Variational Theory for Nonlocal Boundary Value Problems

Tadele Mengesha
Louisiana State University

Mini-Workshop: Mathematical Analysis for Peridynamics

Mathematisches Forschungsinstitut Oberwolfach
Oberwolfach, Germany
January 28, 2011 (Joint work with Burak Aksoylu)

- We study scalar stationary nonlocal problems formulated as: Given b, find u satisfying certain volume constraints such that

$$
\mathcal{L}(u)(\mathbf{x})=b(\mathbf{x}), \quad \mathbf{x} \in \Omega,
$$

where the linear nonlocal operator \mathcal{L} is convolution type and is given by

$$
\mathcal{L}(u)(\mathbf{x}):=-\int_{\overline{\bar{\Omega}}} C\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\left(u\left(\mathbf{x}^{\prime}\right)-u(\mathbf{x})\right) d \mathbf{x}^{\prime}
$$

- Here $\overline{\bar{\Omega}}=\Omega \cup \mathcal{B} \Omega$ where $\Omega \subset \mathbb{R}^{d}$, a bounded domain with a nonlocal boundary $\mathcal{B} \Omega$.
- We focus our attention when C is radial, locally integrable, compactly supported and $C(r)>0$ on $[0, \delta)$.

Hilbert Space setting

- The linear operator

$$
\mathcal{L}: L^{2}(\Omega) \rightarrow L^{2}(\Omega)
$$

is bounded and self-adjoint, i.e.

$$
\|\mathcal{L} u\|_{L^{2}} \leq C\|u\|_{L^{2}}
$$

This is so because the operator is convolution type and C is locally integrable.

- So given a closed subspace V of $L^{2}(\overline{\bar{\Omega}})$, if we show that

$$
(\mathcal{L} u, u)_{L^{2}(\overline{\bar{\Omega}})} \geq \lambda\|u\|_{L^{2}(\overline{\bar{\Omega}})}^{2}, \quad \text { for all } u \in V
$$

for some $\lambda>0$, then for any $b \in L^{2}(\Omega)$ the equation $\mathcal{L} u=b$ will have a unique variational solution.

- Indeed, the solution is the minimizer of

$$
\min _{u \in V \subset L^{2}(\overline{\bar{\Omega}})} E(u), \quad E(u)=(\mathcal{L} u, u)_{L^{2}}-(b, u)_{L^{2}}
$$

Write the weak form:
Given $b \in L^{2}$ find $u \in V$ such that

$$
a(u, v)=(b, v) \quad \forall v \in V
$$

where the bilinear form

$$
a(u, v):=-\int_{\overline{\bar{\Omega}}}\left\{\int_{\overline{\bar{\Omega}}} C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left[u\left(\mathbf{x}^{\prime}\right)-u(\mathbf{x})\right] d \mathbf{x}^{\prime}\right\} v(\mathbf{x}) d \mathbf{x}^{\prime} d \mathbf{x} .
$$

Rewrite $a(u, v)$ as
$a(u, v)=\frac{1}{2} \int_{\bar{\Omega}} \int_{\overline{\bar{\Omega}}} C\left(\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right)\left[u\left(\mathbf{x}^{\prime}\right)-u(\mathbf{x})\right]\left[v\left(\mathbf{x}^{\prime}\right)-v(\mathbf{x})\right] d \mathbf{x}^{\prime} d \mathbf{x}$,

- the bilinear form $a(u, v)$ is symmetric.
- $a(u, u)=(\mathcal{L} u, u)_{L^{2}}$.

Our interest

- Will give 3 closed subspaces V of L^{2} for which Poincaré's inequality (coercivity) holds.
- The choice of V depends on the boundary condition imposed and
- will hol for selected L^{1} kernels.
- On the way, we (asymptotically) quantify some quantities in terms of the "horizon": the smallest/largest eigenvalue, and so, an upper bound for the condition number as reported in (Aksoylu \& Parks).
- Pure Dirichlet boundary condition for surrounding nonlocal boundary:

$$
V_{D}^{s}:=\left\{v \in L^{2}(\overline{\bar{\Omega}}): v=0 \text { on } \mathcal{B} \Omega\right\} .
$$

for $\mathcal{B} \Omega$ that surround Ω; say
$\mathcal{B} \Omega=\left\{x \in \mathbb{R}^{d} \backslash \Omega: \operatorname{dist}(x, \partial \Omega) \leq 1\right\}$,

- Pure Dirichlet boundary condition for attached nonlocal boundary

$$
V_{D}^{a}:=\left\{v \in L^{2}(\overline{\bar{\Omega}}): v=0 \text { on } \mathcal{B} \Omega\right\} .
$$

$\mathcal{B} \Omega$ is attached to Ω. Say $\Omega=[0, \pi]$ and $\mathcal{B} \Omega=(-1,0)$.

- A zero average condition:

$$
V_{N}:=\left\{v \in L^{2}(\overline{\bar{\Omega}}): \int_{\overline{\bar{\Omega}}} v d \mathbf{x}=0\right\}
$$

Indeed,

- if $u_{n} \in V_{D}$ such that $u_{n} \rightarrow u \in L^{2}(\overline{\bar{\Omega}})$, then u vanishes on $\mathcal{B} \Omega$, so $u \in V_{D}$.
- If $u_{n} \in V_{N}$ such that $u_{n} \rightarrow u \in L^{2}(\overline{\bar{\Omega}})$, then the averages of u_{n} also converge to the average of u. Hence $u \in V_{N}$.

Lemma

The bilinear form $a(\cdot, \cdot)$ is bounded on $L^{2}(\overline{\bar{\Omega}})$ with the estimate

$$
a(u, v) \leq 2 \bar{\beta}\|u\|_{L^{2}(\overline{\bar{\Omega}})}\|v\|_{L^{2}(\overline{\bar{\Omega}})}
$$

where $\bar{\beta}:=\sup _{x \in \overline{\bar{\Omega}}} \int_{\overline{\bar{\Omega}}} C\left(\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right) d \mathbf{x}^{\prime}$.
$0<\bar{\beta}<\infty$ because we assumed that C is locally integrable and Ω is bounded.

Apply Cauchy-Schwartz.

$$
\begin{aligned}
a(u, v) & =\frac{1}{2} \int_{\overline{\bar{\Omega}}} \int_{\overline{\bar{\Omega}}} C\left(\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right)\left(u(\mathbf{x})-u\left(\mathbf{x}^{\prime}\right)\right)\left(v(\mathbf{x})-v\left(\mathbf{x}^{\prime}\right)\right) d \mathbf{x}^{\prime} d \mathbf{x} \\
& \leq \frac{1}{2}\left\{\int_{\overline{\bar{\Omega}}} \int_{\overline{\bar{\Omega}}} C\left(\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right)\left(u(\mathbf{x})-u\left(\mathbf{x}^{\prime}\right)\right)^{2} d \mathbf{x}^{\prime} d \mathbf{x}\right\}^{1 / 2} \\
& \times\left\{\int_{\overline{\bar{\Omega}}} \int_{\overline{\bar{\Omega}}} C\left(\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right)\left(v(\mathbf{x})-v\left(\mathbf{x}^{\prime}\right)\right)^{2} d \mathbf{x}^{\prime} d \mathbf{x}\right\}^{1 / 2}
\end{aligned}
$$

Now use the fact that C is locally integrable:

$$
\begin{aligned}
a(u, v) \leq & 2\left\{\int_{\overline{\bar{\Omega}}} \int_{\overline{\bar{\Omega}}} C\left(\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right) u(\mathbf{x})^{2} d \mathbf{x}^{\prime} d \mathbf{x}\right\}^{1 / 2} \\
& \times\left\{\int_{\overline{\bar{\Omega}}} \int_{\overline{\bar{\Omega}}} C\left(\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right) v(\mathbf{x})^{2} d \mathbf{x}^{\prime} d \mathbf{x}\right\}^{1 / 2} \\
\leq & 2 \bar{\beta}\|u\|_{L^{2}(\overline{\bar{\Omega}})}\|v\|_{L^{2}(\overline{\bar{\Omega}})}
\end{aligned}
$$

Coercivity

The following is taken from the work of J.D. Rossi and collaborators.

Lemma

If $\mathcal{B} \Omega$ is surrounding, then there exists $\underline{\lambda}=\underline{\lambda}(\overline{\bar{\Omega}}, \delta, C)>0$ such that

$$
\underline{\lambda}\|u\|_{L^{2}(\overline{\bar{\Omega}})}^{2} \leq a(u, u)+\int_{\mathcal{B} \Omega}|u(\mathbf{x})|^{2} d \mathbf{x} \quad \forall u \in L^{2}(\overline{\bar{\Omega}})
$$

Corollary

There exists $\underline{\lambda}=\underline{\lambda}(\overline{\bar{\Omega}}, \delta, C)>0$ such that

$$
\underline{\lambda}\|u\|_{L^{2}(\overline{\bar{\Omega}})}^{2} \leq a(u, u) \quad \forall u \in V_{D}^{s} .
$$

Remark: The continuity assumption is not used.

- Divide Ω into strips $\left\{S_{j}\right\}_{j \geq 0}$ of thickness $\delta / 2$. Denote $\mathcal{B} \Omega$ by S_{-1}.
- show that there are constants $\alpha_{j}>0$ such that

$$
\frac{\alpha_{j}}{2} \int_{S_{j}}|u|^{2} d x \leq 2 a(u, u)+\int_{S_{j-1}}|u|^{2} d x
$$

- Obtain the result from a cascade of inequalities.
-

$$
\alpha_{j}=\min _{x \in \bar{S}_{j}} \int_{S_{j-1}} C\left(\left|\mathbf{x}^{\prime}-\mathbf{x}\right|\right) d \mathbf{x}^{\prime}>0
$$

Well posedness of the problem

Theorem

The variational problem: given $b \in L^{2}(\overline{\bar{\Omega}})$ find $u \in V_{D}$ such that $a(u, v)=(b, v)$ for all $v \in V_{D}$ has a unique solution which satisfies the inequality

$$
\|u\|_{L^{2}} \leq \Lambda\|b\|_{L^{2}}
$$

for some constant $\Lambda=\Lambda(\delta)>0$.

Nonhomogeneous Dirichlet problem

As a corollary of the above we have the following. Let $g \in L^{2}(\mathcal{B} \Omega)$ and define the closed and convex subset

$$
V_{g}=\left\{u \in L^{2}(\overline{\bar{\Omega}}): u=g \text { in } \mathcal{B} \Omega\right\}
$$

Theorem

The variational problem: given $b \in L^{2}(\overline{\bar{\Omega}})$ find $u \in V_{g}$ such that $a(u, v)=(b, v)$ for all $v \in V_{D}^{s}$ has a unique solution. Moreover, the solution satisfies the inequality: the inequality

$$
\|u\|_{L^{2}} \leq \Lambda\left(\|b\|_{L^{2}}+\|g\|_{L^{2}}\right)
$$

Other volume constraints

- It is not clear if the previous argument is useful in proving coercivity on the subspaces V_{D}^{a} and V_{N}.
- Luckly, we can obtain the coercivity of $a(\cdot, \cdot)$ on V_{D}^{a} and V_{N} for kernels in L^{1} satisfying some moment conditions.
- This is possible using the nonlocal Poincaré inequality as proved by A.C. Ponce.
- The inequality is a consequence of the nonlocal characterization of $W^{1, p}$ functions by J. Bourgain, H. Brezis and P. Mironescu.

nonlocal characterization of Sobolev spaces

Lets consider the sequence of radial functions ρ_{n} satisfying the following conditions:

$$
\begin{array}{ll}
\rho_{n} \geq 0 \text { a.e. in } \mathbb{R}^{d}, & \int_{\mathbb{R}^{d}} \rho_{n}=1, \quad \forall n \geq 1, \\
& \text { and } \lim _{n \rightarrow \infty} \int_{|h|>r} \rho_{n}(h) d h=0, \quad \forall r>0 .
\end{array}
$$

Theorem (Bourgain, Brezis and Mironescu)

If $u \in W^{1,2}(\overline{\bar{\Omega}})$

$$
\lim _{n \rightarrow \infty} \int_{\overline{\bar{\Omega}}} \int_{\overline{\bar{\Omega}}} \frac{\left|u\left(\mathbf{x}^{\prime}\right)-u(\mathbf{x})\right|^{2}}{\left|\mathbf{x}^{\prime}-\mathbf{x}\right|^{2}} \rho_{n}\left(\left|\mathbf{x}^{\prime}-\mathbf{x}\right|\right) d \mathbf{x}^{\prime} d \mathbf{x}=K_{d} \int_{\overline{\bar{\Omega}}}|\nabla u|^{2} d x
$$

Nonlocal Poincaré for zero mean functions

Theorem (A.C. Ponce, for $p=2$)

Given $\eta>0$, there exists n_{0} such that

$$
\|u\|_{L^{2}(\overline{\bar{\Omega}})} \leq\left(\frac{c_{p c r}}{K_{d}}+\eta\right) \int_{\overline{\bar{\Omega}}} \int_{\overline{\bar{\Omega}}} \frac{\left|u\left(\mathbf{x}^{\prime}\right)-u(\mathbf{x})\right|^{2}}{\left|\mathbf{x}^{\prime}-\mathbf{x}\right|^{2}} \rho_{n}\left(\left|\mathbf{x}^{\prime}-\mathbf{x}\right|\right) d \mathbf{x}^{\prime} d \mathbf{x}
$$

for all $u \in V_{N}$ and all $n \geq n_{0}$.
Here $c_{p c r}$ is the best 'local' Poincaré constant, that depend only on $\overline{\bar{\Omega}}$.

Nonlocal Poincaré for functions vanishing on a subset

The following is our extension of the nonlocal Poincaré's inequality for functions vanishing on a subset positive measure.

Theorem

Given $\eta>0$, there exists n_{0} such that

$$
\|u\|_{L^{2}(\overline{\bar{\Omega}})} \leq\left(\frac{c_{p c r}}{K_{p}}+\eta\right) \int_{\overline{\bar{\Omega}}} \int_{\overline{\bar{\Omega}}} \frac{\left|u\left(\mathbf{x}^{\prime}\right)-u(\mathbf{x})\right|^{2}}{\left|\mathbf{x}^{\prime}-\mathbf{x}\right|^{2}} \rho_{n}\left(\left|\mathbf{x}^{\prime}-\mathbf{x}\right|\right) d \mathbf{x}^{\prime} d \mathbf{x}
$$

for all $u \in V_{D}^{a}$ and all $n \geq n_{0}$.
Here $c_{p c r}$ is the best 'local' Poincaré constant, that depend only on $\overline{\bar{\Omega}}$, and the size of $\mathcal{B} \Omega$.

Let $\gamma:(0, \infty) \rightarrow[0, \infty)$ be such that $\gamma(r) r^{d-1} \in L_{\text {loc }}^{1}([0, \infty)$ and

$$
\begin{aligned}
\gamma \geq 0, & \operatorname{supp}(\gamma) \subset[0,2) \\
& \text { and } \int_{0}^{\infty} \gamma(r) r^{d+1} d r=1
\end{aligned}
$$

Then, a simple calculation yields that the sequence $\rho_{\delta}(r)$ defined by

$$
\rho_{\delta}(r):=\frac{1}{\omega_{d} \delta^{d+2}} \gamma\left(\frac{r}{\delta}\right) r^{2}
$$

satisfies all the required conditions.
[ω_{d} is a dimensional constant and is the surface area of the unit sphere in \mathbb{R}^{d}.]

Choice for kernel functions

For the radial function

$$
C(r)=\gamma\left(\frac{r}{\delta}\right)
$$

then $C(r) \in L_{\text {loc }}^{1}[0, \infty)$ and satisfies a moment condition.
Moreover,

$$
\int_{\overline{\bar{\Omega}}} \int_{\overline{\bar{\Omega}}} \frac{\left|u(\mathbf{x})-u\left(\mathbf{x}^{\prime}\right)\right|^{2}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{2}} \rho_{\delta}\left(\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right) d \mathbf{x}^{\prime} d \mathbf{x}=\frac{1}{\omega_{d} \delta^{d+2}} a(u, u)
$$

Corollary (Coercivity and well posedness)

For C as above the bilinear form $a(\cdot, \cdot)$ is coercive on V_{D}^{a} and V_{N}. In fact, there exists $\delta_{0}=\delta_{0}(\overline{\bar{\Omega}}, \gamma)>0$ and $\underline{\lambda}=\underline{\lambda}\left(\overline{\bar{\Omega}}, \delta_{0}\right)$ such that for all $0<\delta<\delta_{0}$ and $u \in V_{D}^{a}$ or V_{N} :

$$
\underline{\lambda} \delta^{d+2}\|u\|_{L^{2}(\overline{\bar{\Omega}})}^{2} \leq a(u, u) .
$$

Theorem

For C as above, the variational problem $a(u, v)=(b, v)$ for all $v \in V$ with $V=V_{N}$ or $V=V_{D}^{a}$ has a unique solution which satisfies the inequality

$$
\|u\|_{L^{2}} \leq \Lambda\|b\|_{L^{2}}
$$

for some constant $\Lambda>0$.

Spectral Equivalence:

Theorem

For C as above, there exist $\delta_{0}>0, \underline{\lambda}=\underline{\lambda}\left(\overline{\bar{\Omega}}, \delta_{0}\right)$ and $\bar{\lambda}=\bar{\lambda}(\gamma, d)$ such that for all $0<\delta<\delta_{0}$ and $u \in V_{D}^{s}, V_{D}^{a}$, or V_{N}, we have

$$
\underline{\lambda} \delta^{d+2}\|u\|_{L^{2}(\overline{\bar{\Omega}})}^{2} \leq a(u, u) \leq \bar{\lambda} \delta^{d}\|u\|_{L^{2}(\overline{\bar{\Omega}})}^{2} .
$$

Proof.

Recall the boundedness $a(u, v) \leq 2 \bar{\beta}\|u\|\|v\|$ where

$$
\beta \leq \sup _{x \in \overline{\bar{\Omega}}} \int_{B(\mathbf{x}, R)} C\left(\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right) d \mathbf{x}^{\prime}=\int_{B(\mathbf{0}, R)} C\left(\left|\mathbf{x}^{\prime}\right|\right) d \mathbf{x}^{\prime} \quad R=\operatorname{diam}(\overline{\bar{\Omega}}) .
$$

The last integral can be estimated as

$$
\int_{B(\mathbf{0}, R)} C\left(\left|\mathbf{x}^{\prime}\right|\right) d \mathbf{x}^{\prime}=\int_{B(\mathbf{0}, R)} \gamma\left(\frac{\left|\mathbf{x}^{\prime}\right|}{\delta}\right) d \mathbf{x}^{\prime}=\omega_{d} \delta^{d} \int_{0}^{R / \delta} \gamma(s) s^{d-1} d s \leq \bar{\lambda} \delta^{d}
$$

examples of C

- $\gamma(r)=\chi_{(0,1)}(r) \quad C(r)=\chi_{(0, \delta)}(r)$ [used in (Aksoylu \& Parks)]
- $\gamma(r)=r^{\alpha} \chi_{(0,1)}$ for $\alpha>-d$, where d is space dimension.

Condition number upper bound quantified

If $V_{h} \subset V$ is any finite dimensional subspace and K_{h} is the stiffness matrix of the operator corresponding to V_{h}, then

- cond $\left(K_{h}\right) \leq C \delta^{-2}$
- This doesn't say cond $\left(K_{h}\right)$ is independent of h, rather has an upper bounded that is independent of h.

Thank you!

