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What is Peridynamics?What is Peridynamics?
 Peridynamics is a nonlocal extension of classical solid 

mechanics that permits discontinuous solutions

yy

“In peridynamics, cracks 
are part of the solution, 

not part of the problem ”
Peridynamic equation of motion (integral, nonlocal)

    u(x,t) f(u' u,x x)dV b(x,t)

not part of the problem.
- F. Bobaru

 Replace PDEs with integral equations 
 Utilize same equation everywhere; nothing “special” about cracks
 No assumption of differentiable fields (admits fracture)

H




x

x 

H
 When bonds stretch too much, they break
 No obstacle to integrating nonsmooth functions
 f(·, ·) is “force” function; contains constitutive model
 f = 0 for particles x,x’ more than  apart (like cutoff radius in MD!)

H

Peridynamic Domain

 PD is “continuum form of molecular dynamics”

 Impact
 Nonlocality

x

 Nonlocality
 Larger solution space (fracture)
 Account for material behavior at small & large length scales 

(multiscale material model)

x
Peridynamic 

“bond”

 Ancestors
 Kröner, Eringen, Edelen, Kunin, Rogula, etc.



Local vs. Nonlocal ModelsLocal vs. Nonlocal Models

“It can be said that all 
physical phenomena are 
nonlocal. Locality is a 

fiction invented

 Local model: 
 Contact force
 Exterior of circle imparts force 

fiction invented
by idealists.”
- A. Cemal Eringen

 Exterior of circle imparts force 
to interior via surface 

 Cauchy cut principle
(free body diagram)

 Examples:

 =  ·n

 Examples:
 Classical elasticity, etc. 
 Any PDE-based model

 Nonlocal model:



 Nonlocal model:
 Action-at-a-distance
 Exterior of circle imparts force to interior —

not just at surface
 E l   

Local Domains

 Examples:  
 Molecular dynamics
 Peridynamics 

 Foreshadowing
 Algorithms and numerical methods for 

nonlocal models are fundamentally different 
(and generally more expensive!) than local Nonlocal Domains

(classical) models.



Length ScalesLength Scales
 What does it mean to have a length scale?

 What does it mean to be multiscale?
 Example #1: ϋ(x) = au ’’(x)

gg

x'

δ

 Example #1: ϋ(x) = au ’’(x)
 Equation has no length scale; same dynamics at all scales 

 Example #2: ϋ(x) = au ’’(x) + bu’’’’ (x) 
 Dimensional analysis gives that sqrt(b/a) has units of length

x

xH

 Rescaling x can make first term dominant or second term dominant 
 Scaling of x changes behavior of equation

 Peridynamic horizon  represents a length scale
 Behavior (dynamics) of EOM vary with length scale

B

 Exhibit desired physics on applied length scale
 Peridynamics provides desired dynamics at multiple length scales!

 Rescaling space (equivalent to rescaling ) provides transition from microscale to 
macroscale (classical) models!( )

 Connection between nonlocal models and higher-gradient models

     


   c
ρu x t = u x + ε t -u x t dε

Peridynamic Model (nonlocal)
Taylor series

     


  ρu x,t = u x + ε,t u x,t dε
ε

   
 

 
 

2 2 4 4 6

a 2 4 6

d u δ d u δ d u
ρu x,t = K + +

dx 24 dx 1080 dx

Higher-Gradient Model (weakly nonlocal)

Local  Scale Invariant

 
2

a 2

d u
ρu x,t = K

dx

Local, Scale Invariant
lim 0



Part IPart I
Applications and Codespp



Some Applications…Some Applications…

Simulation performed 
with EMU Fortran 90 

code (Silling)

 Splitting and fracture mode changes in fiber-reinforced composites*
 Fiber orientation between plies strongly influences crack growth

pppp

Typical crack growth in notched laminate 
( h )(photo courtesy Boeing)

Peridynamic Model

* E. Askari, F. Bobaru, R.B. Lehoucq, M.L. Parks, S.A. Silling, O.Weckner, Peridynamics for multiscale materials 
modeling, in SciDAC 2008, Seattle, Washington, vol. 125 of Journal of Physics: Conference Series, (012078) 2008.



Some Applications…Some Applications…

Simulation performed 
with EMU Fortran 90 

code (Silling)

 Taylor impact test of 6061-T6 aluminum*

pppp

Experiment

Peridynamic Model*y

* J. Foster, S.A. Silling, W.W. Chen, Viscoplasticity Using Peridynamics, Sandia National Laboratories Technical Report 
SAND2008-7835, 2008.



Some Applications…Some Applications…

Simulation performed 
with EMU Fortran 90 

code (Silling)

 Dynamic fracture in steel (Kalthoff & Winkler, 1988)
 Mode-II loading at notch tips results in mode-I cracks at 70o angle
 Peridynamic model reproduces the 70o crack angle*

pppp

 Peridynamic model reproduces the 70o crack angle*

Experimental 
Results Peridynamic Model

70o

* S. A. Silling, Dynamic fracture modeling with a meshfree peridynamic code, in Computational Fluid and Solid Mechanics 2003, K.J. Bathe, ed., Elsevier, pp. 641-644.

70o



Some Applications…Some Applications…

Simulation performed 
with EMU Fortran 90 

code (Silling)

 Discrete peridynamic model exhibits mesh-independent crack growth
 Plate with a pre-existing defect is subjected to prescribed boundary velocities
 Crack growth direction depends continuously on loading direction 

pppp

 Crack growth direction depends continuously on loading direction 

Original grid direction

Damage

30deg

Rotated grid direction
(Mostly) Mode-I loading 

 Nonlocal network of bonds in many directions allows cracks to grow in any 
direction.

(with a little Mode-II)



Some Applications…Some Applications…

Simulation performed with 
PDLAMMPS code (Parks) 

 Example Simulation: Hard sphere impact on brittle disk*
 Spherical Projectile

 Diameter: 0 01 m

pppp

 Diameter: 0.01 m
 Velocity: 100 m/s

 Target Disk 
 Diameter: 0.074 m, 
 Thickness: 0 0025 m Thickness: 0.0025 m
 Elastic modulus: 14.9 Gpa
 Density: 2200 kg/m3

 Discretization
 M h i  0 005  Mesh spacing: 0.005 m
 100,000 particles
 Simulation time: 0.2 milliseconds

ResultsResultsResultsResults

*S.A. Silling and E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Comp. and Struct., 83, pp. 1526-1535, 2005.

Side View Top Monolayer



Some Applications…Some Applications…

Simulation performed with 
PDLAMMPS code (Parks) 

 Example Simulation: Failure of Nanofiber Network*
 Nanofiber networks

 Large surface area to volume ratio

pppp

 Large surface area to volume ratio
 High axial strength and extreme flexibility
 Used in composites, protective clothing,

catalysis, electronics, chemical warfare defense
 Numerical Model Numerical Model

 400 nm x 400 nm x 10 nm
 Biaxial strain induces failure
 PD PMB material model (augmented for van der Walls forces)

 Findings** Findings**
 van der Walls important for strength and toughness 
 Heterogeneity in bonds strength increases toughness, ductility

ResultsResults

(http://www.me.wpi.edu/MTE/current_projects.htm)
Nanofiber Network

ResultsResults

t=0; 0% strain t=30 ns; 17.6% strain t=50 ns; 29.4% strain

* E. Askari, F. Bobaru, R.B. Lehoucq, M.L. Parks, S.A. Silling, and O. Weckner, Peridynamics for multiscale materials modeling, in SciDAC
2008, Seattle, Washington, July 13-17, 2008, vol. 125 of Journal of Physics: Conference Series, (012078) 2008. 
** F. Bobaru, Influence of van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofiber networks: a 
peridynamic approach, Modelling Simul. Mater. Sci. Eng., 15 (2007), pp. 397-417.

t 0; 0% strain t 30 ns; 17.6% strain t 50 ns; 29.4% strain



Some Applications…Some Applications…

Simulation performed with 
PDLAMMPS code (Parks) 

 Example simulation: Dynamic brittle fracture in glass
 Joint with Florin Bobaru, Youn-Doh Ha (Nebraska), & Stewart Silling (SNL)

pppp

 Soda-lime glass plate (microscope slide)
 Dimensions: 3” x 1” x 0.05” 
 Density: 2.44 g/cm3
 Elastic Modulus: 79.0 Gpa

 Discretization (finest)
 Mesh spacing: 35 microns
 Approx. 82 million particles
 Time: 50 microseconds (20k timesteps) Elastic Modulus: 79.0 Gpa

SetupSetup

 Time: 50 microseconds (20k timesteps)

 Glass microscope slide
 Dimensions: 3” x 1” x 0.05”
 Notch at top, pull on ends

ResultsResults

St i  E g  
Peridynamics Physical Experiment*

*S F. Bowden, J. Brunton, J. Field, and A. Heyes, Controlled fracture of brittle solids and interruption of electrical current, Nature, 216, 42, pp.38-42, 1967.

Strain Energy 
Density



Some Applications…Some Applications…

Simulation performed with 
PDLAMMPS code (Parks) 

 Dawn (LLNL): IBM BG/P System
 500 teraflops; 147,456 cores

 P  f S i   

pppp

 Part of Sequoia procurement 
 20 petaflops; 1.6 million cores

 Discretization (finest)
 M h i g  35 i Mesh spacing: 35 microns
 Approx. 82 million particles
 Time: 50 microseconds (20k timesteps)
 6 hours on 65k cores 6 hours on 65k cores

 Largest peridynamic simulations in history
DawnDawn at LLNLat LLNL

Weak Scaling ResultsWeak Scaling Results

# Cores # Particles Particles/Core Runtime (sec) T(P)/T(P=512)

512 262,144 4096 14.417 1.000

4 096 2 097 152 4096 14 708 0 9804,096 2,097,152 4096 14.708 0.980

32,768 16,777,216 4096 15.275 0.963



Some Codes…Some Codes…
 EMU (F90)

 First Peridynamic code
 R h d Research code
 EMU has many features, but export controlled…

 EMU variants (F90)
 Many developers have branched EMU and started their own development line

Instability in slow tearing of 
elastic membrane*

(EMU)

 Many developers have branched EMU and started their own development line
 Kraken, etc.

 PDLAMMPS (Peridynamics-in-LAMMPS) (C++) PDLAMMPS (Peridynamics in LAMMPS) (C )
 Core set of features, massively parallel

 Peridigm (C++)
 Production peridynamic code
 Multiphysics
 Component-based
 M i l  ll l Massively parallel
 UQ/Optimization/Calibration, etc.

 Peridynamics in SIERRA/SM (Presto)
 Utilizes Sandia’s LAME material library

Fragmentation of metal ring
(Peridigm)

 Utilizes Sandia s LAME material library

*S.A. Silling and F. Bobaru, “Peridynamic modeling of membranes and fibers”, International Journal of Non-Linear Mechanics, 40(2-3): 395-409 (2005).



PeridynamicsPeridynamics‐‐inin‐‐LAMMPS (PDLAMMPS)LAMMPS (PDLAMMPS)
 Goals

 Provide open source peridynamic code (distributed with LAMMPS; lammps.sandia.gov)
 Provide (nonlocal) continuum mechanics simulation capability within MD code

yy ( )( )

 Provide (nonlocal) continuum mechanics simulation capability within MD code
 Leverage portability, fast parallel implementation of LAMMPS

(Stand on the shoulders of LAMMPS developers)
 Capability

 Prototype microelastic brittle (PMB)  Linear peridynamic solid (LPS) models Prototype microelastic brittle (PMB), Linear peridynamic solid (LPS) models
 Viscoplastic model
 General boundary conditions
 Material inhomogenity
 LAMMPS highly extensible; easy to introduce new potentials and features LAMMPS highly extensible; easy to introduce new potentials and features
 More information & user’s guide at 

www.sandia.gov/~mlparks (Click on “software”)
 Papers

 M L  Parks  P  Seleson  S J  Plimpton  R B  Lehoucq  and S A  Silling  Peridynamics with  M.L. Parks, P. Seleson, S.J. Plimpton, R.B. Lehoucq, and S.A. Silling, Peridynamics with 
LAMMPS: A User Guide, Sandia Tech Report SAND 2010-5549.

 M.L. Parks, R.B. Lehoucq, S.J. Plimpton, and S.A. Silling, Implementing Peridynamics within a 
molecular dynamics code, Computer Physics Communications 179(11)  pp. 777-783, 2008.

 A personal observation…
 Time from starting implementation to running first experiment: Two weeks
 Time for same using XFEM, other approaches: ????
 Conclusion: Peridynamics is an expedient approach for fracture modeling



PeridynamicsPeridynamics‐‐inin‐‐LAMMPS (PDLAMMPS)LAMMPS (PDLAMMPS)
 LAMMPS (Sandia’s open source MD package)

 Large-scale Atomic/Molecular Massively Parallel Simulator
 Open source  massively parallel  general purpose MD simulator

yy ( )( )

 Open source, massively parallel, general purpose MD simulator
 Many interatomic potentials for bio/polymers, solid state materials, etc.
 Demonstrated scalability on Top500 computers (BlueGene/P, Red Storm)
 Leverage MPI framework for particle model

 MPI: spatial data decomposition + ghosting 

1 2

 

 Added “SI” units to LAMMPS for macroscale simulations

3 4

 Added SI  units to LAMMPS for macroscale simulations
 MD: angstroms, femtoseconds, etc.
 PD: meters, seconds, etc.



MultiphysicsMultiphysics Peridynamics via Agile Components  Peridynamics via Agile Components  
 Agile components: World-class algorithms                           

delivered as reusable libraries
 Full range of independent yet 

p yp y y g py g p

Peridigm Planned FY11 Development Full range of independent yet 
interoperable software components

 Interfaces and capabilities
 Choose capabilities a-la-carte 

(toolkit  not monolithic framework)

Peridigm Planned FY11 Development
• Exodus reader (CUBIT)
• Multiple material blocks
• Implicit time integration
• Plasticity model(toolkit, not monolithic framework)

 Software quality tools and practices
 Rapid production strategic goals

 Enable rapid development of new production codes; 
Reduce redundancy

Plasticity model
• Viscoelastic model
• UQ, calibration, etc. (DAKOTA)

Reduce redundancy

 Prototype application: Peridigm
 Particle-based, not mesh based (like FEM)

Exploding Brittle Cylinder

 Multi-physics 
 Scalable 
 Optimization-enabled
 Born-in UQ  
 Interface with SIERRA mechanics

 Collaborators:  
 Dave Littlewood (1444)
 Stewart Silling (1444) 
 John Mitchell (1444)
 John Aidun (PM,1425)

AfterBefore



MultiphysicsMultiphysics Peridynamics via Agile Components  Peridynamics via Agile Components  p yp y y g py g p

Software Quality Tools

Mailing Lists
UQ

Optimization
E  E ti ti L d B l i  (Z lt )

Parallelization Tools
Data Structures (Epetra)

Solver Tools
Iterative Solvers (Belos)
Di t S l  (A )

Version Control
Error Estimation

Calibration
Load Balancing (Zoltan) Direct Solvers (Amesos)

Eigensolvers (Anasazi)
Preconditioners (IFPack)

Nonlinear Solvers (NOX)Analysis Tools
UQ (Stokhos)

Optimization (MOOCHO)
Build System

Testing (CTest)
Multilevel (ML)

Optimization (MOOCHO)

Services
Interfaces (Thyra)

Tools (Teuchos, TriUtils)

Visualization

Project Management
Issue Tracking

Wiki

Field Manager (Phalanx)
DAKOTA Interface (TriKota)

Service ToolsWiki Service Tools



Part IIPart II
Discretizations and 
Numerical Methods



DiscretizingDiscretizing PeridynamicsPeridynamics
 Spatial Discretization

 Approximate integral with sum*
 Midpoint quadrature

gg yy
 Temporal Discretization

 Explicit central difference in time 
 Midpoint quadrature
 Piecewise constant approximation

pV
DiscreteDiscrete

n 1 n n 1
n i i i
i 2

u 2u uu(x,t) u
t

  
 


 

DiscreteDiscrete
 Velocity-Verlet

n+1/2 n n
i i i

tv v f
2m
    

 

x  n+1 n n+1/2
i i i

2m
u u t v

t

 
  

 H n+1 n+1/2 n+1
i i i

tv v f
2m
    

 

p i p i p
p

f(u(x ,t) u(x ,t),x x ) V  
 Thi  h i  ti  ll d th  “EMU” i l th d (Silli g)

*S.A. Silling and E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Computers and Structures, 83, pp. 1526-1535, 2005.

 This approach is sometimes called the “EMU” numerical method (Silling)



DiscretizingDiscretizing PeridynamicsPeridynamics
 This approach is simple but expedient. What more can we do?

gg yy

 Temporal discretization
 Implicit time integration (Newmark-beta method, etc.)

 Spatial discretization (strong form)
 Midpoint quadrature (EMU method)
 Gauss quadrature*q

 Spatial discretization (weak form) Spatial discretization (weak form)
 Nonlocal Galerkin finite elements (1D)*

 Nonlocal integration-by-parts*
 Nonlocal mass & stiffness matrices, force vector*

 Let’s explore Peridynamic finite elements…p y

*E. Emmrich and O. Weckner, The peridynamic equation and its spatial discretization, Math. Model. Anal., 12(1), pp. 17-27, 2007.



Part IIIPart III
Peridynamic Finite Elements*y

*B. Aksoylu and M.L. Parks, Variational Theory and Domain Decomposition for Nonlocal Problems. Applied Mathematics and Computation. To Appear. 
2011.



Why is Conditioning Important?Why is Conditioning Important?
 What is the condition number of a matrix?

y g py g p

1(A) A A

 Why do we care?

1κ(A)= A A

Cantilevered beam

 Condition number dictate convergence 
rates of linear solvers

 Condition numbers dictate the accuracy of  
computed solution

Ill conditioned

 Rule of thumb: 
If (A) = 1016-d, then computed 
solution has d digits of accuracy. Well conditioned

If (A) = 1016, expect zero digits of accuracy! 

 Old saying: “You get the answer you deserve…”
Convergence curves for 
optimal Krylov methods 

 Driving motivation for effective preconditioners



Why is Conditioning Important?Why is Conditioning Important?
 Why do I care about condition numbers of peridynamic models?

 First step towards scalable preconditioners
 First step towards effective utilization of leadership class 

y g py g p

 First step towards effective utilization of leadership class 
supercomputers for peridynamic simulations

 New component in nonlocal modeling is peridynamic horizon 
 How does  affect the conditioning?
 Develop preconditioners/solvers optimized for nonlocal models 

at extreme scales
 DOE current computing platforms

 Jaguar (ORNL) Jaguar (ORNL)
 2.595 petaflops (~2.5 quadrillion calculations per second)
 224,162 cores

 DOE future computing platforms
 Exaflop machines by 2018



Nonlocal BoundariesNonlocal Boundaries
 Classical domain and boundary:   

  

 Nonlocal domain and boundary:    B  interacts with 
all points in B

B



Nonlocal Weak FormNonlocal Weak Form
 EMU/PDLAMMPS discretize strong form of equation (like finite differences)
 What about nonlocal finite elements? 
 Prototype operator Prototype operator

    

L u x = - C(x,x') u(x')-u(x) dx'

C(x,x') C(x',x)

 C(x,x') 0 if x - x'

 Need nonlocal weak form*  Multiply by test function and “integrate by parts”



  a(u v)  C(x x') u(x') u(x) v(x)dx'dx 

  
 
 

 

a(u,v) = - C(x,x ) u(x )-u(x) v(x)dx dx

1
= C(x x') u(x')-u(x) v(x')- v(x) dx'dx

 Compare with local Poisson operator

  
 
 = C(x,x ) u(x )-u(x) v(x )- v(x) dx dx

2

 Compare with local Poisson operator

2 u(x)
1
2

  u v dx

*E. Emmrich and O. Weckner, The peridynamic equation and its spatial discretization, Math. Model. Anal., 12(1), pp. 17-27, 2007.



Nonlocal QuadratureNonlocal Quadrature
 Review: Local Quadrature

 One integral required
 Compute products of gradients of 

QQ

1
 ( )  d Compute products of gradients of 

shape functions and apply Gauss quadrature
 Gradient drops polynomial order 

(lower order quadrature scheme required)

2
  a(u,v) u v dx

 Nonlocal Quadrature
 Two integrals required
 Compute products of differences of shape functions and integrate Compute products of differences of shape functions and integrate
 No gradient  higher polynomial order (higher order quadrature needed)
 Nonlocality generates substantially more work over each element
 Discontinuous integrands a challenge for quadrature routines (more later…)

 
 
 a(u,v) = - C(x,x') u(x')-u(x) v(x)dx'dx

  
 
 

1
= C(x,x') u(x')-u(x) v(x')- v(x) dx'dx

2

 Integration by parts is standard in local (classical) FEM.
 Discussion: Does it serve any purpose here?



Spectral EquivalenceSpectral Equivalence
 For simplicity, assume

p qp q




 
( ') 1 if x - x'

C(x x') x x “Canonical”

 Principle Theorem*

a(u u)

   


( )C(x,x ) x x
0 otherwise

Canonical
Kernel Function

 Let K be a finite element discretization of a(u u)  Then

2          


     
( )

( ) ( ) ( )
2

d+2 d
1 2,0

L

a(u,u)
u L

u

 Let K be a finite element discretization of a(u,u). Then,

 This is not tight!

   2(K) ( )

 Consider lim 0. Cond # estimate  , true (K)  h-2.
 Condition number not mesh independent (bound is mesh independent).
 In practice, observe very weak mesh dependence.
 Bound descriptive when h <  Bound descriptive when h < .
 Alternative approach: Zhou & Du†

 Dominant length scale in nonlocal model set by .
 Contrast with local model, where length scaled introduced by h , g y

† K. Zhou, Q. Du, Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions, SIAM J. Num. 
Anal., 48(5), pp. 1759—1780, 2010.
† Q. Du and K. Zhou. Mathematical analysis for the peridynamic nonlocal continuum theory. Mathematical Modelling and Numerical 
Analysis, 2010. doi:10.1051/m2an/2010040.
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Nonlocal Weak Form Nonlocal Weak Form –– 1D1D
 Let  = (0,1), B = [-,0][1, ]. 
 u=0 on B Stiffness Matrix 

 Let
1  

 


if x - x'
C(x,x')

0 otherwise

Sparsity Pattern

2D Model

 Weak form becomes

 
x 

  'a(u,v) = - u(x')-u(x) v(x)dx dx

(10,000 unknowns, 
3.4M nnz)

 
x  
 ( , ) ( ) ( ) ( )

 Numerical Study
 PW constant and PW linear SFs
 Hold  constant, vary h

Integration 
Domain in (x,x’)

(g   t id  )

x’

 Hold h constant, vary  (grey = outside )

x



Nonlocal Finite Elements and Conditioning Nonlocal Finite Elements and Conditioning –– 1D1D
 Observations: (K)~O(-2), only weak h-dependence

gg



Nonlocal Weak Form Nonlocal Weak Form –– 2D2D
 Let  = (0,1)(0,1), B = [-,0][1, ]. 
 u=0 on B

 Let
 

 


1 if x - x'
C(x,x')

0 otherwise

 Weak form requires quadruple quadrature

 Integrand discontinuous!
 Gauss quadrature not accurate
 Adaptive quadrature (expensive)
 Break up integral into many separate

integrals where integrand continuousintegrals where integrand continuous
over each subregion

 Numerical Study
 PW constant SFs
 Hold  constant, vary h
 Hold h constant  vary 

Discussion: 
Is there a better way to do 

accurate nonlocal quadrature?
 Hold h constant, vary 



Nonlocal Finite Elements and Conditioning Nonlocal Finite Elements and Conditioning –– 2D2D
 Observations: (K)~O(-2), only weak h-dependence

gg



SummarySummary
 Mercifully brief review of peridynamics
 Applications

 Fracture  fragmentation  failure

yy

 Fracture, fragmentation, failure
 Codes

 EMU, PDLAMMPS, Peridigm, more
 Discretizations & Numerical Methods

 Particle-like discretization of strong form
 Peridynamic Finite Elements

 Peridynamic weak forms
 Conditioning results Conditioning results

 Peridynamic Domain Decomposition
 Peridynamic Schur Complement
 Conditioning results

 Thank you!

 Questions for me…? 


