INDUCED MODULES: FIRST PROPERTIES OF DEFECT GROUPS

ROLF FARNSTEINER

Let k be a field of characteristic p > 0. If G is a finite group, then the group algebra kG has a
block decomposition
kG=Bi1eB & - @B,
where each block B; < kG is an indecomposable two-sided ideal. Equivalently, each block B C kG
is an indecomposable kG ®; kG°P-module. Since the map
(9,h) —g@h™!
induces an isomorphism k(G x G) — kG ®j kG°P of associative k-algebras, the latter condition
amounts to B being an indecomposable submodule of the (G x G)-module kG, relative to the action
(g,h)x :=gzh™' Vg hed, zeckG.

One can thus speak of the vertex of the (G x G)-module B, see [4] for the definition.
Let A:G— G xG; g+ (g,9) be the diagonal embedding, whose induced algebra homomor-
phism kG — k(G x G) will also be denoted A.

Definition. Let B C kG be a block. A p-subgroup D C G is called a defect group of B if A(D) is
a vertex of the (G x G)-module B. If ord(D) = p?, then d is called the defect of B.

The name defect derives from an early result of the theory, which states that a block B C kG is
semi-simple (and hence simple) if and only if d = 0. Thus, d may be viewed as a measure for the
deviation of B from being semi-simple.

Defects were first defined by Brauer [1], with the definition of a defect group following shortly
thereafter [2]. In his seminal articles [1, 2, 3] Brauer established important properties of defect
groups that were later reformulated by Green [6, 7], whose approach is the basis of our exposition.

Recall that G acts on & via
g.a=« Vged, ack.

Our first result establishes the existence of defect groups and shows that the defect of a block is
well-defined.

Theorem 1. Let B C kG be a block of kG.
(1) B possesses a defect group D C G.
(2) If D,D' C G are defect groups of B, then there exists g € G with D' = gDg~ 1.

Proof. (1) We consider k(G x G) as a left and right G-module via A. The bilinear map
0 :k(GxG)xk— kG ; ((g,h),a) — agh™*
is kG-balanced: Given x € GG, we have
(g, h).z, ) = p((9z, hz), a) = agh™ = ¢((g, h), z.q).
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Hence there exists a surjective, k-linear map
VY k(G xG)@pgk — kG ;5 (9,h) ® a— agh™,

which is readily seen to be k(G x G)-linear. Since both spaces involved have dimension ord(G), ¢
is in fact an isomorphism, so that kG is a relatively A(G)-projective k(G x G)-module. Being a
direct summand of kG, the block B enjoys the same property. According to [4, Prop.4] there exists
a p-subgroup D C G such that A(D) is a vertex of B.

(2) Let D, D’ be defect groups of B. Owing to [4, Prop.4], there exists an element (g,h) € G x G
such that

A(D") = (9. h)A(D)(g,h) ",
whence D' = gDg~ 1. O

We would like to relate the defect group of a block to the vertices of its indecomposable modules.
This necessitates the following subsidiary result, which shows that induction commutes with taking
tensor products over k. Recall that the tensor product M ®; N of two G-modules obtains the
structure of a G-module via

g.(m®n):=gm®cgn
forallge G, me M and n € N.

Lemma 2 (Tensor Identity). Let H C G be a subgroup of the finite group G. If V is a finite-
dimensional G-module and M is a finite-dimensional H-module, then we have an isomorphism

kG Qg (M @1 V|g) = (kG @y M) @i V
of G-modules.

Proof. Given g € GG, we consider the k-linear map
A M@, V— (kGRrg M) @,V ; mur— (g@m)® g.v

Ifa=3 c5aq9 is an element of kG, we define A\, := > ; agAg. There results a bilinear map
V:kGx (M@, V) — (kG @y M) @,V ;5 (a,2) — Ao(2).

Since A\gp(z) = Ag(ha) for all @ € kG, h € H and © € M ®;, V, the map v is kH-balanced and
there exists a k-linear map

w:kG@ry (M@ V) — (kGRrg M) @,V ; a®x— ().
This map is actually kG-linear: Let g,¢' € G, m € M and v € V. Then we have
wg' (9@ (m@v)) = wl@g®mev))=I(gem)@ggv=g.(90m)®guv)
= J.w(g® (mav)).

Directly from the definition, we obtain the surjectivity of w. Since both G-modules involved have
dimension |G/ H |(dimg M )(dimg V'), the map w is bijective. O

Recall that any block B C kG is of the form B = kGe, where e € kG is a central, primitive
idempotent of kG. Given an indecomposable kG-module M, we thus have e.M = (0) or e.M = M.
In the latter case, we say that M belongs to B.

Theorem 3. Let B C kG be a block with defect group D. Then every indecomposable kG-module
M belonging to B has a vertex Dy C D.
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Proof. We let G act on kG via conjugation, i.e.,
g.a:=gag ! VackG, gedG.

Note that this amounts to pulling back the (G x G)-action on kG along A. Since B < kG is a
two-sided ideal, B C kG is a G-submodule relative to this operation. The multiplication

w:BRpM—M ; b@m— bm
is a homomorphism of G-modules: Given g € G,b € B and m € M, we have
p(g(b@m)) = u(g.b® gm) = u(ghg ™" ® gm) = gbg™ gm = g(bm) = gu(b @ m).
Let e € kG be the central primitive idempotent of B, so that B = kGe. Then
t: M —BM ; m—exm

is a homomorphism of G-modules. Since M belongs to B, we obtain p o ¢ = idyy, so that M is a
direct summand of B ®; M.

As D C G is a defect group of B, the G-module B is relatively D-projective. Consequently, 13
is a direct summand of kG ®xp B|p. In view of Lemma 2, the tensor product B ®; M is a direct
summand of (kG ®xp B|p) @k M = kG Qkp (B|p @k M|p). By the above, this implies that M is
relatively D-projective, so that D contains a vertex of M, cf. [4, Prop.4]. ]

There exists exactly one block By(G) € kG to which the trivial G-module k belongs. The block
Bo(G) is customarily referred to as the principal block. The following result shows why Bo(G) is
thought of as being the “most complicated” block of kG:

Corollary 4. Every defect group D C G of the principal block By(G) is a Sylow-p-subgroup of G.

Proof. Owing to Theorem 3, D contains a vertex D’ of the trivial module k. Being a p-group, D’
is contained in a Sylow-p-subgroup P C G. As k is relatively D’-projective, k is a summand of
kG ®@kpr k. By Mackey’s Theorem [4], the trivial P-module k|p is a summand of

@ kP @y prprey k9 = @ kP ®kprpra) k.,
PgD’ PgD’

where D9 := gD'g~!. Repeated application of Green’s Indecomposability Theorem [5] (to a chain
of normalizers in P starting with Norp(P N D)) implies that each summand is an indecomposable
kP-module.! The Theorem of Krull-Remak-Schmidt now ensures that k|p is isomorphic to one of
these summands. Hence there exists an element g with P = D'9, so that P = D'. (Il

Corollary 5. Let B C kG be a block with defect group D.
(1) If D is cyclic, then B has finite representation type.
(2) If D = {1}, then B is simple.

Proof. Suppose that ord(D) = p". As D is cyclic, the group algebra kD = k[X]/(XP?") has finite
representation type, with indecomposable modules Ny, ..., Npr. In view of Theorem 3, every inde-
composable B-module is relatively D-projective, and hence a direct summand of some kG ®xp N;.
Consequently, there are only finitely many isomorphism classes of such modules. If D = {1}, then
each indecomposable B-module M is a direct summand of kG ®; k = kG and is thus projective.
This implies that B is simple. g

IThis argument actually shows that induction functors of p-groups preserve indecomposables. In our situation,
Frobenius reciprocity gives Homyp (kP ®y(pnpey k, k) = Homyprpre)(k, k), which, in view of kP being local, implies
that the top of the induced module is simple.
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Remark. The converse statements of (1) and (2) of Corollary 5 also hold, but their proofs necessitate
the so-called Brauer correspondence of blocks.
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