NONLOCAL DIFFUSION EQUATIONS

JULIO D. ROSSI (ALICANTE, SPAIN AND BUENOS AIRES, ARGENTINA)

jrossi@dm.uba.ar

http://mate.dm.uba.ar/~jrossi

2011

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

Non-local diffusion.

The function *J***.** Let $J : \mathbb{R}^N \to \mathbb{R}$, nonnegative, smooth with

$$\int_{\mathbb{R}^N} J(r) dr = 1.$$

Assume that is compactly supported and radially symmetric.

Non-local diffusion equation

$$u_t(x,t) = J * u - u(x,t) = \int_{\mathbb{R}^N} J(x-y)u(y,t)dy - u(x,t).$$

・ロト・西ト・ヨト・ヨー うらぐ

In this model, u(x, t) is the density of individuals in x at time t and J(x - y) is the probability distribution of jumping from y to x. Then

$$(J*u)(x,t) = \int_{\mathbb{R}^N} J(x-y)u(y,t)dy$$

is the rate at which the individuals are arriving to *x* from other places

$$-u(x,t)=-\int_{\mathbb{R}^N}J(y-x)u(x,t)dy$$

(日) (日) (日) (日) (日) (日) (日)

is the rate at which they are leaving from x to other places.

Non-local diffusion.

The non-local equation shares some properties with the classical heat equation

$$u_t = \Delta u$$
.

Properties

- Existence, uniqueness and continuous dependence on the initial data.

- Maximum and comparison principles.

- Perturbations propagate with infinite speed. If *u* is a nonnegative and nontrivial solution, then u(x, t) > 0 for every $x \in \mathbb{R}^N$ and every t > 0.

Remark.

There is no regularizing effect for the non-local model.

Non-local diffusion.

The non-local equation shares some properties with the classical heat equation

$$u_t = \Delta u$$
.

Properties

- Existence, uniqueness and continuous dependence on the initial data.

- Maximum and comparison principles.

- Perturbations propagate with infinite speed. If *u* is a nonnegative and nontrivial solution, then u(x, t) > 0 for every $x \in \mathbb{R}^N$ and every t > 0.

Remark.

There is no regularizing effect for the non-local model.

One of the boundary conditions that has been imposed to the heat equation is the *Neumann boundary condition*, $\partial u/\partial \eta(x, t) = 0, x \in \partial \Omega$.

Non-local Neumann model

$$u_t(x,t) = \int_{\Omega} J(x-y)(u(y,t) - u(x,t)) dy$$

for $x \in \Omega$.

Since we are integrating in Ω , we are imposing that diffusion takes place only in Ω .

(日) (日) (日) (日) (日) (日) (日)

Existence, uniqueness and a comparison principle

Theorem (Cortazar - Elgueta - R. - Wolanski)

For every $u_0 \in L^1(\Omega)$ there exists a unique solution u such that $u \in C([0,\infty); L^1(\Omega))$ and $u(x,0) = u_0(x)$. Moreover the solutions satisfy the following comparison property:

if $u_0(x) \leq v_0(x)$ in Ω , then $u(x,t) \leq v(x,t)$ in $\Omega \times [0,\infty)$.

In addition the total mass in Ω is preserved

$$\int_{\Omega} u(y,t) \, dy = \int_{\Omega} u_0(y) dy.$$

Now, our goal is to show that the Neumann problem for the heat equation, can be approximated by suitable nonlocal Neumann problems.

More precisely, for given J we consider the rescaled kernels

$$J_{\varepsilon}(\xi) = C_1 \frac{1}{\varepsilon^N} J\left(\frac{\xi}{\varepsilon}\right),$$

with

$$C_1^{-1} = rac{1}{2} \int_{B(0,d)} J(z) z_N^2 \, dz,$$

which is a normalizing constant in order to obtain the Laplacian in the limit instead of a multiple of it.

(日) (日) (日) (日) (日) (日) (日)

Then, we consider the solution $u_{\varepsilon}(x, t)$ to

$$\begin{cases} (u_{\varepsilon})_t(x,t) &= \frac{1}{\varepsilon^2} \int_{\Omega} J_{\varepsilon}(x-y) (u_{\varepsilon}(y,t) - u_{\varepsilon}(x,t)) \, dy \\ u_{\varepsilon}(x,0) &= u_0(x). \end{cases}$$

Theorem (Cortazar - Elgueta - R. - Wolanski)

Let $u \in C^{2+\alpha,1+\alpha/2}(\overline{\Omega} \times [0,T])$ be the solution to the heat equation with Neumann boundary conditions and u_{ε} be the solution to the nonlocal model. Then,

$$\lim_{\varepsilon\to 0}\sup_{t\in[0,T]}\|u_{\varepsilon}(\cdot,t)-u(\cdot,t)\|_{L^{\infty}(\Omega)}=0.$$

Idea of why the involved scaling is correct

Let us give an heuristic idea in one space dimension, with $\Omega = (0, 1)$, of why the scaling involved is the right one.

We have

$$u_t(x,t) = \frac{1}{\varepsilon^3} \int_0^1 J\left(\frac{x-y}{\varepsilon}\right) (u(y,t) - u(x,t)) dy$$

:= $A_{\varepsilon} u(x,t)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

If $x \in (0, 1)$ a Taylor expansion gives that for any fixed smooth u and ε small enough, the right hand side $A_{\varepsilon}u$ becomes

$$A_{\varepsilon}u(x) = \frac{1}{\varepsilon^3} \int_0^1 J\left(\frac{x-y}{\varepsilon}\right) \left(u(y) - u(x)\right) dy$$

$$=\frac{1}{\varepsilon^2}\int_{\mathbb{R}}J(w)\left(u(x-\varepsilon w)-u(x)\right)dw$$

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 = つへぐ

If $x \in (0, 1)$ a Taylor expansion gives that for any fixed smooth u and ε small enough, the right hand side $A_{\varepsilon}u$ becomes

$$A_{\varepsilon}u(x) = \frac{1}{\varepsilon^3} \int_0^1 J\left(\frac{x-y}{\varepsilon}\right) \left(u(y) - u(x)\right) dy$$

$$=\frac{1}{\varepsilon^2}\int_{\mathbb{R}}J(w)\left(u(x-\varepsilon w)-u(x)\right)dw$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

$$=\frac{u_{\mathsf{x}}(x)}{\varepsilon}\int_{\mathbb{R}}J(w)\,w\,dw+\frac{u_{\mathsf{x}\mathsf{x}}(x)}{2}\int_{\mathbb{R}}J(w)\,w^2\,dw+O(\varepsilon)$$

As J is even

$$\int_{\mathbb{R}}J(w)\,w\,dw=0$$

and hence,

$A_{\varepsilon}u(x) \approx u_{xx}(x),$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and we recover the Laplacian for $x \in (0, 1)$.

$$=\frac{u_{\mathsf{x}}(\mathsf{x})}{\varepsilon}\int_{\mathbb{R}}J(w)\,w\,dw+\frac{u_{\mathsf{x}\mathsf{x}}(\mathsf{x})}{2}\int_{\mathbb{R}}J(w)\,w^2\,dw+O(\varepsilon)$$

As J is even

$$\int_{\mathbb{R}}J(w)\,w\,dw=0$$

and hence,

 $A_{\varepsilon}u(\mathbf{x}) \approx u_{\mathbf{x}\mathbf{x}}(\mathbf{x}),$

(日) (日) (日) (日) (日) (日) (日)

and we recover the Laplacian for $x \in (0, 1)$.

If x = 0 and ε small,

$$A_{\varepsilon}u(0) = \frac{1}{\varepsilon^3} \int_0^1 J\left(\frac{-y}{\varepsilon}\right) \left(u(y) - u(0)\right) dy$$

$$=\frac{1}{\varepsilon^{2}}\int_{-\infty}^{0}J(w)\left(-u(-\varepsilon w)+u(0)\right)dw$$

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

If x = 0 and ε small,

$$A_{\varepsilon}u(0) = \frac{1}{\varepsilon^3} \int_0^1 J\left(\frac{-y}{\varepsilon}\right) \left(u(y) - u(0)\right) dy$$

$$=\frac{1}{\varepsilon^2}\int_{-\infty}^0 J(w)\left(-u(-\varepsilon w)+u(0)\right)dw$$

$$=-\frac{u_{x}(0)}{\varepsilon}\int_{-\infty}^{0}J(w)\,w\,dw+O(1)$$

$$pprox rac{C_2}{arepsilon} u_{\mathrm{X}}(0).$$

then

$u_{x}(0)=0$

ヘロン 人間 とくほど 人間と 一座

and we recover the boundary condition

$$=-\frac{u_{x}(0)}{\varepsilon}\int_{-\infty}^{0}J(w)\,w\,dw+O(1)$$

$$pprox rac{C_2}{arepsilon} u_x(0).$$

then

$u_{x}(0)=0$

(日)(四)(日)(日)(日)

and we recover the boundary condition

$$=-\frac{u_{x}(0)}{\varepsilon}\int_{-\infty}^{0}J(w)\,w\,dw+O(1)$$

$$pprox rac{C_2}{arepsilon} u_x(0).$$

then

$u_{x}(0)=0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 つく⊙

and we recover the boundary condition

The *p*–Laplacian

The problem,

$$u_t(t,x) = \int_{\Omega} J(x-y) |u(t,y) - u(t,x)|^{p-2} (u(t,y) - u(t,x)) dy,$$

 $u(x,0) = u_0(x).$

is the analogous to the *p*-Laplacian

$$\begin{cases} u_t = \Delta_p u & \text{in } (0, T) \times \Omega, \\ |\nabla u|^{p-2} \nabla u \cdot \eta = 0 & \text{on } (0, T) \times \partial \Omega, \\ u(x, 0) = u_0(x) & \text{in } \Omega. \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○

For given $p \ge 1$ and *J* we consider the rescaled kernels

$$J_{\rho,\varepsilon}(x) := \frac{C_{J,\rho}}{\varepsilon^{\rho+N}} J\left(\frac{x}{\varepsilon}\right), \quad C_{J,\rho}^{-1} := \frac{1}{2} \int_{\mathbb{R}^N} J(z) |z_N|^{\rho} dz.$$

Theorem (Andreu - Mazon - R. - Toledo)

Let Ω be a smooth bounded domain in \mathbb{R}^N and $p \ge 1$. Assume $J(x) \ge J(y)$ if $|x| \le |y|$. Let T > 0, $u_0 \in L^p(\Omega)$. Then,

$$\lim_{\varepsilon\to 0}\sup_{t\in[0,T]}\|u_{\varepsilon}(t,.)-u(t,.)\|_{L^p(\Omega)}=0.$$

$$\begin{cases} u_t(t,x) = (J * u - u)(t,x) + (G * (f(u)) - f(u))(t,x), \\ u(0,x) = u_0(x) \quad (\text{ now } x \in \mathbb{R}^N !!). \end{cases}$$

Theorem (Ignat - R.)

There exists a unique global solution

$$u \in C([0,\infty); L^1(\mathbb{R}^N)) \cap L^\infty([0,\infty); \mathbb{R}^N).$$

Moreover, the following contraction property

$$\|u(t) - v(t)\|_{L^1(\mathbb{R}^N)} \le \|u_0 - v_0\|_{L^1(\mathbb{R}^N)}$$

holds for any $t \ge 0$. In addition, $\|u(t)\|_{L^{\infty}(\mathbb{R}^N)} \le \|u_0\|_{L^{\infty}(\mathbb{R}^N)}$.

$$\begin{cases} u_t(t,x) = (J * u - u)(t,x) + (G * (f(u)) - f(u))(t,x), \\ u(0,x) = u_0(x) \quad (\text{ now } x \in \mathbb{R}^N !!). \end{cases}$$

Theorem (Ignat - R.)

There exists a unique global solution

$$u \in C([0,\infty); L^1(\mathbb{R}^N)) \cap L^\infty([0,\infty); \mathbb{R}^N).$$

Moreover, the following contraction property

$$\|u(t) - v(t)\|_{L^1(\mathbb{R}^N)} \le \|u_0 - v_0\|_{L^1(\mathbb{R}^N)}$$

holds for any $t \ge 0$. In addition, $\|u(t)\|_{L^{\infty}(\mathbb{R}^N)} \le \|u_0\|_{L^{\infty}(\mathbb{R}^N)}$.

Let us consider the rescaled problems

$$\begin{cases} (u_{\varepsilon})_{t}(t,x) = \frac{1}{\varepsilon^{N+2}} \int_{\mathbb{R}^{N}} J\left(\frac{x-y}{\varepsilon}\right) (u_{\varepsilon}(t,y) - u_{\varepsilon}(t,x)) \, dy \\ + \frac{1}{\varepsilon^{N+1}} \int_{\mathbb{R}^{N}} G\left(\frac{x-y}{\varepsilon}\right) (f(u_{\varepsilon}(t,y)) - f(u_{\varepsilon}(t,x))) \, dy, \\ u_{\varepsilon}(x,0) = u_{0}(x). \end{cases}$$

Note that the scaling of the diffusion, $1/\varepsilon^{N+2}$, is different from the scaling of the convective term, $1/\varepsilon^{N+1}$.

Let us consider the rescaled problems

$$\begin{cases} (u_{\varepsilon})_{t}(t,x) = \frac{1}{\varepsilon^{N+2}} \int_{\mathbb{R}^{N}} J\left(\frac{x-y}{\varepsilon}\right) (u_{\varepsilon}(t,y) - u_{\varepsilon}(t,x)) \, dy \\ + \frac{1}{\varepsilon^{N+1}} \int_{\mathbb{R}^{N}} G\left(\frac{x-y}{\varepsilon}\right) (f(u_{\varepsilon}(t,y)) - f(u_{\varepsilon}(t,x))) \, dy, \\ u_{\varepsilon}(x,0) = u_{0}(x). \end{cases}$$

Note that the scaling of the diffusion, $1/\varepsilon^{N+2}$, is different from the scaling of the convective term, $1/\varepsilon^{N+1}$.

Theorem (Ignat - R.)

We have

$$\lim_{\varepsilon\to 0} \sup_{t\in[0,T]} \|u_{\varepsilon}-v\|_{L^2(\mathbb{R}^N)} = 0,$$

where v(t, x) is the unique solution to the local convection-diffusion problem

$$v_t(t, \mathbf{x}) = \Delta v(t, \mathbf{x}) + b \cdot \nabla f(v)(t, \mathbf{x}),$$

with initial condition $v(x, 0) = u_0(x)$ and $b = (b_1, ..., b_d)$ given by

$$b_j = \int_{\mathbb{R}^N} x_j G(x) dx, \qquad j = 1, ..., d.$$

Theorem (Ignat - R.)

Let $f(s) = s^q$ with q > 1 and $u_0 \in L^1(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N)$. Then, for every $p \in [1, \infty)$ the solution u verifies

$$\|u(t)\|_{L^p(\mathbb{R}^N)} \leq C(\|u_0\|_{L^1(\mathbb{R}^N)}, \|u_0\|_{L^\infty(\mathbb{R}^N)}) \langle t \rangle^{-\frac{N}{2}(1-\frac{1}{p})}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

Theorem (Ignat - R.)

Let $f(s) = s^q$ with q > (N + 1)/N and let the initial condition u_0 belongs to $L^1(\mathbb{R}^N, 1 + |x|) \cap L^{\infty}(\mathbb{R}^N)$. For any $p \in [2, \infty)$ the following holds

$$t^{-\frac{N}{2}(1-\frac{1}{p})} \|u(t) - MH(t)\|_{L^{p}(\mathbb{R}^{N})} \leq C(J, G, p, d) \alpha_{q}(t)$$

where
$$M = \int_{\mathbb{R}^N} u_0(x) \, dx$$
, $H(t) = rac{e^{-rac{x^2}{4t}}}{(2\pi t)^{rac{d}{2}}}$, and

$$\alpha_q(t) = \begin{cases} \langle t \rangle^{-\frac{1}{2}} & \text{if } q \ge (N+2)/N, \\ \langle t \rangle^{\frac{1-N(q-1)}{2}} & \text{if } (N+1)/N < q < (N+2)/N. \end{cases}$$

The main idea for the proofs is to write the solution as

$$u(t) = S(t) * u_0 + \int_0^t S(t-s) * (G * (f(u)) - f(u))(s) ds,$$

with S(t) the linear semigroup associated to

$$\left\{ egin{array}{ll} w_t(t,x) = (J*w-w)(t,x), & t>0, \ x\in \mathbb{R}^N, \ w(0,x) = u_0(x), & x\in \mathbb{R}^N. \end{array}
ight.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Decay for the heat equation

For the heat equation we have an explicit representation formula for the solution in Fourier variables. In fact, from the equation

$$v_t(x,t) = \Delta v(x,t)$$

we obtain

$$\hat{\mathbf{v}}_t(\xi,t) = -|\xi|^2 \hat{\mathbf{v}}(\xi,t),$$

and hence the solution is given by,

$$\hat{v}(\xi, t) = e^{-|\xi|^2 t} \hat{u}_0(\xi).$$

From where it can be deduced that

$$\|v(\cdot,t)\|_{L^q(\mathbb{R}^d)} \leq C t^{-d/2(1-1/q)}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

The convolution model

The asymptotic behavior as $t \to \infty$ for the nonlocal model

$$u_t(x,t) = (G * u - u)(x,t) = \int_{\mathbb{R}^d} G(x - y)u(y,t) \, dy - u(x,t),$$

is given by

Theorem The solutions verify

$$\|u(\cdot,t)\|_{L^{\infty}(\mathbb{R}^d)} \leq Ct^{-d/2}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The proof of this fact is based on a explicit representation formula for the solution in Fourier variables. In fact, from the equation

$$u_t(x,t) = (G * u - u)(x,t),$$

we obtain

$$\hat{u}_t(\xi,t) = (\hat{G}(\xi) - 1)\hat{u}(\xi,t),$$

and hence the solution is given by,

$$\hat{u}(\xi, t) = e^{(\hat{G}(\xi)-1)t}\hat{u}_0(\xi).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

From this explicit formula it can be obtained the decay in $L^{\infty}(\mathbb{R}^d)$ of the solutions. Just observe that

$$\hat{u}(\xi, t) = e^{(\hat{G}(\xi)-1)t}\hat{u}_0(\xi) \approx e^{-t}\hat{u}_0(\xi),$$

for ξ large and

$$\hat{u}(\xi,t) = e^{(\hat{G}(\xi)-1)t}\hat{u}_0(\xi) \approx e^{-|\xi|^2 t}\hat{u}_0(\xi),$$

for $\xi \approx 0$. Hence, one can obtain

$$\|u(\cdot,t)\|_{L^{\infty}(\mathbb{R}^d)} \leq Ct^{-d/2}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This decay, together with the conservation of mass, gives the decay of the $L^q(\mathbb{R}^d)$ -norms by interpolation. It holds,

$$\|u(\cdot,t)\|_{L^q(\mathbb{R}^d)} \leq C t^{-d/2(1-1/q)}.$$

Note that the asymptotic behavior is the same as the one for solutions of the heat equation and, as happens for the heat equation, the asymptotic profile is a gaussian.

(日) (日) (日) (日) (日) (日) (日)

Non-local problems without a convolution

To begin our analysis, we first deal with a linear nonlocal diffusion operator of the form

$$u_t(x,t) = \int_{\mathbb{R}^d} J(x,y)(u(y,t) - u(x,t)) \, dy.$$

Also consider

$$u_t(x,t) = \int_{\mathbb{R}^d} J(x,y) |u(y,t) - u(x,t)|^{p-2} (u(y,t) - u(x,t)) \, dy.$$

(日) (日) (日) (日) (日) (日) (日)

Note that use of the Fourier transform is useless.

Energy estimates for the heat equation

Let us begin with the simpler case of the estimate for solutions to the heat equation in $L^2(\mathbb{R}^d)$ -norm. Let

$$u_t = \Delta u.$$

If we multiply by u and integrate in \mathbb{R}^d , we obtain

$$rac{d}{dt}\int_{\mathbb{R}^d}rac{1}{2}u^2(x,t)dx=-\int_{\mathbb{R}^d}|
abla u(x,t)|^2dx.$$

Now we use Sobolev's inequality, with $2^* = \frac{2d}{(d-2)}$,

$$\int_{\mathbb{R}^d} |\nabla u|^2(x,t) \, dx \geq C \left(\int_{\mathbb{R}^d} |u|^{2^*}(x,t) \, dx \right)^{2/2^*}$$

to obtain

$$\frac{d}{dt}\int_{\mathbb{R}^d} u^2(x,t)\,dx \leq -C\left(\int_{\mathbb{R}^d} |u|^{2^*}(x,t)\,dx\right)^{2/2^*}.$$

Energy estimates for the heat equation

If we use interpolation and conservation of mass, that implies $||u(t)||_{L^1(\mathbb{R}^d)} \leq C$ for any t > 0, we have

 $\|u(t)\|_{L^{2}(\mathbb{R}^{d})} \leq \|u(t)\|_{L^{1}(\mathbb{R}^{d})}^{\alpha}\|u(t)\|_{L^{2^{*}}(\mathbb{R}^{d})}^{1-\alpha} \leq C\|u(t)\|_{L^{2^{*}}(\mathbb{R}^{d})}^{1-\alpha}$ with α determined by

$$\frac{1}{2} = \alpha + \frac{1 - \alpha}{2^*}$$
, that is, $\alpha = \frac{2^* - 2}{2(2^* - 1)}$.

Hence we get

$$\frac{d}{dt}\int_{\mathbb{R}^d} u^2(x,t)\,dx \leq -C\left(\int_{\mathbb{R}^d} u^2(x,t)\,dx\right)^{\frac{1}{1-c}}$$

from where the decay estimate

$$\|u(t)\|_{L^2(\mathbb{R}^d)} \leq C t^{-\frac{d}{2}(1-\frac{1}{2})}, \qquad t > 0,$$

follows.

We want to mimic the steps for the nonlocal evolution problem

$$u_t(x,t) = \int_{\mathbb{R}^d} J(x,y)(u(y,t) - u(x,t)) \, dy.$$

Hence, we multiply by u and integrate in \mathbb{R}^d to obtain,

$$\frac{d}{dt}\int_{\mathbb{R}^d}\frac{1}{2}u^2(x,t)\,dx=\int_{\mathbb{R}^d}\int_{\mathbb{R}^d}J(x,y)(u(y,t)-u(x,t))\,dy\,u(x,t)\,dx.$$

(日) (日) (日) (日) (日) (日) (日)

Now, we need to "integrate by parts". We have

lemma

If J is symmetric, J(x, y) = J(y, x) then it holds

$$\begin{split} &\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} J(x,y)(\varphi(y) - \varphi(x))\psi(x)dydx \\ &= -\frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} J(x,y)(\varphi(y) - \varphi(x))(\psi(y) - \psi(x))dydx. \end{split}$$

(日) (日) (日) (日) (日) (日) (日)

If we use this lemma we get

$$\frac{d}{dt}\int_{\mathbb{R}^d}\frac{1}{2}u^2(x,t)dx=-\frac{1}{2}\int_{\mathbb{R}^d}\int_{\mathbb{R}^d}J(x,y)(u(y,t)-u(x,t))^2\,dy\,dx.$$

Now we run into troubles since there is no analogous to Sobolev inequality. In fact, an inequality of the form

$$\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} J(x,y) (u(y,t) - u(x,t))^2 \, dy \, dx \geq C \left(\int_{\mathbb{R}^d} u^q(x,t) \, dx \right)^{2/q}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

can not hold for any q > 2.

Now the idea is to split the function *u* as the sum of two functions

u = v + w,

where on the function v (the "smooth"part of the solution) the nonlocal operator acts as a gradient and on the function w (the "rough"part) it does not increase its norm significatively. Therefore, we need to obtain estimates for the $L^p(\mathbb{R}^d)$ -norm of the nonlocal operators.

Theorem Let $p \in [1, \infty)$ and $J(\cdot, \cdot) : \mathbb{R}^d \times \mathbb{R}^d \mapsto \mathbb{R}$ be a symmetric nonnegative function satisfying HJ1) There exists a positive constant $C < \infty$ such that

$$\sup_{y\in\mathbb{R}^d}\int_{\mathbb{R}^d}J(x,y)\,dx\leq C.$$

HJ2) There exist positive constants c_1 , c_2 and a function $a \in C^1(\mathbb{R}^d, \mathbb{R}^d)$ satisfying

 $\sup_{x\in \mathbb{R}^d} |\nabla a(x)| < \infty$

such that the set $B_x = \{y \in \mathbb{R}^d : |y - a(x)| \le c_2\}$ verifies $B_x \subset \{y \in \mathbb{R}^d : J(x, y) > c_1\}.$

Theorem Then, for any function $u \in L^p(\mathbb{R}^d)$ there exist two functions *v* and *w* such that u = v + w and

$$\|\nabla v\|_{L^p(\mathbb{R}^d)}^p+\|w\|_{L^p(\mathbb{R}^d)}^p\leq C(J,p)\int_{\mathbb{R}^d}\int_{\mathbb{R}^d}J(x,y)|u(x)-u(y)|^p\,dx\,dy.$$

Moreover, if $u \in L^q(\mathbb{R}^d)$ with $q \in [1, \infty]$ then the functions v and w satisfy

$$\|v\|_{L^q(\mathbb{R}^d)} \leq C(J,q) \|u\|_{L^q(\mathbb{R}^d)}$$

and

$$\|w\|_{L^q(\mathbb{R}^d)} \leq C(J,q)\|u\|_{L^q(\mathbb{R}^d)}$$

(日) (日) (日) (日) (日) (日) (日)

We note that using the classical Sobolev's inequality

$$\|\mathbf{v}\|_{L^{p^*}(\mathbb{R}^d)} \leq \|\nabla \mathbf{v}\|_{L^p(\mathbb{R}^d)}$$

we get

$$\|v\|_{L^{p*}(\mathbb{R}^d)}^p+\|w\|_{L^p(\mathbb{R}^d)}^p\leq C(J,p)\int_{\mathbb{R}^r}\int_{\mathbb{R}^d}J(x,y)|u(x)-u(y)|^p\,dx\,dy.$$

(日) (日) (日) (日) (日) (日) (日)

To simplify the notation let us denote by $\langle A_p u, u \rangle$ the following quantity,

$$\langle A_p u, u \rangle := \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} J(x, y) |u(x) - u(y)|^p \, dx \, dy$$

Corollary

$$\|u\|_{L^{p}(\mathbb{R}^{d})}^{p} \leq C_{1}\|u\|_{L^{1}(\mathbb{R}^{d})}^{p(1-\alpha(p))}\langle A_{p}u,u\rangle^{\alpha(p)} + C_{2}\langle A_{p}u,u\rangle,$$

where $\alpha(p)$ is given by

$$\alpha(p) = \frac{p^*}{p'(p^*-1)} = \frac{d(p-1)}{d(p-1)+p}.$$

(ロ) (同) (三) (三) (三) (○) (○)

Remark In the case of the local operator $B_p u = -\text{div}(|\nabla u|^{p-2}\nabla u)$, using Sobolev's inequality and interpolation inequalities we have the following estimate

$$\|u\|_{L^{p}(\mathbb{R}^{d})}^{p} \leq C_{1}\|u\|_{L^{1}(\mathbb{R}^{d})}^{p(1-\alpha(p))}\langle B_{p}u,u\rangle^{\alpha(p)}.$$

In the nonlocal case an extra term involving $\langle A_{\rho}u, u \rangle$ occurs.

Let us consider

$$u_t(x,t) = \int_{\mathbb{R}^d} J(x,y)(u(y,t) - u(x,t)) \, dy + f(u)(x,t)$$

Theorem Let *f* be a locally Lipshitz function with $f(s)s \le 0$.

$$\|u(t)\|_{L^q(\mathbb{R}^d)} \leq C(q,d)\|u_0\|_{L^1(\mathbb{R}^d)}t^{-rac{d}{2}(1-rac{1}{q})}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for all $q \in [1, \infty)$ and for all *t* sufficiently large.

Using these ideas we can also deal with the following nonlocal analogous to the p-laplacian evolution,

$$u_t(x,t) = \int_{\mathbb{R}^d} J(x,y) |u(y,t) - u(x,t)|^{p-2} (u(y,t) - u(x,t)) \, dy.$$

Theorem Let $2 \le p < d$. For any $1 \le q < \infty$ the solution verifies

$$\|u(\cdot,t)\|_{L^q(\mathbb{R}^d)} \leq Ct^{-\left(\frac{d}{d(p-2)+p}\right)\left(1-\frac{1}{q}\right)}$$

(日) (日) (日) (日) (日) (日) (日)

for all t sufficiently large.

THANKS !!!!.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

