
A Model for Nonlocal Advection

A Model for Nonlocal Advection

Jim Kamm1 Rich Lehoucq2 Mike Parks2

1Sandia National Laboratories
Optimization and Uncertainty Quantification Department

2Sandia National Laboratories
Multiphysics Simulation Technologies Department

MFO Mini-Workshop on the Mathematics of Peridynamics
16–22 January 2011

SAND2011-0093C



A Model for Nonlocal Advection

Why Nonlocal Advection?
Local and Nonlocal Advection
Peridynamics
Nonlocal Advection and Peridynamics

Are There Other Approaches to Nonlocal Advection?
Others have considered nonlocal advection

A New Approach to Nonlocal Advection
Equations and derivations
Numerics
Computational results

Conclusions
Summary
Path forward

We consider only the 1-D case in this presentation.



A Model for Nonlocal Advection

Why Nonlocal Advection?

Local and Nonlocal Advection

Local advection is a well-known subject.
I The general case is the scalar conservation law:

∂u
∂t

+
∂f (u)

∂x
= 0

where f is the flux function.
I The simplest case is the one-way linear wave equation:

f (u) = c u ⇒ ∂u
∂t

+ c
∂u
∂x

= 0

I Burgers equation is the simplest nonlinear example:

f (u) =
u2

2
⇒ ∂u

∂t
+
∂(u2/2)

∂x
= 0
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Why Nonlocal Advection?

Local and Nonlocal Advection

Such equations possess a rich structure.

Investigation of these equations incorporates several important
concepts of physics, mathematics, and numerics:

I Physics: wave interactions, entropy, EOS
I Mathematics: wave structure of HCLs, weak solutions
I Numerics: solution algorithms, conservation

There are numerous references on these subjects, including
the superb monographs by Dafermos [9], Evans [14], Lax [21],
LeVeque [24, 25], Smoler [34], Trangenstein [35], Whitham [39].
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Why Nonlocal Advection?

Peridynamics

The concepts underpinning peridynamics are well
established.

Peridynamics provides a nonlocal framework for elasticity [33].
I Nonlocal interactions are intrinsic to the theory.

I These interactions are mediated through the micromodulus.
I For elasticity, the nonlocal nature admits discontinuous

displacements, e.g., fracture.
I Consideration of nonlocality leads to fundamental

questions related to continuum mechanics.
I Mathematical and computational investigations have,

likewise, revealed a rich and varied structure.
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Why Nonlocal Advection?

Nonlocal Advection and Peridynamics

What is the relation between nonlinear advection and
peridynamics?

Can we develop a unified approach to peridynamics and
nonlinear advection that captures, e.g., “shock-like” behavior?

I We would like to expand peridynamics-based simulation
capabilities to include impact, energetic materials, etc.

I This necessarily includes coupled mass, momentum, and
energy balance equations. . .

I . . . together with a description of more complex material
response, i.e., a functional relationship between the stress
(pressure) and the state (density, internal energy, strain).

I What is the simplest model equation we can examine to
understand the relevant issues? Burgers equation.
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Are There Other Approaches to Nonlocal Advection?

Others have considered nonlocal advection

Others have considered nonlocal advection (1/4).
I Logan [27]: nonlocal wavespeed related to a specified

function G(u) over a fixed domain Ω ⇒

ut +

(∫
Ω

G(u) dy
)

ux = 0 . (1)

I Baker et al. [4]: nonlocality introduced through Hilbert
transform for vortex sheet modeling⇒

ut + (H(u))x = εuxx , (2)
ut −H(u) ux = εuxx , (3)

where H (u) := −
∫ ∞
−∞

dy u(y)/(x − y) . (4)

Castro and Córdoba [7], Parker [31], Deslippe et al. [10],
Biello and Hunter [6] consider related forms.



A Model for Nonlocal Advection

Are There Other Approaches to Nonlocal Advection?

Others have considered nonlocal advection

Others have considered nonlocal advection (2/4).
I Veksler and Zarmi [36, 37] consider a nonlocal form of the

Burgers equation that is “discretely nonlocal” in that it
involves function values at discrete points.

I Droniou [11], Alibaud and co-workers [2, 3] consider the
usual 1D Burgers flux and fractional derivative
regularization.

I Woyczyński [40] considers fractional derivative operator in
the advective term with no regularization.

I Miškinis [28] considers a fractional derivative advective
term and local diffusive regularization.

I Benzoni-Gavage [5] and Alì et al. [1] consider a
generalized Burgers equation ut + Fx [u] = 0 , where the
F.T. of F [u] is F̂ [u](k) =

∫∞
−∞ Λ(k − l)û(k − l)û(l) dl .
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Are There Other Approaches to Nonlocal Advection?

Others have considered nonlocal advection

Others have considered nonlocal advection (3/4).

I Fellner and Schmeiser [15] rewrite the system
ut + u ux = φx , φxx − φ = u as the single equation
ut + u ux = φx [u] , where φ[u] =

∫
R G(x − y) u(y) dy .

I Liu [26] considers nonlocal Burgers equations of the form
ut + u ux + (G ∗B[u,ux ])x = 0 , where G is the same kernel.

I Chmaj [8] considers traveling wave solutions to a
generalized nonlocal Burgers equation of the form
ut + (u2/2)x + u − K ∗ u = 0 , for symmetric K .

I Duan et al. [13] examine existence and stability of
solutions to equations that are multi-dimensional
generalizations of those studied by Chmaj [8] .
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Are There Other Approaches to Nonlocal Advection?

Others have considered nonlocal advection

Others have considered nonlocal advection (4/4).

I Rohde [32] considers existence and uniqueness of
ut + divf (u) = R[ε,u], R a nonlocal regularization.

I Kissling and Rohde [18] generalize this analysis to
uε,λt + fx (uε,λ) = Rε[λ; uε,λ] , where ε is a scale parameter
and λ is an auxiliary parameter.

I Kissling et al. [19] focus on the multidimensional case for a
particular form of nonlocal regularization in [18].

I Ignat and Rossi [17] analyze the equation

ut (x , t) =
∫
R
(
u(y , t)− u(x , t)

)
J(y − x) dy

+
∫
R
(
h
(
u
)
(y , t)− h

(
u
)
(x , t)

)
K (y − x) dy .
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A New Approach to Nonlocal Advection

Equations and derivations

We posit the following integro-differential equation:

For (x , t) ∈ R× (0,∞):

ut (x , t) +

∫
R

dy ψ
(

u(y , t) + u(x , t)
2

)
φa(y , x) = 0 , (5a)

u(x ,0) = g(x) . (5b)

I The kernel (i.e., micromodulus) is antisymmetric:
φa(y , x) = −φa(x , y)

I φa is typically a translation-invariant function:
φa(y , x) = −φa(y − x)

(5a) is a nonlocal, nonlinear advection equation.
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A New Approach to Nonlocal Advection

Equations and derivations

Why does this equation represent advection?

Let φa(y , x) ≡ −∂δ(x − y)/∂y and evaluate:∫
R

dy ψ
(

u(y , t) + u(x , t)
2

)
φa(y , x) (6a)

= −
[
ψ

(
u(y , t) + u(x , t)

2

)
δ(y − x)

]∣∣∣∣y=∞

y=−∞
(6b)

+

∫
R

dy ψy

(
u(y , t) + u(x , t)

2

)
δ(y − x) (6c)

= ψx
(
u(x , t)

)
(6d)

=⇒ ut + fx (u) = 0 where f ↔ ψ
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A New Approach to Nonlocal Advection

Equations and derivations

Why does this equation represent conservation?

From asymmetry of the integrand,∫ b

a

∫ b

a
ψ

(
u(y , t) + u(x , t)

2

)
φa(y , x) dy dx = 0 . (7)

Therefore, integrating (5a) equation over (a,b) implies

d
dt

∫ b

a
u(x , t) dx+

∫ b

a

∫
R\(a,b)

ψ

(
u(y , t) + u(x , t)

2

)
φa(y , x) dy dx = 0 .

(8)
Extending the interval (a,b) to the entire line and using the
asymmetry of this integrand gives the result that

d
dt

∫
R

u(x , t) dx = 0, i .e.,
∫
R

u(x , t) dx is conserved.
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A New Approach to Nonlocal Advection

Equations and derivations

We develop a more general notion of a flux. . .

Let I1 and I2 be open intervals such that I1 ∩ I2 = ∅. Define

Ψ
(
I1, I2, t

)
:=

∫
I1

∫
I2

ψ

(
u(y , t) + u(x , t)

2

)
φa(y , x) dy dx ,

(9)
The antisymmetry of the integrand leads to the following result.

Lemma 1
Let I1 and I2 be open intervals such that I1 ∩ I2 = ∅. Then

Ψ
(
I1, I2, t

)
+ Ψ

(
I2, I1, t

)
= 0 ,

Ψ
(
I1, I1, t

)
= 0 .

(10)
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A New Approach to Nonlocal Advection

Equations and derivations

With these ideas, we generalize the concept of flux.
Ψ
(
I1, I2, t

)
+ Ψ

(
I2, I1, t

)
= 0 , Ψ

(
I1, I1, t

)
= 0 . (11)

We identify Ψ
(
I1, I2, t

)
with the flux of u from I1 into I2.

(11) shows that the flux is equal and opposite between disjoint
intervals, and there is no flux from an interval into itself.

This contrasts with the usual flux concept with a unit normal on
a surface separating I1 and I2 carrying the direction for the flux.

We conclude that the relation below is an abstract balance law :

d
dt

∫ b

a
u(x , t) dx + Ψ

(
(a,b),R \ (a,b), t

)
= 0 . (12)

The production of a quantity inside an interval is balanced by
the flux of the same quantity out of the same interval.
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A New Approach to Nonlocal Advection

Equations and derivations

These properties are central to the concept of the flux.

Both the production and flux are additive and biadditive,
respectively, over disjoint intervals; e.g.,

d
dt

∫
I1

u(x , t) dx +
d
dt

∫
I2

u(x , t) dx =
d
dt

∫
I1∪I2

u(x , t) dx

= −Ψ
(
I1 ∪ I2,R \ (I1 ∪ I2), t

)
= Ψ

(
R \ (I1 ∪ I2), I1 ∪ I2, t

)
.

These additive and biadditive properties for the production and
flux of a quantity can be shown to be a necessary and sufficient
condition for the antisymmetry of the integrand of Ψ given in
(9), as discussed by Du et al. [12, Section 6].
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A New Approach to Nonlocal Advection

Equations and derivations

Noll’s Lemma I gives an alternative flux expression.

For general antisymmetric φa, and with certain boundedness
and smoothness assumptions, Noll’s Lemma I [23, 30] gives an
explicit expression for the flux function:

f
(
u; x , t

)
= −1

2

∫
R

dz
∫ 1

0
dλ ψ

(
u(x − (1− λ)z, t) + u(x + λz, t)

2

)
× z φa(x − (1− λ)z, x + λz)

(13)
such that

fx (u; x , t) =

∫
R

dy ψ
(

u(y , t) + u(x , t)
2

)
φa(y , x) . (14)
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A New Approach to Nonlocal Advection

Equations and derivations

There is an another expression for the alternative flux.

The expression for the nonlocal flux function given in (13) can
be recast in the following form (c.f. [38, Eq. 9],[22, Def. 2]):

f (u; x , t) =

∫ ∞
0

dz
∫ ∞

0
dy ψ

(
u(x + y , t) + u(x − z, t)

2

)
× φa(x + y , x − z) .

(15)

The flux function depends on:
values to the right of x , labeled by x + y , and
values to the left of x , labeled by x − z .

This differs from the local flux.
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A New Approach to Nonlocal Advection

Numerics

We seek a conservative numerical scheme.
Discretize space into cells [xi−1/2, xi+1/2] and time into intervals
[tn, tn+1]. On the i th cell, define

Ψ(xi−1/2, xi+1/2, t) :=
∑
j 6=i

∫ xi+1/2

xi−1/2

∫ xj+1/2

xj−1/2

ψ

(
u(y , t) + u(x , t)

2

)
× φa(y , x) dy dx .

(16)
The quantity Ψ(xi−1/2, xi+1/2, t) represents the flux of u over the
interval [xi−1/2, xi+1/2]. The spatially integrated form of the
nonlocal conservation law (5a) can now be written as∫ xi+1/2

xi−1/2

ut (x , t) dx + Ψ(xi−1/2, xi+1/2, t) = 0 . (17)
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A New Approach to Nonlocal Advection

Numerics

We devise such a scheme as follows. . .

Integrating both sides of (16) over [tn, tn+1] implies:∫ xi+1/2

xi−1/2

(
u(x , tn+1)−u(x , tn)

)
dx +

∫ tn+1

tn
Ψ(xi−1/2, xi+1/2, t) dt = 0 .

(18)
This is a nonlocal statement that the change in the u over the
cell [xi−1/2, xi+1/2] in the time interval [tn, tn+1] is balanced by
the flux over the cell [xi−1/2, xi+1/2] in the time interval [tn, tn+1].



A Model for Nonlocal Advection

A New Approach to Nonlocal Advection

Numerics

. . .and obtain a familiar form:

ūn
i :=

1
∆x

∫ xi+1/2

xi−1/2

u(x , tn) dx and (19a)

Ψ̄
n−1/2
i :=

1
∆t

∫ tn

tn−1
Ψ(xi−1/2, xi+1/2, t) dt , (19b)

we write the nonlocal equation on [xi−1/2, xi+1/2]× [tn, tn+1] as

ūn+1
i = ūn

i −
∆t
∆x

Ψ̄
n+1/2
i . (20)

A conservative numerical scheme results by application of a
quadrature rule in the expression for Ψ in (19b) (i.e., (16)).
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A New Approach to Nonlocal Advection

Numerics

Using a simple quadrature rule. . .

Ψ
(
xi−1/2, xi+1/2, t

)
=

r∑
j=−r

ωj ψ

(
u(xi+j , t) + u(xi , t)

2

)
φa(xi+j , xi)(∆x)2 ,

(21)

ωj =


0 , j = 0 ,
1 , j = ±1, . . . ,±(r − 1) ,

1/2 , j = −r , r .

 

 

 

 

a

b+‐x 

x

y 





b+ 

b

y=x

y=x+

y=x‐

a 

b 
x 

a‐+x 

a‐ 
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A New Approach to Nonlocal Advection

Numerics

. . .the scheme has familiar stability properties.

The kernel: φP
a (x , y) =

1
ε2


1 , y > x ,
0 , y = x ,
−1 , y < x ,

gives the scheme:

un+1
i =

un
i+1 + un

i−1

2
− 1
ε2

∆t
∆x

(
r∑

j=1

(
un

i+j + un
i

2

)
(∆x)2

−
r∑

j=1

(
un

i−j + un
i

2

)
(∆x)2

)
.

(22)

The linear stability limit is: ∆t < β(∆x)ε2

r∆x = β(∆x)ε , where

β2(∆x) := 1− max
k∈K\K1

{
cos2(k∆x)

}
and r = ε/∆x ∈ Z+ ,

for K :={m π/L, m =1, . . . ,L/∆x}, K1 :={k : k∆x = 0 mod π}
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A New Approach to Nonlocal Advection

Computational results

We perform computations for two initial conditions.

I Nonlocal Burgers Flux Function: ψ(u) = u2/2
I Domain: −π ≤ x < π, Nx cells with dx = L/Nx , L = π

I Boundary conditions: u(x + kL, t) = u(x), k ∈ Z
I Initial conditions:

u0(x) = − sin x

“Sinusoid”

u0(x) = H(x + π/2)− H(x − π/2)

“Tophat”
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A New Approach to Nonlocal Advection

Computational results

Local Burgers equation results are a reference.

Sinusoid ICs (Muraki [29])⇒
shock formation at t = 1

t = 1.5
Shock fixed at x = 0;
t →∞ ⇒ N-wave.

Tophat ICs⇒
rarefaction (L) + shock (R)

t = 1.5
This structure persists

up to t = 2π.
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A New Approach to Nonlocal Advection

Computational results

For nonlocal cases, we consider different micromoduli.

C∞: φC∞
a (y , x) ∝ (y − x) exp

(
−|y − x |2/B(ε)

)
“Parks” : φP

a (y , x) ∝ H(y− x +ε)− 2H(y− x) + H(y− x− ε)

Singular : φS
a (y , x) ∝ sgn(y − x) |y − x |−α

φC∞
a (y , x)/AC(ε) φP

a (y , x)/AP(ε) φS
a (y , x)/AS(ε)

Note: ε→ 0+ ⇒ φa(y , x)→ δ′(y − x)
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A New Approach to Nonlocal Advection

Computational results

There are two primary nondimensional length scales.

I ε/L ∈ (0,1) : ratio of PD horizon to problem length scale

ε/L measures the degree of nonlocality

ε/L→ 0+ is the local limit

ε/L→ 1− is the extreme nonlocal limit

I ε/∆x ∈ (1,∞) : ratio of PD horizon to cell size

ε/∆x measures how well the nonlocality is resolved

ε/∆x → 1+ is an under-resolved micromodulus

ε/∆x � 1 is a well-resolved micromodulus
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A New Approach to Nonlocal Advection

Computational results

We have hypotheses about these parameters’ effects.

I For ε/L� 1, the effect of nonlocality should be decreased.

→ Different φa ⇒ results should be similar.

→ Nonlocal results should approach local results.

I For ε/L→ 1−, differences between the various φa should
be highlighted.

I For ε/∆x � 1, the computed solution may be more faithful
to the continuum solution.

I For ε/∆x → 1+, the computed result may not reflect the
continuum solution.
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A New Approach to Nonlocal Advection

Computational results

These tables summarize the computational study.

The domain with characteristic length L = π and N − 1 cells each of width ∆x .

ε-refinement: effect of nonlocality
N 10000 10000 10000 10000

∆x 6.28e-4 6.28e-4 6.28e-4 6.28e-4
ε 1.26e-2 6.28e-2 1.57e-1 3.14e-1
ε/L 4.00e-3 2.00e-2 5.00e-2 1.00e-1
ε/∆x 20 100 250 500

∆x-refinement: effect of mesh resolution
N 1000 2000 4000 8000 16000

∆x 6.29e-3 3.14e-3 1.57e-3 7.86e-4 3.93e-4
ε 5.00e-2 5.00e-2 5.00e-2 5.00e-2 5.00e-2
ε/L 1.59e-2 1.59e-2 1.59e-2 1.59e-2 1.59e-2
ε/∆x 8 16 32 64 128

The smallest and largest values of ε are equal to 0.004 L and 0.1 L, respectively.
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A New Approach to Nonlocal Advection

Computational results

Sine IC: mesh refinement effects are significant.
Results for Parks micromodulus, fixed ε/L ≈ 1.59× 10−2, varying ∆x .

Init . Cond .
ε/∆x = 8
ε/∆x = 16
ε/∆x = 32
ε/∆x = 64
ε/∆x = 128

Larger ∆x ⇒ the scheme has greater numerical dissipation.
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A New Approach to Nonlocal Advection

Computational results

Sine IC: horizon refinement effects are less obvious.
Results for Parks micromodulus, fixed ∆x/L = 2× 10−4, varying ε.

Init . Cond .
ε/L = 4× 10−3

ε/L = 2× 10−2

ε/L = 5× 10−2

ε/L = 1× 10−1

Larger horizon does not have much effect on the solution.
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A New Approach to Nonlocal Advection

Computational results

Sine IC: kernel function effects are also small.
Fix ∆x ≈ 6.28× 10−4 with ε ≈ 3.14× 10−1 and vary φa.

Full domain Close-up

Init. Cond. φC∞
a φS

a φP
a Local Burgers Sol’n

∆x/L = 2×10−4, ε/L = 0.1⇒ varying φa has negligible effect.
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A New Approach to Nonlocal Advection

Computational results

Sine IC: conservation under mesh refinement.
Fix ε ≈ 5.0× 10−1 and vary ∆x for 0 < t < 2 .

ε/∆x = 8
ε/∆x = 16
ε/∆x = 32
ε/∆x = 64
ε/∆x = 128

∫ π
−π u(x , t) dx

The integral of u is conserved.
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A New Approach to Nonlocal Advection

Computational results

Tophat IC: mesh refinement effects are significant.
Results for Parks micromodulus, fixed ε/L ≈ 1.59× 10−2, varying ∆x .

Init . Cond .
ε/∆x = 8
ε/∆x = 16
ε/∆x = 32
ε/∆x = 64
ε/∆x = 128

Larger ∆x ⇒ the scheme as greater numerical dissipation.
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A New Approach to Nonlocal Advection

Computational results

Tophat IC: horizon refinement effects are less obvious.
Results for Parks micromodulus, fixed ∆x/L = 2× 10−4, varying ε.

Init . Cond .
ε/L = 4× 10−3

ε/L = 2× 10−2

ε/L = 5× 10−2

ε/L = 1× 10−1

Larger horizon does not have much effect on the solution.



A Model for Nonlocal Advection

A New Approach to Nonlocal Advection

Computational results

Tophat IC: kernel functions effects are also small.
Fix ∆x ≈ 6.28× 10−4 with ε ≈ 3.14× 10−1 and vary φa.

Full domain Close-up

Init. Cond. φC∞
a φS

a φP
a Local Burgers Sol’n

∆x/L = 2×10−4, ε/L = 0.1⇒ varying φa has negligible effect.
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A New Approach to Nonlocal Advection

Computational results

Our hypotheses were not all substantiated.
I For ε/L� 1, the effect of nonlocality should be decreased.

→ Decreasing ε/L⇒ little difference in solutions.

I For ε/L→ 1−, differences between the various φa should
be highlighted.

→ ε/L = 0.1⇒ different φa had little effect.

I For ε/∆x � 1, the computed solution may be more faithful
to the continuum solution.

→ Small ∆x ⇒ less dissipation.

I For ε/∆x → 1+, the computed result may not reflect the
continuum solution.

→ Large ∆x ⇒ more dissipation.
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Conclusions

Summary

A summary of this presentation:

I Why Nonlocal Advection?

This is the first step toward the marriage of nonlinear
advection with peridynamics.

I Are There Other Approaches to Nonlocal Advection?

Yes — but not (to our knowledge) from the perspective of
peridynamics.

I A New Approach to Nonlocal Advection

The preliminary results presented for our
peridynamics-inspired approach appear plausible,
both analytically and computationally.
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Conclusions

Path forward

There remain many open questions. . .
I Can we employ a more sophisticated numerical scheme?
I Can we extend this to nonlocal viscous Burgers?
I How does this nonlocally regularized equation relate to its

local analogue?
I How does one verify computed results? Exact solutions.
I Can one conduct a modified equation analysis?
I What is the nonlocal analogue of entropy solutions?

Should we concern ourselves with this issue?
I How does one extend these concepts to systems?
I How does one extend these concepts to more general

material response (i.e., more general flux function)?
I What is the nonlocal analogue of singularity structure in

the complex plane?
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