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Local Theory of Elasticity

Assumptions and Notation

An isotropic, homogeneous hyperelastic medium.

A stress-free undistorted state as the reference configuration.

Position in the reference configuration: X = (X1,X2,X3).

Position at time t: x(X, t) = (x1(X, t), x2(X, t), x3(X, t)).

Displacement: u(X, t) = x(X, t)− X.
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Local Theory of Elasticity

Constitutive Equation

σ = σ(A) ≡ ∂W (A)/∂A

σ : nominal stress tensor (transpose of the first Piola-Kirchhoff stress tensor)

W (A) : strain energy density function

A(X, t) = Grad x(X, t) : deformation gradient

Equation of Motion

ρ0ẍ = Div σ

ρ0 : mass density, (no body forces)

(The symbol ˙ indicates the material time derivative )
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Local Theory of Elasticity

Major Drawbacks of Local Theory

Absence of any intrinsic length scale.

Neglects the long range forces (important especially at small scales).

It is incapable of predicting, for instance,

the dispersive nature of harmonic waves in crystal lattices,
the boundedness of the stress field near the tip of a crack.

Generalized Theories of Elasticity

Micropolar theories.

Strain elasticity (or higher-order gradient) theories.

Peridynamic theory.

Nonlocal elasticity theory. (Kröner, Eringen, Edelen, Kunin, Rogula )
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Nonlocal Theory of Elasticity

Constitutive Equation

Stress at a point depends on the strain field at every point in the
body.

S = S(X, t) ≡
∫
β(|X− Y|)σ(A(Y, t))dY

S: stress tensor, β(|X− Y|) : kernel function

The only difference between the two theories is due to the constitutive equations.

Equation of Motion

ρ0ẍ = Div S

Henceforth, all quantities appear in non-dimensional form and ρ0 = 1
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Case 1: Longitudinal Motion

Equation of Motion

Consider the longitudinal motion:

x1 = X1 + U(X1, t), x2 = X2, x3 = X3

The displacement field:

u1 ≡ U(X1, t), u2 = u3 ≡ 0

Equation of motion:
Utt = (S(Ux))x

with x ≡ X1 and stress component S .
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Case 1: Longitudinal Motion

Constitutive Equation in Local Theory

σ(Ux)(x , t) = W ′(Ux(x , t))

W : strain energy function (with W (0) = W ′(0) = 0)

Constitutive Equation in Nonlocal Theory

S(Ux)(x , t) =

∫ ∞
−∞

β(x − y)W ′(Ux(y , t))dy

January 17-21, 2011, Oberwolfach



Case 1: Longitudinal Motion

Nonlocal Nonlinear PDE for Longitudinal Waves

1D equation of motion:

Utt = (

∫ ∞
−∞

β(x − y)W ′(Ux(y , t))dy)x

Differentiate w.r.t. x

Uxtt = (

∫ ∞
−∞

β(x − y)W ′(Ux(y , t))dy)xx

Change variables Ux = u, and write W ′(u) = W ′(0)[u + g(u)]

Nonlinear Nonlocal Wave Equation

utt = [β ∗ (u + g(u))]xx
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Examples of 1D Kernel Functions

Nonlinear Nonlocal Wave Equation

utt = [β ∗ (u + g(u))]xx

Assumption

0 ≤ β̂(ξ) ≤ C (1 + ξ2)−r/2

Dirac Measure

β = Dirac measure, r = 0.

utt − uxx = g(u)xx .

Equation of motion is a nonlinear wave equation.
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Examples of 1D Kernel Functions

Nonlinear Nonlocal Wave Equation

utt = [β ∗ (u + g(u))]xx

Triangular Kernel

β(x) =

{
1− |x | |x | ≤ 1
0 |x | ≥ 1.

β̂(ξ) = 4
ξ2 sin2( ξ2 ), r = 2.

(β ∗ v)xx = v(x + 1)− 2v(x) + v(x − 1).

Equation of motion is a differential-difference equation.
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Examples of 1D Kernel Functions

Nonlinear Nonlocal Wave Equation

utt = [β ∗ (u + g(u))]xx

Exponential Kernel

β(x) =
1

2
e−|x |.

β̂(ξ) = (1 + ξ2)−1, r = 2.

(β ∗ v)xx = (1− D2
x )−1vxx .

Equation of motion: Improved Boussinesq equation

utt − uxx − uxxtt = (g(u))xx
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Examples of 1D Kernel Functions

Nonlinear Nonlocal Wave Equation

utt = [β ∗ (u + g(u))]xx

Double Exponential Kernel

β(x) =
1

2(c2
1 − c2

2 )
(c1e−|x |/c1 − c2e−|x |/c2).

β̂(ξ) = (1 + γ1ξ
2 + γ2ξ

4)−1, r = 4.

(β ∗ v)xx = (1− γ1D2
x + γ2D4

x )−1vxx .

Equation of motion: Higher-order Boussinesq equation
(Duruk, Erkip, Erbay IMA J. Appl. Math. (2009))

utt − uxx − uxxtt + βuxxxxtt = (g(u))xx
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Examples of 1D Kernel Functions

Nonlinear Nonlocal Wave Equation

utt = [β ∗ (u + g(u))]xx

Gaussian Kernels

β(x) =
1√
2π

e−x2/2, β̂(ξ) = e−ξ
2/2.

β(x) =
1√
2π

(1− x2)e−x2/2, β̂(ξ) = ξ2e−ξ
2/2.

Equation of motion: an integro-differential equation.

All these are Boussinesq type nonlocal nonlinear PDEs.
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Case 2: Transverse Motion

Equation of Motion

Consider the transverse motion:

x1 = X1, x2 = X2 + U(X1, t), x3 = X3 + V (X1, t)

The displacement field:

u1 ≡ 0, u2 ≡ U(X1, t), u3 ≡ V (X1, t)

Equation of motion:

Utt = (P(Ux ,Vx))x

Vtt = (Q(Ux ,Vx))x

with x ≡ X1 and stress components P, Q.
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Case 2: Transverse Motion

Constitutive Equation in Nonlocal Theory

P(Ux ,Vx) =

∫ ∞
−∞

β(x − y)
∂W (Ux ,Vx)

∂Ux
dy

Q(Ux ,Vx) =

∫ ∞
−∞

β(x − y)
∂W (Ux ,Vx)

∂Vx
dy

W : strain energy function (with W (0, 0) = 0, ∇W (0, 0) = 0)

For isotropic case W = F (U2
x + V 2

x ).
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Case 2: Transverse Motion

Nonlocal Nonlinear PDE for Transverse Waves

utt =

(
β ∗ ∂F

∂u

)
xx

vtt =

(
β ∗ ∂F

∂v

)
xx

where u = Ux , v = Vx .
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Case 3: Anti-Plane Shear Motion

Equation of Motion

Consider the anti-plane shear motion:

x1 = X1, x2 = X2, x3 = X3 + w(X1,X2, t)

The displacement field:

u1 = u2 ≡ 0, u3 = w(X1,X2, t)

Equation of motion:

wtt = (P(wx ,wy ))x + (Q(wx ,wy ))y

with x ≡ X1, y ≡ X2 and stress components P, Q.
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Case 3: Anti-Plane Shear Motion

Constitutive Equation in Nonlocal Theory

P(wx ,wy ) =

∫ ∞
−∞

β(x − y)
∂W (wx ,wy )

∂wx
dy

Q(wx ,wy ) =

∫ ∞
−∞

β(x − y)
∂W (wx ,wy )

∂wy
dy

W : strain energy function (with W (0, 0) = 0, ∇W (0, 0) = 0)

For isotropic case W = F (w 2
x + w 2

y ).

Nonlocal Nonlinear PDE for Shear Waves

wtt =

(
β ∗ ∂F

∂wx

)
x

+

(
β ∗ ∂F

∂wy

)
y
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Examples of 2D Kernel Functions

Nonlinear Nonlocal PDE for Shear Motion

wtt =

(
β ∗ ∂F

∂wx

)
x

+

(
β ∗ ∂F

∂wy

)
y

Assumption

0 ≤ β̂(ξ) ≤ C (1 + |ξ|2)−r/2

The Gaussian Kernel

β(x , y) = (2π)−1e−(x2+y2)/2

β̂(ξ1, ξ2) = e−(ξ2
1+ξ2

2)/2

Take any r .
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Examples of 2D Kernel Functions

Nonlinear Nonlocal PDE for Shear Motion

wtt =

(
β ∗ ∂F

∂wx

)
x

+

(
β ∗ ∂F

∂wy

)
y

The Modified Bessel Function Kernel

β(x , y) = (2π)−1K0(
√

x2 + y 2)

(K0 : the modified Bessel function of the second kind of order zero)

β̂(ξ1, ξ2) = (1 + ξ2
1 + ξ2

2)−1

r = 2

Letting F (s) = 1
2 s + G (s)

wtt −∆w −∆wtt =

(
∂G

∂wx

)
x

+

(
∂G

∂wy

)
y

.
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Examples of 2D Kernel Functions

Nonlinear Nonlocal PDE for Shear Motion

wtt =

(
β ∗ ∂F

∂wx

)
x

+

(
β ∗ ∂F

∂wy

)
y

The bi-Helmholtz Type Kernel

β(x , y) =
1

2π(c2
1 − c2

2 )
[K0(

√
x2 + y 2/c1)− K0(

√
x2 + y 2/c2)]

β̂(ξ1, ξ2) = [1 + γ1(ξ2
1 + ξ2

2) + γ2(ξ2
1 + ξ2

2)2]−1

r = 4.

wtt −∆w − γ1∆wtt + γ2∆2wtt =

(
∂G

∂wx

)
x

+

(
∂G

∂wy

)
y

.
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Cauchy Problems

Problem 1: Longitudinal Motion

utt = [β ∗ (u + g(u))]xx , x ∈ R, t > 0,

u(x , 0) = ϕ(x), ut(x , 0) = ψ(x).

Duruk, Erbay, Erkip Nonlinearity (2010)
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Cauchy Problems

Problem 2: Transverse Motion

u1tt = (β ∗ (u1 + g1(u1, u2)))xx , x ∈ R, t > 0

u2tt = (β ∗ (u2 + g2(u1, u2)))xx , x ∈ R, t > 0

u1(x , 0) = ϕ1(x), u1t(x , 0) = ψ1(x)

u2(x , 0) = ϕ2(x), u2t(x , 0) = ψ2(x).

Duruk, Erbay, Erkip J. Differential Equations (2011)

Exactness Condition

∂g1

∂u2
=
∂g2

∂u1
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Cauchy Problems

Problem 3: Anti-Plane Shear Motion

wtt =

(
β ∗ ∂F

∂wx

)
x

+

(
β ∗ ∂F

∂wy

)
y

, (x , y) ∈ R2, t > 0,

w(x , y , 0) = ϕ(x , y), wt(x , y , 0) = ψ(x , y)

Erbay, Erbay, Erkip Nonlinearity Submitted
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Local Existence for Problem 1

Hs ∩ L∞ valued ODE system

ut = v , u(0) = ϕ

vt = [β ∗ (u + g(u))]xx , v(0) = ψ .
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Local Existence for Problem 1

Local Bound and Lipschitz Condition

Lemma: Let g ∈ C [s]+1(R), s ≥ 0. Then there is some constant
K (M) such that for all u ∈ Hs ∩ L∞ with ‖u‖∞ ≤ M, we have

‖g(u)‖s ≤ K (M)‖u‖s ,

and some other constant J(M) such that for all u, v ∈ Hs ∩ L∞

with ‖u‖∞ + ‖u‖s ≤ M, ‖v‖∞ + ‖v‖s ≤ M we have

‖g(u)− g(v)‖s ≤ J(M)‖u − v‖s .
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Local Existence for Problem 1

Local Well-Posedness Theorem

Consider the Cauchy problem Let g ∈ C [s]+1(R) g(0) = 0.
There is some T > 0 such that the Cauchy problem is well-posed
with solution u ∈ C 2([0,T ],Hs ∩ L∞) for initial data
ϕ,ψ ∈ Hs ∩ L∞ in any of the following cases.

Case 1: s > 1/2 and r ≥ 2,

Case 2: s ≥ 0 and r > 5/2,

Case 3: s ≥ 0 and βxx is a finite measure on R.

Local Well-Posedness Theorem for Problem 2

A similar theorem holds for Problem 2, the coupled system of
transverse motion.
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Local Existence for Problems 1 and 2

Triangular kernel

β(x) =

{
1− |x | |x | ≤ 1
0 |x | ≥ 1.

r = 2, (β ∗ v)xx = v(x + 1)− 2v(x) + v(x − 1).

Case 3 applies for s ≥ 0 (βxx is a finite measure).

Exponential kernel

β(x) =
1

2
e−|x |.

r = 2, (β ∗ v)xx = β ∗ v − v .

Case 3 applies for s ≥ 0 (βxx is a finite measure).
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Local Existence for Problems 1 and 2
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Local Existence for Problem 1 and 2

Double exponential kernel

β(x) =
1

2(c2
1 − c2

2 )
(c1e−|x |/c1 − c2e−|x |/c2).

r = 4, (β ∗ v)xx = (1− γ1D2
x + γ2D4

x )−1vxx .

Case 2 applies for s ≥ 0 (r > 5/2) .

Gaussian kernels

β(x) = e−x2/2.

β(x) = (1− x2)e−x2/2.

Case 2 applies for s ≥ 0 (r > 5/2) .
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Local Existence for Problem 3

Local Well-Posedness Theorem A

Suppose s > 2, r ≥ 2 and ϕ,ψ ∈ Hs(R2). Then there is some
T > 0 s.t. the Cauchy problem is well posed with w(x , y , t) in
C 2([0,T ],Hs(R2)).

Local Well-Posedness Theorem B

Suppose s ≥ 1, r > 3 and ϕ,ψ ∈ X s . Then there is some T > 0
s.t. the Cauchy problem is well posed with w(x , y , t) in
C 2([0,T ],X s) where

X s = {w ∈ Hs(R2); wx ,wy ∈ L∞(R2)},

with the norm

‖w‖s,∞ = ‖w‖s + ‖wx‖∞ + ‖wy‖∞.
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Global Existence for Problem 1

There is a global solution if and only if for any T <∞, we
have

lim sup
t→T−

(‖u (t)‖Hs∩L∞ + ‖ut (t)‖Hs∩L∞) <∞ .

Theorem: Blow up is in L∞

There is a global solution if and only if for any T <∞, we have

lim sup
t→T−

‖u (t)‖∞ <∞ .
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Global Existence for Problem 1

Conservation of energy

Lemma: Let

G (u) =

∫ u

0
g(p)dp.

For a solution u of the integro-differential equation, the energy

E (t) = ‖Put‖2 + ‖u‖2 + 2

∫
R

G (u(x , t))dx

is constant where

Pv = F−1(|ξ|−1β̂(ξ))−1/2v̂(ξ).

(P2(β ∗ v)xx = −v)
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Global Existence for Problem 1

Theorem A

Let s ≥ 0 and r > 3. Let ϕ,ψ ∈ Hs
⋂

L∞, Pψ ∈ L2 and
G (ϕ) ∈ L1. If there is some k such that

G (u) ≥ −ku2 for all u ∈ R ,

then the Cauchy problem has a global solution in C 2([0,∞) ,Hs).

Theorem B

Let s ≥ 0 and βxx ∗ v = h ∗ v − λv for some λ > 0 and for some
h ∈ L1 ∩ L∞. Let ϕ,ψ ∈ Hs ∩ L∞, Pψ ∈ L2 and G (ϕ) ∈ L1. If
there is some C > 0 and q > 1 so that

|g (r)|q ≤ CG (r)

for all r ∈ R; then the Cauchy problem has a global solution in
C 2([0,∞) ,Hs).
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Global Existence for Problem 2

Let s > 1/2, r ≥ 2. There is a global solution if and only if

for any T <∞, we have lim sup
t→T−

(‖u1 (t)‖∞ <∞+‖u2 (t)‖∞ <∞.

Energy identity

For solutions (u1, u2) of integro-differential equations, the energy

E (t) = ‖Pu1t‖2 + ‖Pu2t‖2 + ‖u1‖2 + ‖u2‖2 + 2

∫
R

G (u1, u2)dx

is constant.
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Global Existence for Problem 2

Theorem A

Let s > 1/2, r > 3. Let ϕi , ψi ∈ Hs , Pψi ∈ L2 (i = 1, 2) and
G (ϕ1, ϕ2) ∈ L1. If there is some k > 0 so that

G (a, b) ≥ −k(a2 + b2),

for all a, b ∈ R, then the Cauchy problem has a global solution
u1, u2 in C 2([0,∞) ,Hs).
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Global Existence for Problem 2

Theorem B

Let s > 1/2, h ∈ L1 ∩ L∞.

Let (β ∗ v)xx = h ∗ v − λv with λ > 0.

Let ϕ1, ϕ2, ψ1, ψ2 ∈ Hs , Pψ1,Pψ2 ∈ L2 and G (ϕ1, ϕ2) ∈ L1.

If there is some C > 0, k ≥ 0 and qi > 1 so that

|gi (a, b)|qi ≤ C [G (a, b) + k(a2 + b2)]

for all i = 1, 2, a, b ∈ R, then the Cauchy problem has a global
solution u1, u2 in C 2([0,∞) ,Hs).
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Global Existence for Problem 3

There is a global solution if and only if for any T <∞, we
have

lim sup
t→T−

‖wx(t)‖∞ + ‖wy (t)‖∞ <∞ .
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Global Existence for Problem 3

Conservation of energy

Define the linear operator Rαu = F−1
(

(β̂(ξ))−
α
2 û(ξ)

)
. Then

R−2u = β ∗ u, and equation of motion takes the form

R2wtt = (Fwx )x + (Fwy )y .

Lemma: Suppose that the solution of the Cauchy problem problem
exists on [0,T ). If Rψ ∈ L2 and F (|∇φ|2) ∈ L1, then for any
t ∈ [0,T ) the energy

E (t) =
1

2
‖Rwt(t)‖2 +

∫
R2

F (w 2
x (t) + w 2

y (t))dxdy

is constant in [0,T ).
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Global Existence for Problem 3

Theorem

Let s ≥ 1 and r > 4. Let ϕ,ψ ∈ X s , Rψ ∈ L2 and F (|∇φ|2) ∈ L1.
If there is some k > 0 so that F (u) ≥ −ku for all u ≥ 0, then the
Cauchy problem has a global solution in C 2([0,∞),X s).
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Blow-up in Finite Time for Problem 1

Theorem

Suppose Pϕ,Pψ ∈ L2 and G (ϕ) ∈ L1. If E (0) < 0 and there is
some ν > 0 such that

pF ′ (p) ≤ 2 (1 + 2ν) F (p) for all p ∈ R,

where F (u) = G (u) + u2/2. Then the solution u of the Cauchy
problem blows up in finite time.
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Blow-up in Finite Time for Problem 2

Theorem

Let s > 1/2 and r ≥ 2.

Suppose that Pϕ1,Pϕ2,Pψ1,Pψ2 ∈ L2 and G (ϕ1, ϕ2) ∈ L1.

Take F (u1, u2) = 1
2 (u2

1 + u2
2) + G (u1, u2) and

fi = ∂F
∂ui

(i = 1, 2).

If E (0) < 0 and there exists some ν > 0 satisfying

u1f1(u1, u2) + u2f2(u1, u2) ≤ 2(1 + 2ν)F (u1, u2),

then the solution (u1, u2) blows up in finite time.

January 17-21, 2011, Oberwolfach



Blow-up in Finite Time for Problem 3

Theorem

Suppose that the solution, w , of the CP exists, Rϕ, Rψ ∈ L2 and
F (|∇φ|2) ∈ L1. If there exists ν > 0 s.t.

uF ′(u) ≤ (1 + 2ν)F (u) for all u ≥ 0,

and

E (0) =
1

2
‖Rψ‖2 +

∫
R2

F (|∇φ|2)dxdy < 0 ,

then the solution w(x , y , t) blows up in finite time.
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Ongoing studies / future work

Small amplitude solutions

utt = [β ∗ (u + g(u))]xx , x ∈ R, t > 0,

u(x , 0) = ϕ(x), ut(x , 0) = ψ(x).

Questions:

For small initial data, is there a global solution ?

What happens as t goes to infinity ? (scattering problem)

Energy wells ?
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Ongoing studies / future work

Travelling waves

utt = [β ∗ (u + g(u))]xx

has a travelling wave solution u = φ(x − ct) if

c2φ = β ∗ (φ+ g(φ))

Questions:

When do travelling waves exist ?

Are travelling waves stable ?
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Ongoing studies / future work

Double dispersive equations

utt = [β ∗ (u + Lu + g(u))]xx ,

where L is a suitable (pseudo) differential operator in x .

Example: For Lu = −uxx and β(x) = 1
2 e−|x | we get

utt − uxx + uxxxx − uxxtt = (g(u))xx

Weak dispersive limits.

The case r < 2.
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