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Lévy-Khintchine Decomposition
Probability and Smoothing
Nonlocal Advection (maybe...?)

Burch (CSU and SNL) Probability and Nonlocal Diffusion January 16-22, 2011 3 / 49



Overview

We give a probabilistic interpretation of the nonlocal diffusion equation,

ut (x , t) =
1
λ

∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy ,

as the master equation for a Markovian CTRW.

We discuss volume constraints, which play the role of boundary conditions on
the nonlocal diffusion equation, and describe the inherited constraints on the
CTRWs.

We generalize nonlocal diffusion to include temporal effects and thus gain the
capability of studying non-Markovian CTRWs.

We investigate more complicated stochastic processes, via the
Lévy-Khintchine decomposition, and relationships to the mathematical
analysis in (Du and Zhou, 2010) and nonlocal advection (Lehoucq, Kamm,
and Parks, 2011).
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Probabilistic Interpretation of Diffusion Equations

The classical diffusion equation, a model for classical diffusion,

ut (x , t) = ∆u(x , t),

is the master equation for Xt =
√

2Wt
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Probabilistic Interpretation of Diffusion Equations

The classical diffusion equation, a model for classical diffusion,

ut (x , t) = ∆u(x , t),

is the master equation for Xt =
√

2Wt

sketch of proof: the characteristic function of Xt is given by

ϕXt (ξ) = E(eiξXt ) = û(ξ, t) = · · · = exp(−|ξ|2t).

Then, note that ϕXt (ξ) solves

ût (ξ, t) = −|ξ|2û(ξ, t).
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Probabilistic Interpretation of Diffusion Equations

The classical diffusion equation, a model for classical diffusion,

ut (x , t) = ∆u(x , t),

is the master equation for Xt =
√

2Wt

The fractional diffusion equation, a model for anomalous diffusion,

ut(x , t) = −(−∆)α/2u(x , t),

is the master equation for Xt = Lα
t
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Probabilistic Interpretation of Diffusion Equations

The classical diffusion equation, a model for classical diffusion,

ut (x , t) = ∆u(x , t),

is the master equation for Xt =
√

2Wt

The fractional diffusion equation, a model for anomalous diffusion,

ut(x , t) = −(−∆)α/2u(x , t),

is the master equation for Xt = Lα
t

The nonlocal diffusion equation, a model for anomalous diffusion,

ut (x , t) =
1
λ

∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy ,

is the master equation for Xt =

Nt∑

k=1

Rk
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Markovian CTRWs on Bounded Domains

We give a probabilistic interpretation of the nonlocal diffusion equation,

ut (x , t) =
1
λ

∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy ,

as the master equation for a Markovian CTRW.

We then restrict the nonlocal diffusion to a bounded domain with

- “homogeneous Dirichlet” volume constraints

- “homogeneous Neumann” volume constraints
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Markovian CTRWs on Bounded Domains

We give a probabilistic interpretation of the nonlocal diffusion equation,

ut (x , t) =
1
λ

∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy ,

as the master equation for a Markovian CTRW.

We then restrict the nonlocal diffusion to a bounded domain with

- “homogeneous Dirichlet” volume constraints

- “homogeneous Neumann” volume constraints

The resulting equations are the master equations for CTRWs on bounded
domains with inherited boundary conditions.
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Overview
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Non-Markovian CTRWs on Bounded Domains

The equation

ut (x , t) =
∫ t

0
Λ(t − t ′)

∫

R

(
u(y , t ′)J(y , x)− u(x , t ′)J(x , y)

)
dy dt ′.

is the master equation for an arbitrary CTRW.

The memory kernel Λ is capable of incorporating

- temporal memory effects in the diffusion process

- non-Markovian effects in the CTRW

Augmenting with volume constraints gives us the capability of studying
non-Markovian CTRWs on bounded domains via master equations.
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Lévy-Khintchine decomposition, and relationships to the mathematical
analysis in (Du and Zhou, 2010) and nonlocal advection (Lehoucq, Kamm,
and Parks, 2011).

Burch (CSU and SNL) Probability and Nonlocal Diffusion January 16-22, 2011 11 / 49



Outline

1 Overview

2 Master Equations for Markovian CTRWs
Nonlocal Diffusion (in free space)
Nonlocal Diffusion (on a bounded domain)

3 Other Topics and Ideas
Non-Markovian CTRWs
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Nonlocal Diffusion (in free space)

We study the nonlocal diffusion equation,

ut (x , t) =
1
λ

∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy .

1. “nonlocal”, in contrast to ut (x , t) = uxx (x , t)

2. u is a probability density

3. λ > 0 and has units of time (mean wait-time)

4. φ is a symmetric probability density function (in L1(R))

hint: φ is a propagator function or dispersal kernel, i.e.,

φ(x − y) = φ(y − x)

represents the mechanism for stepping from x to y
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Nonlocal Diffusion (in free space)

We study the nonlocal diffusion equation,

ut (x , t) =
1
λ

∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy ,

(a) a model for anomalous diffusion processes in which the diffusing particle
satisfies

〈X2(t)〉 ∼ tγ , γ 6= 1

note: such processes have been observed experimentally:
- contaminant flow in groundwater
- sporadic movement of foraging spider monkeys
- dynamic motions in proteins
- turbulence in fluids
- dynamics of financial markets
- long-range population/disease dispersion
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Nonlocal Diffusion (in free space)

We study the nonlocal diffusion equation,

ut (x , t) =
1
λ

∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy ,

(b) an alternative to classical diffusion when Fick’s first law is not a valid
constitutive relation

note: this equation arises from the classical balance law

ut (x , t) = −qx (x , t)

and a nonlocal flux (Noll, 1955)

q(x , t) = −1
2

1
λ

∫

R

∫ 1

0

(
u(x + (1 − µ)z, t)− u(x − µz, t)

)
zφ(z) dµ dz

Burch (CSU and SNL) Probability and Nonlocal Diffusion January 16-22, 2011 16 / 49



Nonlocal Diffusion (in free space)

We study the nonlocal diffusion equation,

ut (x , t) =
1
λ

∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy ,

(c) as the master equation for a compound Poisson process,

Xt =

Nt∑

k=1

Rk

1. Nt is a Poisson process with intensity 1/λ

2. Rk
iid∼ φ and independent of Nt
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Nonlocal Diffusion (in free space)

We study the nonlocal diffusion equation,

ut (x , t) =
1
λ

∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy ,

(c) as the master equation for a compound Poisson process,

step step step etc.

wait wait wait

BEER

BEER

BEER

BEER

BEER

BEER

BEER

BEER

Figure: Illustration of the drunkard’s walk.
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Nonlocal Diffusion (in free space)

We study the nonlocal diffusion equation,

ut (x , t) =
1
λ

∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy ,

(c) as the master equation for a compound Poisson process,

Xt =

Nt∑

k=1

Rk

sketch of proof: ϕXt (ξ) is given by (Lévy-Khintchine)

ϕXt (ξ) = exp
(

1
λ
(φ̂(ξ)− 1)t

)

and solves
ût (ξ, t) =

1
λ
(φ̂(ξ)− 1)û(ξ, t)
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Nonlocal Diffusion (in free space)

We study the nonlocal diffusion equation,

ut (x , t) =
1
λ

∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy .

(d) suppose φ̂(ξ) = 1 − ε2|ξ|2 + h.o.t. and λ = ε2, then there is a
relationship to fractional diffusion as ε → 0:

ût(ξ, t) =
1
ε2 (φ̂− 1)û(ξ, t) ≈ −|ξ|2û(ξ, t),

which is the Fourier transform of the classical diffusion equation

ut (x , t) = ∆u(x , t),
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ε2 (φ̂− 1)û(ξ, t) ≈ −|ξ|2û(ξ, t),

which is the Fourier transform of the classical diffusion equation

ut (x , t) = ∆u(x , t),

and, thus, the Lévy Continuity Theorem gives
Nt∑

k=1

Rk
d→
√

2Wt
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Nonlocal Diffusion (in free space)

We study the nonlocal diffusion equation,

ut (x , t) =
1
λ

∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy ,

(e) suppose φ̂(ξ) = 1 − εα|ξ|α + h.o.t. and λ = εα, then there is a
relationship to fractional diffusion as ε → 0:

ût(ξ, t) =
1
εα

(φ̂− 1)û(ξ, t) ≈ −|ξ|αû(ξ, t),

which is the Fourier transform of the fractional diffusion equation

ut (x , t) = −(−∆)α/2u(x , t),
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and, thus, the Lévy Continuity Theorem gives
Nt∑

k=1

Rk
d→ Lα

t

Burch (CSU and SNL) Probability and Nonlocal Diffusion January 16-22, 2011 21 / 49



Nonlocal Diffusion (in free space)

The effect of α as ε → 0 for u0(x) = χ(1/2,1)(x).

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a) ε = 0.2, α = 2
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Nonlocal Diffusion (in free space)

The effect of α as ε → 0 for u0(x) = χ(1/2,1)(x).
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(a) ε = 0.2, α = 2
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(b) ε = 0.1, α = 2
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(c) ε = 0.05, α = 2
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(d) ε = 0.2, α = 1
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(e) ε = 0.1, α = 1
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(f) ε = 0.05, α = 1

Figure: We show the solution on Ω = (0, 1) for 10 values of time (pretend Ω = R).
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Nonlocal Diffusion (on a bounded domain)

We next study the nonlocal diffusion equation,

ut (x , t) =
1
λ

∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy ,

on a bounded domain.

1. let Ω denote a bounded domain, for simplicity Ω = (0, 1)

2. u0(x) ≥ 0 and
∫

Ω

u0(x) dx = 1

3. we consider two types of boundary conditions:
a. “Dirichlet” volume constraints, i.e., CTRW with absorbing

boundaries
b. “Neumann” volume constraints, i.e., CTRW with insulated

boundaries
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“Dirichlet” Constraints / Absorbing Boundaries

Consider the nonlocal “Dirichlet” problem,




ut (x , t) =
1
λ

∫

R

(
u(y , t) − u(x , t)

)
φ(x − y) dy , x ∈ Ω,

u(x , t) = 0, x ∈ R \ Ω,
u(x , 0) = u0(x), x ∈ Ω.
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“Dirichlet” Constraints / Absorbing Boundaries

Consider the nonlocal “Dirichlet” problem,




ut (x , t) =
1
λ

∫

R

(
u(y , t) − u(x , t)

)
φ(x − y) dy , x ∈ Ω,

u(x , t) = 0, x ∈ R \ Ω,
u(x , 0) = u0(x), x ∈ Ω.

In the CTRW framework, this imposes absorbing boundaries.

Ω

Ω\RI

Illustration of absorbing boundaries.
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“Neumann” Constraints / Insulated Boundaries

Consider the nonlocal “Neumann” problem,




ut (x , t) =
1
λ

∫

Ω

(
u(y , t)− u(x , t)

)
φ(x − y) dy , x ∈ Ω,

u(x , 0) = u0(x), x ∈ Ω.
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“Neumann” Constraints / Insulated Boundaries

Consider the nonlocal “Neumann” problem,




ut (x , t) =
1
λ

∫

Ω

(
u(y , t)− u(x , t)

)
φ(x − y) dy , x ∈ Ω,

u(x , 0) = u0(x), x ∈ Ω.

In the CTRW framework, this imposes insulated boundaries.

Ω

Ω\RI

Illustration of insulated boundaries.
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Numerical Solutions and Simulations

Conjecture:

(i) the nonlocal “Dirichlet” problem is the master equation for a Markovian
CTRW on Ω with absorbing boundaries

(ii) the nonlocal “Neumann” problem is the master equation for a Markovian
CTRW on Ω with insulated boundaries
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Numerical Solutions and Simulations

Conjecture:

(i) the nonlocal “Dirichlet” problem is the master equation for a Markovian
CTRW on Ω with absorbing boundaries

(ii) the nonlocal “Neumann” problem is the master equation for a Markovian
CTRW on Ω with insulated boundaries

evidence:

- compute numerical solutions, uh, via a finite element method

- compute kernel density estimates, µN , from N simulations

- show ‖µN − uh‖ → 0 as h → 0 and N → ∞
note: ‖µN − uh‖ ≤ ‖µN − u‖︸ ︷︷ ︸

sampling

+ ‖uh − u‖︸ ︷︷ ︸
numerical
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Numerical Solutions and Simulations

We compare numerical solutions to results from CTRW simulations

uh is the numerical solution of the master equation (black)

µN is the kernel density estimate from simulations (red)
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(a) u0(x) = 2x

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

(b) u0(x) = π
2 sin(πx)

Figure: Left: absorbing boundaries. Right: insulated boundaries.
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Non-Markovian CTRWs

Next consider the master equation for an arbitrary CTRW,

ut (x , t) =
∫ t

0
Λ(t − t ′)

∫

R

(
u(y , t ′)J(y , x)− u(x , t ′)J(x , y)

)
dy dt ′.
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Non-Markovian CTRWs

Next consider the master equation for an arbitrary CTRW,

ut (x , t) =
∫ t

0
Λ(t − t ′)

∫

R

(
u(y , t ′)J(y , x)− u(x , t ′)J(x , y)

)
dy dt ′.

The nonlocal diffusion equation,

ut (x , t) =
1
λ

∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy ,

is a special (Markovian) case that arises when Λ(t − t ′) = 1
λδ(t − t ′) and

J(x , y) = J(y , x) = φ(x − y)
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Non-Markovian CTRWs

Next consider the master equation for an arbitrary CTRW,

ut (x , t) =
∫ t

0
Λ(t − t ′)

∫

R

(
u(y , t ′)J(y , x)− u(x , t ′)J(x , y)

)
dy dt ′.

The memory kernel Λ is capable of incorporating temporal, e.g.,
non-Markovian, effects and is related to the wait-time density ω via

Λ̂(s) =
sω̂(s)

1 − ω̂(s)
.
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Non-Markovian CTRWs

Next consider the master equation for an arbitrary CTRW,

ut (x , t) =
∫ t

0
Λ(t − t ′)

∫

R

(
u(y , t ′)J(y , x)− u(x , t ′)J(x , y)

)
dy dt ′.

The memory kernel Λ is capable of incorporating temporal, e.g.,
non-Markovian, effects and is related to the wait-time density ω via

Λ̂(s) =
sω̂(s)

1 − ω̂(s)
.

note: if ω 6∼ Exp, then Λ 6∝ δ and the CTRW is non-Markovian
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Non-Markovian CTRWs

Next consider the master equation for an arbitrary CTRW,

ut (x , t) =
∫ t

0
Λ(t − t ′)

∫

R

(
u(y , t ′)J(y , x)− u(x , t ′)J(x , y)

)
dy dt ′.

The memory kernel Λ is capable of incorporating temporal, e.g.,
non-Markovian, effects and is related to the wait-time density ω via

Λ̂(s) =
sω̂(s)

1 − ω̂(s)
.

note: if ω 6∼ Exp, then Λ 6∝ δ and the CTRW is non-Markovian

Taking Λ(t − t ′) = 1
τ 2 exp

(
− t−t′

τ/2

)
, i.e., ω ∼ Gamma(2, τ), we arrive at the

nonlocal Cattaneo-Vernotte equation

ut (x , t) +
τ

2
utt (x , t) =

1
2τ

∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy .
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Non-Markovian CTRWs

The nonlocal Cattaneo-Vernotte equation,

ut (x , t) +
τ

2
utt (x , t) =

1
2τ

∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy ,

- is the master equation for a renewal-reward process

- is the nonlocal version of the classical Cattaneo-Vernotte equation

ut(x , t) +
τ

2
utt (x , t) = D∆u(x , t)

remark: (as we did in the Markovian case) we can study non-Markovian
CTRWs on bounded domains via the associated master equation
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Outline

1 Overview

2 Master Equations for Markovian CTRWs
Nonlocal Diffusion (in free space)
Nonlocal Diffusion (on a bounded domain)

3 Other Topics and Ideas
Non-Markovian CTRWs
Lévy-Khintchine Decomposition
Probability and Smoothing
Nonlocal Advection (maybe...?)
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Lévy-Khintchine Decomposition

Definition: Infinitely Divisible Distribution
A distribution F of a random variable X is infinitely divisible if, for any n ∈ N,

there exists Xi
iid∼ G such that

n∑

i=1

Xi
d
= X .
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note: (1) such random variables appear in a generalized version of CLT
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Lévy-Khintchine Decomposition

Definition: Infinitely Divisible Distribution
A distribution F of a random variable X is infinitely divisible if, for any n ∈ N,

there exists Xi
iid∼ G such that

n∑

i=1

Xi
d
= X .

note: (1) such random variables appear in a generalized version of CLT
(2) Gaussian, Cauchy, gamma, Student’s t , Poisson, exponential

The Lévy-Khintchine decomposition characterizes all infinitely divisible
processes.

All Lévy processes are infinitely divisible processes (and vice-versa).

The Lévy-Khintchine decomposition thus characterizes all Lévy processes.
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Lévy-Khintchine Decomposition

Let b ∈ R, c ∈ R≥0, and φ (relaxing earlier assumptions) be such that

φ(−x) = φ(x) and
∫

R

(1 ∧ |x |2)φ(x) dx < ∞.
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Lévy-Khintchine Decomposition

Let b ∈ R, c ∈ R≥0, and φ (relaxing earlier assumptions) be such that

φ(−x) = φ(x) and
∫

R

(1 ∧ |x |2)φ(x) dx < ∞.

Then, there is a Lévy process Lt consisting of four independent processes
(drift, diffusion, compound Poisson, square-integrable martingale) such that

ϕLt (ξ) = exp

(

t

(

iξb −

ξ2c
2

+

∫

|x|≥δ

(

eiξx
− 1
)

φ(x) dx +

∫

|x|<δ

(

eiξx
− 1
)

φ(x) dx

))

.
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Lévy-Khintchine Decomposition

Let b ∈ R, c ∈ R≥0, and φ (relaxing earlier assumptions) be such that

φ(−x) = φ(x) and
∫

R

(1 ∧ |x |2)φ(x) dx < ∞.

Then, there is a Lévy process Lt consisting of four independent processes
(drift, diffusion, compound Poisson, square-integrable martingale) such that

ϕLt (ξ) = exp

(

t

(

iξb −

ξ2c
2

+

∫

|x|≥δ

(

eiξx
− 1
)

φ(x) dx +

∫

|x|<δ

(

eiξx
− 1
)

φ(x) dx

))

.

A little work demonstrates the master equation is

ut (x , t) = b
∂u
∂x

(x , t) +
c
2
∂2u
∂x2 (x , t) +

∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy .
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Lévy-Khintchine Decomposition

Let b ∈ R, c ∈ R≥0, and φ (relaxing earlier assumptions) be such that

φ(−x) = φ(x) and
∫

R

(1 ∧ |x |2)φ(x) dx < ∞.

Then, there is a Lévy process Lt consisting of four independent processes
(drift, diffusion, compound Poisson, square-integrable martingale) such that

ϕLt (ξ) = exp

(

t

(

iξb −

ξ2c
2

+

∫

|x|≥δ

(

eiξx
− 1
)

φ(x) dx +

∫

|x|<δ

(

eiξx
− 1
)

φ(x) dx

))

.

A little work demonstrates the master equation is

ut (x , t) = b
∂u
∂x

(x , t) +
c
2
∂2u
∂x2 (x , t) +

∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy .

If we ignore drift and diffusion...
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Lévy-Khintchine Decomposition

Let b = 0, c = 0, and φ be such that

φ(−x) = φ(x) and
∫

R

(1 ∧ |x |2)φ(x) dx < ∞.

Then, there is a Lévy process Lt consisting of four independent processes
(drift = 0, diffusion = 0, compound Poisson, square integrable martingale)
such that

ϕLt (ξ) = exp

(
t

(∫

|x|≥δ

(
eiξx − 1

)
φ(x) dx +

∫

|x|<δ

(
eiξx − 1

)
φ(x) dx

))
.

A little work demonstrates the master equation is

ut (x , t) =
∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy .
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Lévy-Khintchine Decomposition

Let b = 0, c = 0, and φ be such that

φ(−x) = φ(x) and
∫

R

(1 ∧ |x |2)φ(x) dx < ∞.

Then, there is a Lévy process Lt consisting of four independent processes
(drift = 0, diffusion = 0, compound Poisson, square integrable martingale)
such that

ϕLt (ξ) = exp

(
t

(∫

|x|≥δ

(
eiξx − 1

)
φ(x) dx +

∫

|x|<δ

(
eiξx − 1

)
φ(x) dx

))
.

1st term describes a compound Poisson process (long range interactions)
2nd term describes a square integrable martingale (short range interactions)
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Lévy-Khintchine Decomposition

Recall the master equation

ut (x , t) =
∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy .

Let φ(x) be such that

φ(−x) = φ(x) and
∫

R

(1 ∧ |x |2)φ(x) dx < ∞.
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Lévy-Khintchine Decomposition

Recall the master equation

ut (x , t) =
∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy .

Let φ(x) be such that

φ(−x) = φ(x) and
∫

R

(1 ∧ |x |2)φ(x) dx < ∞.

Cases:

(a)
∫
R
φ(x) dx < ∞, a.s. a finite number of steps on every compact interval,

finite activity
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Lévy-Khintchine Decomposition
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Lévy-Khintchine Decomposition

Recall the master equation

ut (x , t) =
∫
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(
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Let φ(x) be such that

φ(−x) = φ(x) and
∫
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(1 ∧ |x |2)φ(x) dx < ∞.

Cases:

(a)
∫
R
φ(x) dx < ∞, a.s. a finite number of steps on every compact interval,

finite activity

(b)
∫
R
φ(x) dx = ∞, a.s. an infinite number of steps on every compact

interval, infinite activity
(i)
∫
R
|x |φ(x) dx < ∞, finite variation

(ii)
∫
R
|x |φ(x) dx = ∞, infinite variation
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Lévy-Khintchine Decomposition

Recall the master equation

ut (x , t) =
∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy .

For the particular choice φ(x) = γ
|x|1+2s , s ∈ (0, 1), notice

φ(−x) = φ(x) and
∫

R

(1 ∧ |x |2)φ(x) dx < ∞.
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Lévy-Khintchine Decomposition

Recall the master equation

ut (x , t) =
∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy .

For the particular choice φ(x) = γ
|x|1+2s , s ∈ (0, 1), notice

φ(−x) = φ(x) and
∫

R

(1 ∧ |x |2)φ(x) dx < ∞.

One can show that u is the density of a Lévy 2s-stable process, i.e.,

ut (x , t) = −(−∆)su(x , t).
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Outline

1 Overview

2 Master Equations for Markovian CTRWs
Nonlocal Diffusion (in free space)
Nonlocal Diffusion (on a bounded domain)

3 Other Topics and Ideas
Non-Markovian CTRWs
Lévy-Khintchine Decomposition
Probability and Smoothing
Nonlocal Advection (maybe...?)
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Relationship to (Du and Zhou, 2010)

Recall the master equation

ut (x , t) =
∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy .
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Relationship to (Du and Zhou, 2010)

Recall the master equation

ut (x , t) =
∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy .

For the particular choice φ(x) = γ
|x|1+2s χ(−δ,δ)(x), s ∈ (0, 1), notice

φ(−x) = φ(x) and
∫

R

(1 ∧ |x |2)φ(x) dx < ∞.
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Relationship to (Du and Zhou, 2010)

Recall the master equation

ut (x , t) =
∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy .

For the particular choice φ(x) = γ
|x|1+2s χ(−δ,δ)(x), s ∈ (0, 1), notice

φ(−x) = φ(x) and
∫

R

(1 ∧ |x |2)φ(x) dx < ∞.

Cases:

(a)
∫
R
φ(x) dx < ∞, a.s. a finite number of steps on every compact interval,

finite activity, no smoothing

(b)
∫
R
φ(x) dx = ∞, a.s. an infinite number of steps on every compact

interval, infinite activity, (fractional) smoothing
(i)
∫
R
|x |φ(x) dx < ∞, the case s ∈ (0, 1/2) in above, finite variation

(ii)
∫
R
|x |φ(x) dx = ∞, the case s ∈ [1/2, 1) in above, infinite variation
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Relationship to (Du and Zhou, 2010)

Recall the master equation

ut (x , t) =
∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy .

For the particular choice φ(x) = γ
|x|1+2s χ(−δ,δ)(x), s ∈ (0, 1), notice

φ(−x) = φ(x) and
∫

R

(1 ∧ |x |2)φ(x) dx < ∞.

Cases:

(a)
∫
R
φ(x) dx < ∞, a.s. a finite number of steps on every compact interval,

finite activity, no smoothing

(b)
∫
R
φ(x) dx = ∞, a.s. an infinite number of steps on every compact

interval, infinite activity, (fractional) smoothing
(i)
∫
R
|x |φ(x) dx < ∞, the case s ∈ (0, 1/2) in above, finite variation

(ii)
∫
R
|x |φ(x) dx = ∞, the case s ∈ [1/2, 1) in above, infinite variation

observation: “activity” of process = “smoothing” of operator
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Lévy-Khintchine Decomposition

Let φ be such that
∫

R

xφ(x) dx = µ < ∞ and
∫

R

(1 ∧ |x |2)φ(x) dx < ∞.

Then, there is a Lévy process Lt (compound Poisson and square integrable
martingale) such that

ϕLt (ξ) = exp

(
t

(∫

|x|≥δ

(
eiξx − 1

)
φ(x) dx +

∫

|x|<δ

(
eiξx − 1

)
φ(x) dx

))
.

1st term describes a compound Poisson process (long range interactions)
2nd term describes a square integrable martingale (short range interactions)

note: these are both (potentially) biased now
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Lévy-Khintchine Decomposition

Let φ be such that
∫

R

xφ(x) dx = µ < ∞ and
∫

R

(1 ∧ |x |2)φ(x) dx < ∞.

Then, there is a Lévy process Lt (compound Poisson and square integrable
martingale) such that the master equation is

ut (x , t) =
∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy .
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Lévy-Khintchine Decomposition

Let φ be such that
∫

R

xφ(x) dx = µ < ∞ and
∫

R

(1 ∧ |x |2)φ(x) dx < ∞.

Then, there is a Lévy process Lt (compound Poisson and square integrable
martingale) such that the master equation is

ut (x , t) =
∫

R

(
u(y , t)− u(x , t)

)
φ(x − y) dy .

Consider φε(x − y) = 1
ε · 1

εφ
( x−y

ε

)
so that

ut (x , t) =
∫

R

(
u(y , t)− u(x , t)

)
φε(x − y) dy

=

∫

R

(
(y − x)

∂u
∂x

(x , t) +
(y − x)2

2
∂2u
∂x2 (x , t)− · · ·

)
φε(x − y) dy

= −µ
∂u
∂x

(x , t) + O(ε).
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Thanks! and Questions?

I’d like to thank

- Dr. Richard Lehoucq and Sandia National Laboratories

- Dr. Don Estep and Colorado State University

- the organizers of this mini-workshop and the MFO

- all of you – it has been a very enjoyable week

I welcome any questions and comments.
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