Dirichlet's principle and well posedness of steady state solutions in peridynamics

Petronela Radu
Work supported by NSF - DMS award 0908435

January 19, 2011

The steady state peridynamic model

Consider the "elliptic" nonlocal model:
(PD)

$$
\left\{\begin{array}{l}
\mathcal{L}(u)(x)=b(x), \quad x \in \Omega \\
u(x)=g(x), \quad x \in \Gamma
\end{array}\right.
$$

where

$$
\mathcal{L}(u)(x):=2 \int_{\Omega \cup \Gamma}\left(u\left(x^{\prime}\right)-u(x)\right) \mu\left(x, x^{\prime}\right) d x^{\prime}
$$

- Ω is an open bounded subset of \mathbb{R}^{n}
- $\Gamma \subset \mathbb{R}^{n} \backslash \Omega$ denotes a "collar" domain surrounding Ω which has nonzero volume
- $\mu\left(x, x^{\prime}\right)$ is nonegative, $\mu\left(x, x^{\prime}\right)=\mu\left(x^{\prime}, x\right)$.

Remark: The integral operator is defined on the boundary Γ as well.

Notation

$\alpha: \Omega \cup \Gamma \times \Omega \cup \Gamma \rightarrow \mathbb{R}^{n}, u: \Omega \cup \Gamma \rightarrow \mathbb{R}^{n}, f: \Omega \cup \Gamma \times \Omega \cup \Gamma \rightarrow \mathbb{R}^{n}$
(i) Generalized nonlocal gradient

$$
\mathcal{G}(u)\left(x, x^{\prime}\right):=\left(u\left(x^{\prime}\right)-u(x)\right) \alpha\left(x, x^{\prime}\right), \quad x, x^{\prime} \in \Omega,
$$

(ii) Generalized nonlocal divergence

$$
\mathcal{D}(f)(x):=\int_{\Omega \cup \Gamma}\left(f\left(x, x^{\prime}\right) \alpha\left(x, x^{\prime}\right)-f\left(x^{\prime}, x\right) \alpha\left(x^{\prime}, x\right)\right) d x^{\prime}, \quad x \in \Omega
$$

(iii) Generalized nonlocal normal component

$$
\mathcal{N}(f)(x):=-\int_{\Omega \cup \Gamma}\left(f\left(x, x^{\prime}\right) \alpha\left(x, x^{\prime}\right)-f\left(x^{\prime}, x\right) \alpha\left(x^{\prime}, x\right)\right) d x^{\prime}, \quad x \in \Gamma
$$

Note: For the given peridynamic model we will use $\mu=\alpha^{2}$

Useful nonlocal calculus identities

Gunzburger \& Lehoucq:

- $\mathfrak{L} u=\mathcal{D}(\mathcal{G}(u))$
- For $u, v \in L^{2}(\Omega \cup \Gamma)$

$$
\int_{\Omega} v \mathcal{D}(\mathcal{G}(u)) d x+\int_{\Omega \cup \Gamma} \int_{\Omega \cup \Gamma} \mathcal{G}(u) \mathcal{G}(v) d x^{\prime} d x=\int_{\Gamma} v \mathcal{N}(\mathcal{G}(u)) d x
$$

- For $u, v \in L^{2}(\Omega \cup \Gamma), v=0$ over Γ

$$
\int_{\Omega}(\mathcal{L} u) v d x=-\int_{\Omega \cup \Gamma} \int_{\Omega \cup \Gamma} \mathcal{G}(v) \cdot \mathcal{G}(u) d x^{\prime} d x
$$

Nonlocal boundary conditions

Dirichlet Problem:

$$
\left\{\begin{array}{l}
\mathcal{L} u=b, \quad x \in \Omega \\
u=g, \quad x \in \Gamma
\end{array}\right.
$$

Neumann Problem:

$$
\left\{\begin{array}{l}
\mathcal{L} u=b, \quad x \in \Omega \\
\int_{\Gamma}\left(u^{\prime}-u\right) \mu\left(x, x^{\prime}\right) d x^{\prime}=g, \quad x \in \Gamma
\end{array}\right.
$$

where $u^{\prime}=u\left(x^{\prime}\right), u=u(x)$.

Set up for the Dirichlet's principle. Spaces

Introduce the inner product

$$
\begin{aligned}
\langle u, v\rangle_{\mu}=\frac{1}{2} \int_{\Omega \cup \Gamma} \int_{\Omega \cup \Gamma}\left(u\left(x^{\prime}\right)-u(x)\right)\left(v\left(x^{\prime}\right)-\right. & v(x)) \mu\left(x, x^{\prime}\right) d x^{\prime} d x \\
& +(u, v)_{L^{2}(\Omega \cup \Gamma)}
\end{aligned}
$$

The space

$$
\mathcal{W}:=\left\{w \in L^{2}(\Omega) \mid\langle w, w\rangle_{\mu}<\infty, w=0 \text { on } \Gamma\right\},
$$

endowed with the norm

$$
\|w\|_{\mathcal{W}}=\langle w, w\rangle_{\mu}^{1 / 2}
$$

is a Banach space whenever μ is nonnegative and symmetric.

The energy functional

The energy functional associated with the peridynamic problem (PD) is given by:
$\mathcal{F}[u]=\frac{1}{2} \int_{\Omega \cup \Gamma} \int_{\Omega \cup \Gamma}\left(u\left(x^{\prime}\right)-u(x)\right)^{2} \mu\left(x, x^{\prime}\right) d x^{\prime} d x+\int_{\Omega} b(x) u(x) d x$,
for u in the class of admissible functions

$$
\mathcal{A}=\left\{w \in L^{2}(\Omega) \mid u=g+u_{0}, \text { for some } u_{0} \in \mathcal{W}\right\}
$$

Convention: \mathcal{A} will also be denoted by $g+\mathcal{W}$.

The Nonlocal Dirichlet's Principle

Theorem

Let $\mu\left(x, x^{\prime}\right)$ be nonnegative and symmetric.
(i) Assume u solves the nonlocal peridynamics problem
(PD)

$$
\left\{\begin{array}{l}
\mathcal{L}(u)(x)=b(x), \quad x \in \Omega \\
u(x)=g(x), \quad x \in \Gamma
\end{array}\right.
$$

Then

$$
\mathcal{F}[u] \leq \mathcal{F}[v]
$$

for every $v \in \mathcal{A}$.
(ii) Conversely, if $u \in \mathcal{A}$ satisfies $\mathcal{F}[u] \leq \mathcal{F}[v]$ for every $v \in \mathcal{A}$, then u solves the above nonlocal peridynamics problem.

Proof:
(i) If $w \in \mathcal{A}$, then $u-w=0$ over Γ. Integration by parts yields:

$$
\begin{aligned}
0 & =\int_{\Omega}(L u-b)(u-w) d x \\
& =-\int_{\Omega \cup \Gamma} \int_{\Omega \cup \Gamma} \mathcal{G}(u) \cdot \mathcal{G}(u-w) d x^{\prime} d x-\int_{\Omega} b(u-w) d x
\end{aligned}
$$

By Cauchy-Schwarz we obtain:

$$
\begin{aligned}
& \frac{1}{2} \int_{\Omega \cup \Gamma} \int_{\Omega \cup \Gamma} \mathcal{G}(u) \cdot \mathcal{G}(u) d x^{\prime} d x+\int_{\Omega} b u d x \\
& \quad \leq \frac{1}{2} \int_{\Omega \cup \Gamma} \int_{\Omega \cup \Gamma} \mathcal{G}(w) \cdot \mathcal{G}(w) d x^{\prime} d x+\int_{\Omega} b w d x
\end{aligned}
$$

(ii) Fix $v \in \mathcal{W}$ and write

$$
i(\tau):=\mathcal{F}[u+\tau v]
$$

where $\tau \in \mathbb{R}$. Since $u+\tau v \in \mathcal{A}$ for each τ, the scalar function $i(\cdot)$ has a minimum at zero. Thus $i^{\prime}(0)=0,\left(1=\frac{d}{d \tau}\right)$, provided the derivative exists. Now we have

$$
\begin{aligned}
i(\tau)=\int_{\Omega \cup \Gamma} \int_{\Omega \cup \Gamma} \frac{1}{2} \mathcal{G}(u) \cdot \mathcal{G}(u)+\tau \mathcal{G}(u) \cdot \mathcal{G}(v) & +\frac{\tau^{2}}{2} \mathcal{G}(v) \cdot \mathcal{G}(v) d x^{\prime} d x \\
& +\int_{\Omega} b(u+\tau v) d x
\end{aligned}
$$

Hence, after integration by parts we obtain:
$0=i^{\prime}(0)=\int_{\Omega \cup \Gamma} \int_{\Omega \cup \Gamma} \mathcal{G}(u) \cdot \mathcal{G}(v) d x^{\prime} d x+\int_{\Omega} v b d x=\int_{\Omega}(\mathcal{L} u-b) v d x$

A particular kernel

Assumption A. For every $x^{\prime} \in \mathcal{H}_{x}$, there exists a constant $C_{0}>0$ such that $\mu\left(x, x^{\prime}\right) \geq C_{0}$. In other words, for all $x \in \Omega \cup \Gamma$ we have:

$$
C_{0} \chi_{\delta}\left(x, x^{\prime}\right) \leq \mu\left(x, x^{\prime}\right)
$$

where $\chi_{\delta}\left(x, x^{\prime}\right)= \begin{cases}1, & \left|x-x^{\prime}\right| \leq \delta \\ 0, & \left|x-x^{\prime}\right|>\delta\end{cases}$
Remark: The prototype kernel

$$
\mu\left(x, x^{\prime}\right)= \begin{cases}\frac{1}{\left|x-x^{\prime}\right|^{\beta}} & \text { for }\left|x-x^{\prime}\right| \leq \delta \\ 0 & \text { for }\left|x-x^{\prime}\right|>\delta\end{cases}
$$

satisfies this assumption for all $\beta>0$.

Prototype kernel:

$$
\mu\left(x, x^{\prime}\right)= \begin{cases}\frac{1}{\left|x-x^{\prime}\right|^{\beta}} & \text { for }\left|x-x^{\prime}\right| \geq \delta \\ 0 & \text { for }\left|x-x^{\prime}\right|<\delta\end{cases}
$$

where $\beta \geq 0$.

- $\beta \geq n \Longrightarrow$ strong singularity; work in the framework of Nikolskii spaces $H^{(\beta-n) / 2}(\Omega)$
- $\beta<n \Longrightarrow$ weak singularity; work with L^{2} spaces (with weights?)

More "elliptic" properties of \mathcal{L}

Proposition

The operator \mathcal{L} admits the following properties:
(a) If $u \equiv$ constant then $\mathcal{L} u=0$.
(b) Let $x \in \Omega \cup \Gamma$. For any maximal point x_{0} that satisfies $u\left(x_{0}\right) \geq u(x)$, we have $-\mathcal{L} u\left(x_{0}\right) \geq 0$. Similarly, if x_{1} is a minimal point such that $u\left(x_{1}\right) \leq u(x)$, then $-\mathcal{L} u\left(x_{1}\right) \leq 0$.
(c) $\mathcal{L} u$ is a positive semidefinite operator, i.e. $\langle-\mathcal{L} u, u\rangle \geq 0$.
(d) $\int_{\Omega \cup \Gamma}-\mathcal{L} u(x) d x=0$.
(e) Weak mean-value inequality. If μ satisfies (A) and u is a nonnegative solution of $\mathcal{L} u(x)=0$ then:

$$
u(x) \geq \frac{1}{\left|\mathcal{H}_{x}\right|} \int_{\mathcal{H}_{x}} u(y) d y
$$

(f) Maximum and minimum principle (Rossi)

Assume that $u \in C(\Omega)$ solves (PD) with $f=0$. If

$$
u\left(x_{0}\right)=\max _{x \in \Omega \cup \Gamma} u(x)
$$

then $x_{0} \in \Gamma$. Similarly, if

$$
u\left(x_{0}\right)=\max _{x \in \Omega \cup \Gamma} u(x)
$$

then $x_{0} \in \Gamma$.

Lemma

(Nonlocal Poincaré's Inequality - Rossi, Aksoylu \&Parks) If $u \in L^{p}(\Omega), p>1, m \geq 1$, and \mathcal{G} is as defined in (3), then there exist $\lambda_{\text {Pncr }}=\lambda_{\text {Pncr }}(\Omega, \Gamma, \delta, m)>0$ and $C_{g}>0$ such that the following inequality holds:

$$
\lambda_{\text {Pncr }}\|u\|_{L^{p}(\Omega)} \leq\|\mathcal{G}(u)\|_{L^{p}(\Omega \cup \Gamma \times \Omega \cup \Gamma)}+C_{g} .
$$

Wellposedness of the system (PD)

Theorem
With $\mathcal{F}[u]$ defined as before and μ satisfying assumption (A) we have that

$$
\inf \{\mathcal{F}[u]: u \in \mathcal{A}\}
$$

attains its minimum, and furthermore this minimizer is unique. Hence, there exists a unique solution to (PD) in \mathcal{A} for every f, g in \mathcal{A}.

Existence of solutions

Follows from convexity of \mathcal{F} and coercivity of \mathcal{F}.
First note that since $\mathcal{F}[u] \geq 0$ for $u \in L^{2}(\Omega)$, we have that

$$
\inf \{\mathcal{F}[u]: u \in \mathcal{A}\}=m \geq 0
$$

Let $\left\{u_{\nu}\right\}$ be a minimizing sequence so that $\mathcal{F}\left[u_{\nu}\right] \rightarrow m$. Thus there exists $M>0$ such that $\mathcal{F}\left[u_{\nu}\right]<M$. We will show that the sequence u_{ν} is bounded in L^{2} (coercivity.).

$$
\begin{aligned}
M & >\frac{1}{2} \int_{\Omega \cup \Gamma} \int_{\Omega \cup \Gamma}\left[\mathcal{G}\left(u_{\nu}\right)\right]^{2} d x^{\prime} d x+\int_{\Omega} b(x) u_{\nu}(x) d x \\
& \geq \frac{1}{2}\left\|\mathcal{G}\left(u_{\nu}\right)\right\|_{L^{2}(\Omega \cup \Gamma \times \Omega \cup \Gamma)}^{2}-\frac{\varepsilon}{2}\|b\|_{L^{2}(\Omega)}^{2}-\frac{1}{2 \varepsilon}\left\|u_{\nu}\right\|_{L^{2}(\Omega)}^{2}
\end{aligned}
$$

Existence contd.

By the nonlocal Poincaré's inequality we have:

$$
M>C_{1}\left\|u_{\nu}\right\|_{L^{2}(\Omega)}^{2}+C_{2}\|g\|_{L^{2}(\Gamma)}^{2}-C_{3}\|b\|_{L^{2}(\Omega)}^{2}
$$

Thus, we can find $\gamma>0$ such that

$$
\left\|u_{\nu}\right\|_{L^{2}(\Omega)} \leq \gamma .
$$

Therefore, we may extract a subsequence $\left\{u_{\nu}\right\}$ and find $\bar{u} \in L^{2}(\Omega)$ such that $u_{\nu} \rightarrow \bar{u}$ in $L^{2}(\Omega)$. By Mazur's Lemma we can find a sequence of convex combinations of u_{ν}, denoted by $\bar{u}_{\nu} \rightarrow \bar{u}$ in $L^{2}(\Omega)$, hence

$$
\lim _{\nu \rightarrow \infty} \mathcal{F}\left[\bar{u}_{\nu}\right] \leq m .
$$

By Fatou's lemma

$$
\mathcal{F}[\bar{u}] \leq \lim _{\nu \rightarrow \infty} \mathcal{F}\left[\bar{u}_{\nu}\right],
$$

hence, from the above inequalities we have that \bar{u} is a minimizer since

$$
\mathcal{F}[\bar{u}] \leq m .
$$

Uniqueness of solutions

Let $\bar{u}, \bar{v} \in L^{2}(\Omega)$ be minimizers of \mathcal{F} with $\bar{u} \neq \bar{v}$. Set

$$
\bar{w}=\frac{\bar{u}+\bar{v}}{2} \in L^{2}(\Omega) .
$$

By the strict convexity of the integrand, we have

$$
m \leq \mathcal{F}[\bar{w}] \leq \frac{1}{2} \mathcal{F}[\bar{u}]+\frac{1}{2} \mathcal{F}[\bar{v}]=m
$$

Hence \bar{w} is a minimizer of \mathcal{F}. This implies that

$$
\frac{1}{2} \mathcal{F}[\bar{u}]+\frac{1}{2} \mathcal{F}[\bar{v}]-\mathcal{F}[\bar{w}]=0 .
$$

Thus

$$
\int_{\Omega \cup \Gamma} \int_{\Omega \cup \Gamma} \frac{\mathcal{G}[\bar{u}]^{2}}{2}+\frac{\mathcal{G}[\bar{v}]^{2}}{2}-\mathcal{G}[\bar{w}] d x^{\prime} d x=0
$$

Again, by strict convexity, the integrand is strictly positive contradiction!!

Fick diffusion in peridynamics models

Consider the nonlocal flux that satisfies a nonlocal Fourier's law:

$$
\mathcal{Q}[u]\left(x, x^{\prime}\right)=-a \mathcal{G}[u]\left(x, x^{\prime}\right),
$$

The nonlocal conservation law:

$$
u_{t}=-\mathcal{D}(\mathbb{Q}) .
$$

We obtain the nonlocal peridynamic diffusion law

$$
u_{t}=\mathcal{D}(a \mathcal{G}(u))=a \mathcal{L} u
$$

Hyperbolic diffusion in peridynamics

Assum that the flux Q is given by the Cattaneo-Vernotte equation

$$
Q_{t}+a Q=-\mathcal{G}(u) .
$$

Differentiate the conservation law $u_{t}=-\mathcal{D}(\mathbb{Q})$ with respect to time:

$$
u_{t t}=-\mathcal{D}\left(Q_{t}\right)
$$

Substituted into the above equation yields:

$$
u_{t t}=-\mathcal{D}(-\mathcal{G}(u)-a \mathbb{Q})=\mathcal{D}(\mathcal{G}(u))+\mathcal{D}(a \mathbb{Q})=\mathcal{L} u-a u_{t}
$$

or

$$
u_{t t}-\mathcal{L} u+a u_{t}=0
$$

Importance of hyperbolic diffusion (classical case)

Consider the classical heat and damped wave equations:

$$
\left\{\begin{array} { l }
{ v _ { t } - \Delta v = 0 \text { in } \mathbb { R } ^ { n } } \\
{ v | _ { t = 0 } = v _ { 0 } \text { in } \mathbb { R } ^ { n } . }
\end{array} \left\{\begin{array}{l}
u_{t t}-\Delta u+u_{t}=0 \text { in } \mathbb{R}^{n} \\
\left.\left(u, u_{t}\right)\right|_{t=0}=u_{0}+u_{1} \text { in } \mathbb{R}^{n} .
\end{array}\right.\right.
$$

- hyperbolic diffusion is important in unsteady heat conduction (the second sound of helium)
- the long time behavior of u with initial conditions $\left(u_{0}, u_{1}\right)$ can be very well approximated by the long time behavior of v with initial condition $v_{0}=u_{0}+u_{1}$ (Abstract Diffusion Phenomenon - JDE)

Questions and future directions

1. physical interpretation of the exponent β in μ;
2. what if μ depends on time? OR the horizon changes with space (different phases of the material)
3. weakly singular kernels $(0<s<n)$: Harnack's inequality
4. obtain regularity results via Calculus of Variations techniques
5. wellposedness and regularity for time dependent models (diffusion, elasticity,..)
6. nonlinear local problems: very difficult since there is no gain in "smoothness" (higher integrability or more derivatives for the solution)
7. wellposedness in weighted spaces
