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Non-local diffusion.

The function J. Let J : R
N → R, nonnegative, smooth with

∫

RN
J(r)dr = 1.

Assume that is compactly supported and radially symmetric.

Non-local diffusion equation

ut(x , t) = J ∗ u − u(x , t) =

∫

RN
J(x − y)u(y , t)dy − u(x , t).
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Non-local diffusion.

In this model, u(x , t) is the density of individuals in x at time t
and J(x − y) is the probability distribution of jumping from y to
x . Then

(J ∗ u)(x , t) =

∫

RN
J(x − y)u(y , t)dy

is the rate at which the individuals are arriving to x from other
places

−u(x , t) = −

∫

RN
J(y − x)u(x , t)dy

is the rate at which they are leaving from x to other places.
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Non-local diffusion.

The non-local equation shares some properties with the
classical heat equation

ut = ∆u.

Properties

- Existence, uniqueness and continuous dependence on the
initial data.
- Maximum and comparison principles.
- Perturbations propagate with infinite speed. If u is a
nonnegative and nontrivial solution, then u(x , t) > 0 for every
x ∈ R

N and every t > 0.

Remark.
There is no regularizing effect for the non-local model.
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Newmann boundary conditions.

One of the boundary conditions that has been imposed to the
heat equation is the Neumann boundary condition,
∂u/∂η(x , t) = 0, x ∈ ∂Ω.

Non-local Neumann model

ut(x , t) =

∫

Ω
J(x − y)(u(y , t) − u(x , t))dy

for x ∈ Ω.

Since we are integrating in Ω, we are imposing that diffusion
takes place only in Ω.
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Existence, uniqueness and a comparison principle

Theorem (Cortazar - Elgueta - R. - Wolanski)

For every u0 ∈ L1(Ω) there exists a unique solution u such that
u ∈ C([0,∞); L1(Ω)) and u(x ,0) = u0(x).
Moreover the solutions satisfy the following comparison
property:

if u0(x) ≤ v0(x) in Ω, then u(x , t) ≤ v(x , t) in Ω × [0,∞).

In addition the total mass in Ω is preserved
∫

Ω
u(y , t) dy =

∫

Ω
u0(y)dy .
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Approximations

Now, our goal is to show that the Neumann problem for the
heat equation, can be approximated by suitable nonlocal
Neumann problems.
More precisely, for given J we consider the rescaled kernels

Jε(ξ) = C1
1
εN J

(

ξ

ε

)

,

with

C−1
1 =

1
2

∫

B(0,d)
J(z)z2

N dz,

which is a normalizing constant in order to obtain the Laplacian
in the limit instead of a multiple of it.
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Approximations

Then, we consider the solution uε(x , t) to







(uε)t(x , t) =
1
ε2

∫

Ω
Jε(x − y)(uε(y , t) − uε(x , t)) dy

uε(x ,0) = u0(x).

Theorem (Cortazar - Elgueta - R. - Wolanski)

Let u ∈ C2+α,1+α/2(Ω × [0,T ]) be the solution to the heat
equation with Neumann boundary conditions and uε be the
solution to the nonlocal model. Then,

lim
ε→0

sup
t∈[0,T ]

‖uε(·, t) − u(·, t)‖L∞(Ω) = 0.
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Approximations

Idea of why the involved scaling is correct

Let us give an heuristic idea in one space dimension, with
Ω = (0,1), of why the scaling involved is the right one.

We have

ut(x , t) =
1
ε3

∫ 1

0
J

(

x − y
ε

)

(

u(y , t) − u(x , t)
)

dy

:= Aεu(x , t).
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Approximations

If x ∈ (0,1) a Taylor expansion gives that for any fixed smooth u
and ε small enough, the right hand side Aεu becomes

Aεu(x) =
1
ε3

∫ 1

0
J

(

x − y
ε

)

(u(y) − u(x)) dy

=
1
ε2

∫

R

J (w) (u(x − εw) − u(x)) dw
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Approximations
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Approximations

=
ux(x)

ε

∫

R

J (w) w dw +
uxx(x)

2

∫

R

J (w) w2 dw + O(ε)

As J is even
∫

R

J (w) w dw = 0

and hence,

Aεu(x) ≈ uxx(x),

and we recover the Laplacian for x ∈ (0,1).
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Approximations

If x = 0 and ε small,

Aεu(0) =
1
ε3

∫ 1

0
J

(

−y
ε

)

(u(y) − u(0)) dy

=
1
ε2

∫ 0

−∞
J (w) (−u(−εw) + u(0)) dw
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Approximations

= −
ux(0)

ε

∫ 0

−∞
J (w) w dw + O(1)

≈
C2

ε
ux(0).

then

ux(0) = 0

and we recover the boundary condition
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Approximations
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The p−Laplacian

The problem,

ut(t , x) =

∫

Ω
J(x − y)|u(t , y) − u(t , x)|p−2(u(t , y) − u(t , x))dy ,

u(x ,0) = u0(x).

is the analogous to the p-Laplacian















ut = ∆pu in (0,T ) × Ω,

|∇u|p−2∇u · η = 0 on (0,T ) × ∂Ω,

u(x ,0) = u0(x) in Ω.
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Approximations

For given p ≥ 1 and J we consider the rescaled kernels

Jp,ε(x) :=
CJ,p

εp+N J
(x
ε

)

, C−1
J,p :=

1
2

∫

RN
J(z)|zN |

p dz.

Theorem (Andreu - Mazon - R. - Toledo)

Let Ω be a smooth bounded domain in R
N and p ≥ 1. Assume

J(x) ≥ J(y) if |x | ≤ |y |. Let T > 0, u0 ∈ Lp(Ω). Then,

lim
ε→0

sup
t∈[0,T ]

‖uε(t , .) − u(t , .)‖Lp(Ω) = 0.
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Convective terms

{

ut(t , x) = (J ∗ u − u) (t , x) + (G ∗ (f (u)) − f (u)) (t , x),

u(0, x) = u0(x) ( now x ∈ R
N !!).

Theorem (Ignat - R.)

There exists a unique global solution

u ∈ C([0,∞); L1(RN)) ∩ L∞([0,∞); RN).

Moreover, the following contraction property

‖u(t) − v(t)‖L1(RN) ≤ ‖u0 − v0‖L1(RN)

holds for any t ≥ 0. In addition, ‖u(t)‖L∞(RN) ≤ ‖u0‖L∞(RN).
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Convective terms

Let us consider the rescaled problems







































(uε)t(t , x) =
1

εN+2

∫

RN
J

(

x − y
ε

)

(uε(t , y) − uε(t , x)) dy

+
1

εN+1

∫

RN
G

(

x − y
ε

)

(f (uε(t , y)) − f (uε(t , x))) dy ,

uε(x ,0) = u0(x).

Note that the scaling of the diffusion, 1/εN+2, is different from
the scaling of the convective term, 1/εN+1.
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Convective terms

Theorem (Ignat - R.)

We have
lim
ε→0

sup
t∈[0,T ]

‖uε − v‖L2(RN) = 0,

where v(t , x) is the unique solution to the local
convection-diffusion problem

vt(t , x) = ∆v(t , x) + b · ∇f (v)(t , x),

with initial condition v(x ,0) = u0(x) and b = (b1, ...,bd) given
by

bj =

∫

RN
xj G(x) dx , j = 1, ...,d .
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Convective terms

Theorem (Ignat - R.)

Let f (s) = sq with q > 1 and u0 ∈ L1(RN) ∩ L∞(RN). Then, for
every p ∈ [1,∞) the solution u verifies

‖u(t)‖Lp(RN) ≤ C(‖u0‖L1(RN), ‖u0‖L∞(RN)) 〈t〉
−N

2 (1− 1
p )
.
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Convective terms

Theorem (Ignat - R.)

Let f (s) = sq with q > (N + 1)/N and let the initial condition u0

belongs to L1(RN ,1 + |x |) ∩ L∞(RN). For any p ∈ [2,∞) the
following holds

t−
N
2 (1− 1

p )
‖u(t) − MH(t)‖Lp(RN) ≤ C(J,G,p,d)αq(t),

where M =
∫

RN u0(x) dx, H(t) = e−
x2
4t

(2πt)
d
2
, and

αq(t) =







〈t〉−
1
2 if q ≥ (N + 2)/N,

〈t〉
1−N(q−1)

2 if (N + 1)/N < q < (N + 2)/N.
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Convective terms

The main idea for the proofs is to write the solution as

u(t) = S(t) ∗ u0 +

∫ t

0
S(t − s) ∗ (G ∗ (f (u)) − f (u))(s) ds,

with S(t) the linear semigroup associated to
{

wt(t , x) = (J ∗ w − w)(t , x), t > 0, x ∈ R
N ,

w(0, x) = u0(x), x ∈ R
N .
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Decay for the heat equation

For the heat equation we have an explicit representation
formula for the solution in Fourier variables. In fact, from the
equation

vt(x , t) = ∆v(x , t)

we obtain
v̂t(ξ, t) = −|ξ|2v̂(ξ, t),

and hence the solution is given by,

v̂(ξ, t) = e−|ξ|2t û0(ξ).

From where it can be deduced that

‖v(·, t)‖Lq(Rd ) ≤ C t−d/2(1−1/q).
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The convolution model

The asymptotic behavior as t → ∞ for the nonlocal model

ut(x , t) = (G ∗ u − u)(x , t) =

∫

Rd
G(x − y)u(y , t) dy − u(x , t),

is given by

Theorem The solutions verify

‖u(·, t)‖L∞(Rd ) ≤ Ct−d/2.
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The convolution model

The proof of this fact is based on a explicit representation
formula for the solution in Fourier variables. In fact, from the
equation

ut(x , t) = (G ∗ u − u)(x , t),

we obtain
ût(ξ, t) = (Ĝ(ξ) − 1)û(ξ, t),

and hence the solution is given by,

û(ξ, t) = e(Ĝ(ξ)−1)t û0(ξ).
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From this explicit formula it can be obtained the decay in
L∞(Rd) of the solutions. Just observe that

û(ξ, t) = e(Ĝ(ξ)−1)t û0(ξ) ≈ e−t û0(ξ),

for ξ large and

û(ξ, t) = e(Ĝ(ξ)−1)t û0(ξ) ≈ e−|ξ|2t û0(ξ),

for ξ ≈ 0. Hence, one can obtain

‖u(·, t)‖L∞(Rd ) ≤ Ct−d/2.
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This decay, together with the conservation of mass, gives the
decay of the Lq(Rd )-norms by interpolation. It holds,

‖u(·, t)‖Lq(Rd ) ≤ C t−d/2(1−1/q).

Note that the asymptotic behavior is the same as the one for
solutions of the heat equation and, as happens for the heat
equation, the asymptotic profile is a gaussian.
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Non-local problems without a convolution

To begin our analysis, we first deal with a linear nonlocal
diffusion operator of the form

ut(x , t) =

∫

Rd
J(x , y)(u(y , t) − u(x , t)) dy .

Also consider

ut(x , t) =

∫

Rd
J(x , y)|u(y , t) − u(x , t)|p−2(u(y , t) − u(x , t)) dy .

Note that use of the Fourier transform is useless.
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Energy estimates for the heat equation

Let us begin with the simpler case of the estimate for solutions
to the heat equation in L2(Rd )-norm. Let

ut = ∆u.

If we multiply by u and integrate in R
d , we obtain

d
dt

∫

Rd

1
2

u2(x , t)dx = −

∫

Rd
|∇u(x , t)|2dx .

Now we use Sobolev’s inequality, with 2∗ = 2d
(d−2) ,

∫

Rd
|∇u|2(x , t) dx ≥ C

(
∫

Rd
|u|2

∗

(x , t) dx
)2/2∗

to obtain

d
dt

∫

Rd
u2(x , t) dx ≤ −C

(
∫

Rd
|u|2

∗

(x , t) dx
)2/2∗

.
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Energy estimates for the heat equation

If we use interpolation and conservation of mass, that implies
‖u(t)‖L1(Rd ) ≤ C for any t > 0, we have

‖u(t)‖L2(Rd ) ≤ ‖u(t)‖α
L1(Rd )‖u(t)‖1−α

L2∗ (Rd )
≤ C‖u(t)‖1−α

L2∗ (Rd )

with α determined by

1
2

= α+
1 − α

2∗
, that is, α =

2∗ − 2
2(2∗ − 1)

.

Hence we get

d
dt

∫

Rd
u2(x , t) dx ≤ −C

(
∫

Rd
u2(x , t) dx

)
1

1−α

from where the decay estimate

‖u(t)‖L2(Rd ) ≤ C t−
d
2

(

1− 1
2

)

, t > 0,

follows.
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Energy estimates for the non-local equation

We want to mimic the steps for the nonlocal evolution problem

ut(x , t) =

∫

Rd
J(x , y)(u(y , t) − u(x , t)) dy .

Hence, we multiply by u and integrate in R
d to obtain,

d
dt

∫

Rd

1
2

u2(x , t) dx =

∫

Rd

∫

Rd
J(x , y)(u(y , t)−u(x , t)) dy u(x , t) dx .
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Energy estimates for the non-local equation

Now, we need to “integrate by parts”. We have

lemma
If J is symmetric, J(x , y) = J(y , x) then it holds

∫

Rd

∫

Rd
J(x , y)(ϕ(y) − ϕ(x))ψ(x)dydx

= −
1
2

∫

Rd

∫

Rd
J(x , y)(ϕ(y) − ϕ(x))(ψ(y) − ψ(x))dydx .
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Energy estimates for the non-local equation

If we use this lemma we get

d
dt

∫

Rd

1
2

u2(x , t)dx = −
1
2

∫

Rd

∫

Rd
J(x , y)(u(y , t)−u(x , t))2 dy dx .

Now we run into troubles since there is no analogous to
Sobolev inequality. In fact, an inequality of the form

∫

Rd

∫

Rd
J(x , y)(u(y , t)−u(x , t))2 dy dx ≥ C

(
∫

Rd
uq(x , t) dx

)2/q

can not hold for any q > 2.
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Energy estimates for the non-local equation

Now the idea is to split the function u as the sum of two
functions

u = v + w ,

where on the function v (the “smooth”part of the solution) the
nonlocal operator acts as a gradient and on the function w (the
“rough”part) it does not increase its norm significatively.
Therefore, we need to obtain estimates for the Lp(Rd)-norm of
the nonlocal operators.
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Energy estimates for the non-local equation

Theorem Let p ∈ [1,∞) and J(·, ·) : R
d × R

d 7→ R be a
symmetric nonnegative function satisfying
HJ1) There exists a positive constant C <∞ such that

sup
y∈Rd

∫

Rd
J(x , y) dx ≤ C.

HJ2) There exist positive constants c1, c2 and a function
a ∈ C1(Rd ,Rd) satisfying

sup
x∈Rd

|∇a(x)| <∞

such that the set Bx = {y ∈ R
d : |y − a(x)| ≤ c2} verifies

Bx ⊂ {y ∈ R
d : J(x , y) > c1}.
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Energy estimates for the non-local equation

Theorem Then, for any function u ∈ Lp(Rd) there exist two
functions v and w such that u = v + w and

‖∇v‖p
Lp(Rd )

+‖w‖p
Lp(Rd )

≤ C(J,p)

∫

Rd

∫

Rd
J(x , y)|u(x)−u(y)|p dx dy .

Moreover, if u ∈ Lq(Rd) with q ∈ [1,∞] then the functions v and
w satisfy

‖v‖Lq(Rd ) ≤ C(J,q)‖u‖Lq(Rd )

and
‖w‖Lq(Rd ) ≤ C(J,q)‖u‖Lq(Rd ).
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Energy estimates for the non-local equation

We note that using the classical Sobolev’s inequality

‖v‖Lp∗ (Rd ) ≤ ‖∇v‖Lp(Rd )

we get

‖v‖p
Lp∗(Rd )

+‖w‖p
Lp(Rd )

≤ C(J,p)

∫

Rr

∫

Rd
J(x , y)|u(x)−u(y)|p dx dy .
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Energy estimates for the non-local equation

To simplify the notation let us denote by 〈Apu,u〉 the following
quantity,

〈Apu,u〉 :=

∫

Rd

∫

Rd
J(x , y)|u(x) − u(y)|p dx dy .

Corollary

‖u‖p
Lp(Rd )

≤ C1‖u‖p(1−α(p))

L1(Rd )
〈Apu,u〉α(p) + C2〈Apu,u〉,

where α(p) is given by

α(p) =
p∗

p′(p∗ − 1)
=

d(p − 1)

d(p − 1) + p
.
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Energy estimates for the non-local equation

Remark In the case of the local operator
Bpu = −div(|∇u|p−2∇u), using Sobolev’s inequality and
interpolation inequalities we have the following estimate

‖u‖p
Lp(Rd )

≤ C1‖u‖p(1−α(p))

L1(Rd )
〈Bpu,u〉α(p).

In the nonlocal case an extra term involving 〈Apu,u〉 occurs.
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Decay estimates for the non-local equation

Let us consider

ut(x , t) =

∫

Rd
J(x , y)(u(y , t) − u(x , t)) dy + f (u)(x , t)

Theorem Let f be a locally Lipshitz function with f (s)s ≤ 0.

‖u(t)‖Lq(Rd ) ≤ C(q,d)‖u0‖L1(Rd )t
− d

2 (1− 1
q )

for all q ∈ [1,∞) and for all t sufficiently large.
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Decay estimates for the non-local equation

Using these ideas we can also deal with the following nonlocal
analogous to the p−laplacian evolution,

ut(x , t) =

∫

Rd
J(x , y)|u(y , t) − u(x , t)|p−2(u(y , t) − u(x , t)) dy .

Theorem Let 2 ≤ p < d . For any 1 ≤ q <∞ the solution
verifies

‖u(·, t)‖Lq(Rd ) ≤ Ct−
(

d
d(p−2)+p

)(

1− 1
q

)

for all t sufficiently large.
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THANKS !!!!.
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Thanks !!!


