Evolutionsgleichungen und Anwendungen

5. Übungsblatt

Abgabe am 15.12.2010

Aufgabe 5.1

Sei $(X, \|\cdot\|)$ ein Banach-Raum. Sei $u \in L^p(0, T; X)$ $(p \in [1, \infty))$ auf ganz \mathbb{R} mit Null fortgesetzt (und die Fortsetzung weiter mit u bezeichnet). Unter dem Steklov-Mittel S_hu $(h \in \mathbb{R} \setminus \{0\})$ von u versteht man

$$(S_h u)(t) := \frac{1}{h} \int_t^{t+h} u(s) ds, \quad t \in \mathbb{R}.$$

Zeige, daß $S_h u \in \mathcal{C}([0,T];X)$, $||S_h u||_{L^p(0,T;X)} \le ||u||_{L^p(0,T;X)}$ sowie $S_h u \to u$ in $L^p(0,T;X)$ für $h \to 0$.

Wer war Steklov?

Aufgabe 5.2

Sei $V \subseteq H \subseteq V^*$ ein Gelfand-Dreier. Vorgelegt seien Folgen $\{u_{0n}\} \subset H$ und $\{f_n\} \subset L^2(0,T;V^*)$ mit $u_{0n} \to u_0$ in H und $f_n \to f$ in $L^2(0,T;V^*)$ für $n \to \infty$. Unter den Standardvoraussetzungen and die Form $a(\cdot;\cdot,\cdot)$ besitzt das Problem (P) genau eine Lösung $u_n \in \mathcal{W}(0,T)$ zu den Daten (u_{0n},f_n) . Zeige, daß $\{u_n\}$ für $n \to \infty$ gegen ein $u \in \mathcal{W}(0,T)$ konvergiert und daß u Lösung von (P) zu den Daten (u_0,f) ist.

Aufgabe 5.3

Beweise die aus der Vorlesung bekannten A-priori-Abschätzungen für das Problem (P) für den Fall, daß die Form $a(\cdot;\cdot,\cdot)$ nicht stark positiv ist, wohl aber einer Gårdingschen Ungleichung genügt (daß also $\kappa \neq 0$).

Aufgabe 5.4

Leite A-priori-Abschätzungen für das zeitdiskrete Problem (P_{τ}) für den Fall her, daß die Form $a(\cdot;\cdot,\cdot)$ nicht stark positiv ist, wohl aber einer Gårdingschen Ungleichung genügt (daß also $\kappa \neq 0$).