ALGEBRAS OF FINITE GLOBAL DIMENSION: THE NO LOOPS CONJECTURE

ROLF FARNSTEINER

In this talk we outline the proof of the following result, due to Igusa [2, Thm.3.2], which confirms the no-loops conjecture for algebras over algebraically closed fields:

Theorem. Let Λ be a finite-dimensional algebra over an algebraically closed field k. If gldim $\Lambda < \infty$, then $\operatorname{Ext}^{1}_{\Lambda}(S,S) = (0)$ for every simple Λ -module S.

Our theorem turns out to be a fairly direct consequence of earlier work by Lenzing [3], who employed K-theoretic methods to obtain information on nilpotent elements in rings of finite global dimension. We thus begin in a more general setting, assuming that Λ is an arbitrary ring. Let mod Λ be the category of finitely generated Λ -modules. Given a full subcategory $\mathcal{F} \subseteq \mod \Lambda$, we define $K_1(\mathcal{F})$ to be the free abelian group generated by pairs (M, f), with $M \in \mathcal{F}$ and $f \in \operatorname{End}_{\Lambda}(M)$, subject to the following relations:

(a)
$$(M, f + g) = (M, f) + (M, g)$$

(b) $(M', f') + (M'', f'') = (M, f)$, for every commutative diagram
 $(0) \longrightarrow M' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \longrightarrow (0)$
 $f' \downarrow \qquad f \downarrow \qquad f'' \downarrow$
 $(0) \longrightarrow M' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \longrightarrow (0)$

with exact rows.

(c) $(M, \beta \circ \alpha) = (N, \alpha \circ \beta)$, if $\alpha : M \longrightarrow N$ and $\beta : N \longrightarrow M$.

If $\mathcal{F}' \subseteq \mathcal{F}$ are full subcategories of mod Λ , then the inclusion $\iota : \mathcal{F}' \longrightarrow \mathcal{F}$ induces a homomorphism

$$\iota_*: K_1(\mathcal{F}') \longrightarrow K_1(\mathcal{F}) \; ; \; [(M, f)] \longrightarrow [(M, f)]$$

of abelian groups. We denote by $\mathcal{P}(\Lambda)$ and $\mathcal{P}_0(\Lambda)$ be the full subcategories of mod Λ , whose objects are the finitely generated projective modules and the module Λ , respectively.

Our analysis of various K_1 -groups utilizes trace functions for projective modules which take values in the factor group $\Lambda/[\Lambda, \Lambda]$. Here [a, b] := ab - ba is the usual Lie product on Λ . Given $P \in \mathcal{P}(\Lambda)$, we recall that

$$\psi_P : \operatorname{Hom}_{\Lambda}(P, \Lambda) \otimes_{\Lambda} P \longrightarrow \operatorname{End}_{\Lambda}(P) \; ; \; \psi(f \otimes p)(q) := f(q)p$$

is an isomorphism (cf. [1, (II.4.4)]). Using the map

$$\varphi_P : \operatorname{Hom}_{\Lambda}(P, \Lambda) \otimes_{\Lambda} P \longrightarrow \Lambda/[\Lambda, \Lambda] ; f \otimes p \mapsto [f(p)],$$

we define

$$\operatorname{tr}_P : \operatorname{End}_{\Lambda}(P) \longrightarrow \Lambda/[\Lambda, \Lambda] \; ; \; f \mapsto \varphi_P \circ \psi_P^{-1}(f)$$

This function enjoys the usual properties of a trace:

Date: October 31, 2007.

ROLF FARNSTEINER

- If P is free and f is represented by some matrix $A := (a_{ij}) \in \operatorname{Mat}_n(\Lambda)$, then $\operatorname{tr}_P(f) =$ $[\sum_{i=1}^{n} a_{ii}] \in \Lambda/[\Lambda, \Lambda].$ • Given free modules P and P', we have

$$(*) \qquad \operatorname{tr}_P(g \circ f) = \operatorname{tr}_{P'}(f \circ g)$$

for $f \in \operatorname{Hom}_{\Lambda}(P, P')$ and $g \in \operatorname{Hom}_{\Lambda}(P', P)$.

• If P and Q are finitely generated projective A-modules and $f \in \operatorname{End}_{\Lambda}(P)$, then $\operatorname{tr}_{P}(f) =$ $\operatorname{tr}_{P\oplus O}(f\oplus 0)$. Thus, by considering projective modules as direct summands of suitable free modules, we obtain (*) for all projective modules.

Lemma 1. The map $\iota_* : K_1(\mathcal{P}_0(\Lambda)) \longrightarrow K_1(\mathcal{P}(\Lambda))$ is surjective.

Proof. Let [(P, f)] be an element of $K_1(\mathcal{P}(\Lambda))$. Then there exists a finitely generated projective A-module Q such that $P \oplus Q = \Lambda^n$, so that (b) implies

$$[\Lambda^n, f \oplus 0)] = [(P, f)] + [(Q, 0)].$$

In view of (a), the second summand vanishes, so that $[(P, f)] = [(\Lambda^n, g)]$ for some $g \in \operatorname{End}_{\Lambda}(\Lambda^n)$. Writing $\Lambda^n = \Lambda^{n-1} \oplus \Lambda$, we obtain

$$g = \left(\begin{array}{cc} g_{n-1} & \gamma \\ \omega & g_1 \end{array}\right),$$

with $q_i \in \operatorname{End}_{\Lambda}(\Lambda^i)$. Setting

$$h := \begin{pmatrix} g_{n-1} & \gamma \\ 0 & g_1 \end{pmatrix} \text{ and } h' := \begin{pmatrix} 0 & 0 \\ \omega & 0 \end{pmatrix},$$

relation (a) gives

$$[(\Lambda^n, g)] = [(\Lambda^n, h)] + [(\Lambda, h')].$$

Relation (b) then yields

$$[(\Lambda^n, h)] = [(\Lambda^{n-1}, g_{n-1})] + [(\Lambda, g_1)]$$
 as well as $[(\Lambda, h')] = 0$.

This readily implies the surjectivity of ι_* .

Proposition 2. The map

$$\operatorname{Tr}: K_1(\mathcal{P}(\Lambda)) \longrightarrow \Lambda/[\Lambda, \Lambda] ; [(P, f)] \mapsto \operatorname{tr}_P(f)$$

is an isomorphism

Proof. Let \mathcal{H} be the free abelian group generated by the pairs (P, f) with $P \in \mathcal{P}(\Lambda)$ and $f \in \mathcal{P}(\Lambda)$ $\operatorname{End}_{\Lambda}(P)$. Then there exists a unique homomorphism

$$\operatorname{tr} : \mathcal{H} \longrightarrow \Lambda/[\Lambda, \Lambda] \; ; \; (P, f) \mapsto \operatorname{tr}_P(f).$$

Evidently, tr is surjective and direct computation shows that tr annihilates the defining relations of $K_1(\mathcal{P}(\Lambda))$. This implies the existence and surjectivity of Tr.

Thanks to Lemma 1, every element of $K_1(\mathcal{P}(\Lambda))$ is of the form $[(\Lambda, f)]$. If $[(\Lambda, f)] \in \ker \operatorname{Tr}$, then $f(1) \in [\Lambda, \Lambda]$. This implies $f \in [\operatorname{End}_{\Lambda}(\Lambda), \operatorname{End}_{\Lambda}(\Lambda)]$, and relations (a) and (c) give $[(\Lambda, f)] = 0$. \Box

We now specialize to the case where Λ is noetherian. Then every $M \in \text{mod } \Lambda$ affords a projective resolution, whose constituents belong to $\mathcal{P}(\Lambda)$.

 $\mathbf{2}$

Proposition 3. Suppose that $\operatorname{gldim} \Lambda < \infty$. Then

$$\iota_*: K_1(\mathcal{P}(\Lambda)) \longrightarrow K_1(\operatorname{mod} \Lambda)$$

is an isomorphism.

Proof. Let $M \in \text{mod } \Lambda$. Since Λ is notherian, there is a finite projective resolution

$$P_{\bullet}(M): (0) \longrightarrow P_n \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow M \longrightarrow (0),$$

with $P_i \in \mathcal{P}(\Lambda)$. If $f: M \longrightarrow M$ is a linear map, then there exists a chain map $\varphi: P_{\bullet}(M) \longrightarrow P_{\bullet}(M)$ with $\varphi_{-1} = f$. We then define

$$\kappa(M, f) := \sum_{i=0}^{n} (-1)^{i} [(P_{i}, \varphi_{i})].$$

This definition neither depends on the choice of φ , nor on that of $P_{\bullet}(M)$. Moreover, κ defines a surjective homomorphism

$$\kappa: K_1(\operatorname{mod} \Lambda) \longrightarrow K_1(\mathcal{P}(\Lambda)).$$

Owing to relation (b), we have $\iota_* \circ \kappa = \operatorname{id}_{K_1(\operatorname{mod} \Lambda)}$. Hence κ is also injective, and ι_* is in fact an isomorphism.

The following theorem is Lenzing's aforementioned result, see [3, Satz 5].

Theorem 4. Suppose that Λ has finite global dimension. If $a \in \Lambda$ is a nilpotent element, then $a \in [\Lambda, \Lambda]$.

Proof. Given any pair (M, f), the commutative diagram

$$(0) \longrightarrow \ker f \xrightarrow{\iota} M \xrightarrow{f} \inf f \longrightarrow (0)$$

$$\downarrow^{0} \qquad \qquad \downarrow^{f} \qquad \qquad \downarrow^{f|_{\operatorname{im} f}}$$

$$(0) \longrightarrow \ker f \xrightarrow{\iota} M \xrightarrow{f} \inf f \longrightarrow (0)$$

$$\downarrow^{0} f f|_{\iota \to 0} = [(\operatorname{im} f f|_{\iota \to 0})] \quad \text{Thus if } f \text{ is nilpotent then } [(M f)] =$$

yields $[(M, f)] = [(\operatorname{im} f, f|_{\operatorname{im} f})] + [(\operatorname{ker} f, 0)] = [(\operatorname{im} f, f|_{\operatorname{im} f})]$. Thus, if f is nilpotent, then [(M, f)] = 0.

Let $a \in \Lambda$ be nilpotent, and consider the right multiplication $r_a : \Lambda \longrightarrow \Lambda$. Then r_a is nilpotent, so that $[(\Lambda, r_a)] = 0$ in $K_1 \pmod{\Lambda}$. Owing to Proposition 3, $[(\Lambda, r_a)]$ is the zero element in $K_1(\mathcal{P}(\Lambda))$, whence

$$0 = \operatorname{Tr}([(\Lambda, r_a)]) = a + [\Lambda, \Lambda],$$

as asserted.

Proof of the Theorem. Using Morita equivalence, we may assume that Λ is basic (at this point k being algebraically closed enters). Let J be the Jacobson radical of Λ . Then $\Lambda' := \Lambda/J^2$ is also basic with Jacobson radical $J' := J/J^2$. The algebra Λ' is graded

 $\Lambda' = \Lambda'_0 \oplus \Lambda'_1,$

with $\Lambda'_1 = J'$ and $\Lambda'_0 = \bigoplus_{i=1}^n ke_i$ being defined by a complete set of orthogonal primitive idempotents e_i of Λ' . In particular, Λ'_0 is commutative, so that $[\Lambda', \Lambda'] = [\Lambda'_0, \Lambda'_1]$. Owing to Theorem 4, we have $J \subseteq [\Lambda, \Lambda]$, whence

 $\Lambda'_1 \subseteq [\Lambda', \Lambda'] = [\Lambda'_0, \Lambda'_1].$

Given $x \in \Lambda'_1$, we can therefore find $y_i \in \Lambda'_1$ with $x = \sum_{i=1}^n e_i y_i - y_i e_i$. Consequently,

$$e_j x e_j = e_j y_j e_j - e_j y_j e_j = 0$$

ROLF FARNSTEINER

Let S_j be the simple Λ -module corresponding to e_j . Then we have

$$\operatorname{Ext}^{1}_{\Lambda}(S_{j}, S_{j}) \cong \operatorname{Ext}^{1}_{\Lambda'}(S_{j}, S_{j}) \cong e_{j}J'e_{j} = e_{j}\Lambda'_{1}e_{j} = (0).$$

This concludes the proof of our Theorem.

References

- M. Auslander, I. Reiten, and S. Smalø, Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, 1995.
- [2] K. Igusa, Notes on the no loops conjecture. J. Pure Appl. Algebra 69 (1990), 161–176.
- [3] H. Lenzing, Nilpotente Elemente in Ringen von endlicher globaler Dimension. Math. Z. 108 (1969), 313-324.