}(B)=\binom{1}{2}$ is projective over $K(2)$, whereas $R(B)$ with $\operatorname{dim} R(B)=\binom{3}{3}$ is a regular B-module and we have $P_{2}(B) \hookrightarrow$ $R(B)$ with cokernel $I_{1}(B)$, preinjective, of dimension vector $\binom{2}{1}$. Now look at the exact sequence:

$$
0 \rightarrow P_{2}(B) \rightarrow R(B) \rightarrow I_{1}(B) \rightarrow 0
$$

Considered as A-modules, $P_{2}(B)$ and $I_{1}(B)$ are regular and elementary. So $0 \subset$ $P_{2}(B) \subset R(B)$ is a chain of regular submodules of $R(B)$, with elementary factor module $R(B) / P_{2}(B) \cong I_{1}(B)$. But in $\bmod -B$, since $R(B)$ has quasi-length 3 , there exists a chain of regular modules with elementary factor modules of greater length.

4 Finiteness condition

If A is tame hereditary, the set of dimension vectors of elementary (i.e. quasisimple modules) is finite. If A is wild hereditary, then we have $\operatorname{dim} \tau^{i} E \neq$ $\operatorname{dim} \tau^{j} E$, for $i \neq j$. Let Φ be the Coxeter transformation (corresponding to τ). Then $\Phi^{j}(\operatorname{dim} E)=\operatorname{dim} \tau^{j} E$ for all $j \in \mathbb{Z}$.

For $x \in \mathbb{Z}^{n},\left(\Phi^{j}(x)\right)_{j \in \mathbb{Z}}$ is called the Coxeter orbit of x.
Theorem 4.1 (Lukas, 1991). If A is hereditary, then there exists only finitely many Coxeter orbits of dimension vectors of elementary modules.

Proof. We want to show that the set $\left\{\left(\operatorname{dim} \tau^{j} E\right)_{j \in \mathbb{Z}}, E\right.$ elementary $\}$ is finite.
If A is tame hereditary, this is clear. So let A be wild herediary. The idea consists of constructing a vector $c \in \mathbb{N}^{n}$, such that each τ-orbit ($\tau^{i} E$) of any elementary module E contains some $\tau^{j} E$ with $\operatorname{dim} \tau^{j} E<c$. c can be chosen depending only on the quiver, not on the base field.

For the proof first note that each regular component conatins only finitely many non-sincere modules. So choose an indecomposable regular module R, such that $\tau^{-n} R$ is sincere for all $n \geq 0$. If X is elementary, then using the lemma, one can show that there exists $E=\tau^{j} X$, such that $\operatorname{Hom}(R, E)=0$, but $\operatorname{Hom}\left(\tau^{-} R, E\right) \neq 0$. Take a nonzero $f \in \operatorname{Hom}\left(\tau^{-} R, E\right)$ and let $U=\operatorname{Imf}, K=$ $\operatorname{Ker} f, C=\operatorname{Cok} f$. Then we get two exact sequences:

$$
\begin{gathered}
0 \rightarrow K \rightarrow \tau^{-} R \rightarrow U \rightarrow 0 \\
0 \rightarrow U \rightarrow E \rightarrow C \rightarrow 0
\end{gathered}
$$

Applying $\operatorname{Hom}(R, \quad$) we get:

$$
\begin{gathered}
\ldots \rightarrow \operatorname{Ext}\left(R, \tau^{-} R\right) \rightarrow \operatorname{Ext}(R, U) \rightarrow 0 \\
\ldots \rightarrow \operatorname{Hom}(R, E) \rightarrow \operatorname{Hom}(R, C) \rightarrow \operatorname{Ext}(R, U) \rightarrow 0
\end{gathered}
$$

$\operatorname{But} \operatorname{Hom}(R, E)=0$, so

$$
\operatorname{dim}_{k} \operatorname{Hom}(R, C) \leq \operatorname{dim}_{k} \operatorname{Ext}(R, U) \leq \operatorname{dim}_{k} \operatorname{Ext}\left(R, \tau^{-} R\right)=: s
$$

Since E is elementary, C is preinjective by the lemma. So C can be written as

$$
C=\bigoplus_{i \in \mathbb{N} 0} \bigoplus_{j=1}^{n} \tau^{i} I(j)^{l_{i, j}}
$$

where $I(1), \ldots, I(n)$ are indecomposable injective and almost all $l_{i, j}=0$. By above inequality one can show:

$$
\sum_{i \in \mathbb{N}_{0}} \sum_{j=1}^{n} l_{i, j} \cdot \operatorname{dim}_{k} \operatorname{Hom}\left(\tau^{-i} R, I(j)\right) \leq s
$$

Since the components of the dimension vectors grow exponentially, there exists i_{0} with $\operatorname{dim} \operatorname{Hom}\left(\tau^{-i} R, I(j)\right) \geq s$, for all $i \geq i_{0}$ and all $j=1, \ldots, n$. So $l_{i, j}=0$ for all $i \geq i_{0}$ and for all j. Since $\operatorname{Hom}\left(\tau^{-i} R, I(j)\right) \neq 0$ for all $i \geq 0$ and for all j, only finitely many $l_{i, j}$ satisfy the condition of the second inequality. Therefore we get an upper bound c for $\operatorname{dim} C=\operatorname{dim} \operatorname{Cok} f$, only depending on R. In particular, $\operatorname{dim} E \leq \operatorname{dim} R+c$, and there are only finitely many roots smaller or equal to $\operatorname{dim} R+c$.

References

[K1] O. Kerner: Representations of wild quivers. CMS Conf. Proc. 19, 1996, 65107.
[KL] O. Kerner, F. Lukas: Elementary Modules, Math. Z. 223, 1996, 421-434.
[L1] F. Lukas: Infinite dimensional modules over wild hereditary algebras. J. London Math. Soc. 44, 1991, 401-419.
[L2] F. Lukas: Elementare Moduln über wilden erblichen Algebren. Dissertation, Düsseldorf, 1992.

