OPERATIONS IN THE ALGEBRAIC K-THEORY OF SPACES

Friedhelm Waldhausen

The purpose of this note is to show that the analogue of the Kahn-Priddy theorem

is valid for the algebraic K-theory of spaces.

To make this more precise we first recall the Kahn-Priddy theorem in a convenient
form, and introduce some notation. Let Q(X) denote the unreduced stable homotopy
of X, Q(X) = Q°S®(X;) . Let Q(X) be the reduced part, we think of it as
fibre(Q(X) » Q(*)) , the homotopy theoretic fibre; here #* denotes a one-point space.
Let I denote the symmetric group on n letters, and BI, its classifying space.

Associated to the universal covering map

* EZn——) BEn
there is a transfer map

Q(BZ)) —> Q%) .

By composition with 6(Btn) - Q(BZ,) one obtains from it a map 6(B2n) - Q(*) . Let
p be a prime and let the subscript (p) denote localization at p . The Kahn-Priddy

theorem may then be formulated to say that the map of localized homotopy groups
R(BIP) (p) > T3 p)
is surjective for j > 0 .

Let A(X) denote the algebraic K-theory of X (cf. [9] or [5]; it will be
reviewed below), and let X(X) = fibre(A(X) = A(*)) be the reduced part. The ana-
logue of the Kahn-Priddy theorem to be proved here, says that for any prime p the

transfer map
ij(BZp) e — ﬂjA(*) ®)
is surjective for j > O .

As with Segal's proof of the Kahn-Priddy theorem [6] this result will be deduced
from the existence of certain operations. These operations may be regarded as exten-
sions of the power operations 6% which Segal constructed in stable homotopy theory.

At any rate, the relation is so close that it seems appropriate to use the same name.
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Theorem. There are maps 6%: A(*) - A(BL,) which satisfy
n ! = identity map
(2) The combined map

= n .
0 My 67 5 AGY ——— T A(BL)

n21 1
is a map of H-spaces if the right hand side is equipped with the H-space structure
arising from the juxtaposition pairings A(BZ) x A(BL)) —> A(BZ

men)
(3) The composite of 6%: A(*) - A(an) with the transfer map bnt A(an) > A(x)
is the same (up to weak homotopy) as the polynomial map from A(x) to itself given

by the integral polynomial

pn(x) = x(x-1)...(x-n+l) .

Property (3) refers to the fact that A(x) is a 'ring' - it will certainly
suffice here to know that the homotopy functor represented by A(*) has a ring
structure. Thus given a homotopy class of maps f € [Y,A(%x)] , and an integral
polynomial p(x) , one can evaluate p(x) on f . The map in property (3) is ob-

tained in this way by evaluating the polynomial P,(x) on the identity map of A(*).

To apply the theorem, we note if Y is a suspension, and f € [Y,A(x)] is the
homotopy class of a map having its image in the connected component of zero, then
2 =0 . (For £2 may be represented by the product of a pair of maps which take,
respectively, the upper and lower hemisphere into zero). 1In particular, this remark
applies to f e ﬂjA(*) if j > 0 (we may dispose of basepoints in view of the
(additive) H-space structure on A(*) ). It follows that, for j>0, the endomorphism
of ij(*) induced by the polynomial pn(x) is the same as that induced by its
linear term (—l)n'l(n-l)!x . Applying the theorem, we obtain that the map
(9,0M 4 ¢ TAGK) —— A, >0,
is given by multiplication with (-l)n_](n—l)!
We specialize to the case where n = p is a prime. Then (—l)p_l(p—l)! is
a unit modulo p , so it follows that the transfer map
(¢p)* : "jA(sz) — TrjA(*) 9 j >0 3
is surjective modulo p . Now
ij(BZp) ~ ij(BZp) [ ij(*)

and (cf. lemma 1.3 below) the composite map

T A(}) ——s 7.A(BL,) —transfer oo,y
] J P J
is given by multiplication with the order of ZP , which is 0 modulo p . It

follows that the composite map
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mK(BL,) ——> m;A(BE)) _transfer, TA() , §>0,

is still surjective modulo p .

We can conclude with an application of Nakayama's lemma. In fact, Dwyer has
shown [1] that ‘ﬂjA(*) is finitely generated. So Nakayama's lemma applies, showing

that the map of localizations
Tl'jA(sz) (p) _—> “jA(*) (p) * j>0,

will be surjective as soon as its reduction modulo p 1is. This we have just seen.

It remains to prove the theorem. The construction of the operations 8™ along
with the verification of their properties will be given in section 2. The method
is that of Segal, essentially. Briefly, Segal's construction is concerned with sets
and their isomorphisms (the formulation in [6] is on the represented functor level,
in terms of covering spaces) whereas we have to work here with the larger category
of simplicial sets and their weak homotopy equivalences. The characteristic feature
of the method is that the construction is done first on an elementary level (by ex-
plicit manipulation of sets, resp. simplicial sets) and is then extended quite indi-
rectly by appeal to a certain universal property. In the present paper, the discus-
sion of that universal property, together with a certain amount of background material,
makes up the preliminary section 1. At the end of the paper there are some remarks

on generalizations and variants of the construction.

1. Review of A(X). Let R(x) denote the category of pointed simplicial sets, and
Re(*) the subcategory of those Y which are finite (that is, generated by finitely
many simplices; equivalently, the geometric realization 1Yl is compact). The cate-
gory Rf(*) comes equipped with two distinguished subcategories, the category of
cofibrations (injective maps) on the one hand, and the category of weak homotopy equi-

valences on the other; the latter category will be denoted hRf(*)

Taking this situation as a model one defines the notion of a category with cofi-
brations and weak equivalences. This is a category C pointed by a zero object and
equipped with subcategories co(C) and. w(C) whose morphisms are called cofibrations,
resp. weak equivalences, and where certain simple properties of a formal nature are
required to hold, essentially the possibility of 'gluing' (cobase change by cofibra-

tion) and the validity of the 'gluing lemma' for the weak equivalences.

It is possible in this situation to write down a certain simplicial category
wS.C . The category wS,C (i.e. the category in degree n of this simplicial cate-

gory) has as its objects the filtered objects (sequences of cofibrations) of length =n ,
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Y >—-—’Y02>—> ‘e >—’Y0n,

ol
and the morphisms are the weak equivalences of filtered objects, that is, the natural

transformations

Y > Y > ... > Y
ol 02 on

ook k

Y' — Yy' — .., > Y' .
ol 02 on

(There is a little technical point. The simplicial structure involves quotient ob-

jects

Tig ™ Yyl (= Y, UYoi 0)

which therefore better be well-defined, not just well-defined up to isomorphism (they
exist by assumption). For this reason one blows up the category to a larger but
equivalent category by including such choices in the data. Cf. [9] or [5] for

details.)

In the basic case of the category Rf(*) one defines A(*) as the loop space

of the geometric realization of this simplicial category,

A(x¥) = QIhS.Rf(*)I .

As a general remark let us note that the equivalence of categories
wSlC ~ w(C)

(together with the fact that wS,C 1is the trivial category containing only O , the

basepoint) gives rise to an inclusion of the suspension,

Zlw(C)| —— [wS.Cl .
Passing to the adjoint we obtain a map

[w()| —— QlwS.Cl .
In particular we obtain in this way a map

IhRf(*)l — A(x) .

On the level of connected components this map is essentially the Euler characteristic,
cf. [9]. In the following two lemmas we show how the map can be used to characterize

A(*) in terms of a universal property.
We shall denote by
§, t, @ 3 SHRe (%) — Re(¥)

the maps which to a cofibration sequence Y51 ™Y, —» Y|, associate its subobject,

total object, and quotient object, respectively. Let svq denote the map given by
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the sum of s and q .

Lemma 1.1. The two composite maps
t
IhSzRf(*)l —s—’ v q_—> IhRe () | —> A(%)
are homotopic.
Proof. The additivity theorem (cf. [91, [5], and [11]) says that if C 1is a cate-
gory with cofibrations and weak equivalences then so is S;C and the map

wS.(s) x WS- (A, g 0 x us.C

WS. (S,0)

is a homotopy equivalence. An immediate consequence is that the section of this map
is also a homotopy equivalence, the section is the map which takes Y,; and Y;, to

the split cofibration sequence Y, — Yo, vy

1 12 ——ﬁ)le . This in turn implies

that the two maps
wS.(t) , wS.(svq) : wS.(SZC) —> wS.C
are homotopic, for they agree on split cofibration sequences. We have thus established

that in the diagram

t
twS,Cl 3 |uCl
sVq

Qlws. (8,001 /3 alwS.Cl

the two composite maps through the lower left are homotopic. The diagram becomes
commutative if we discard the upper (resp. lower) arrow from both the upper and lower
row. It results that the two composite maps through the upper right are homotopic.

In the case where C 1is Rf(*) this is the assertion of the lemma. =

Lemma 1.2. Let F be a representable abelian-group-valued homotopy functor on the

category of finite CW complexes. Let
9 : [, IhRe(¥)| ] — F

be a map of semigroup—valued functors, and suppose that ¢ equalizes the two maps

t
[, ISR ] T3 [ , IR ]
(svq) ,

Then there exists a unique map of abelian-group-valued functors
o' : [ ,A(*) ] ——>F

having the property that for every n the diagram
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[ IR 1] e— [ IR 1] —2 s [ IR ()]

[, A(x) ] > F

commutes, where hRn(*) denotes the union of connected components of hRf(*) given
by wedges of n-dimensional spheres, and the map jx 1s induced by the inclusion map
hR™(#) > hR. (%) .

Remark. The commutativity of those diagrams serves to force the uniqueness of &' .
A neater statement would be to simply say that ¢' extends ¢ . However it is not

clear if this is true.

Proof. We indicate how A(*) may be re-expressed in terms of the categories hRn(*)
by the group completion construction. It will then be possible to simply quote a

result from that context. We use Segal's version of group completion [7].

The category hRf(*) has a composition law induced from the coproduct on the
ambient category Rc(¥) . It can therefore be considered as the underlying category
of a (special) T'-category, and one can form the nerve of that I'-category, a certain
simplicial category NP(hRf(*)) » cf. [7] for the construction, and e.g. [8] for a
detailed discussion of it. Briefly, the category in degree n of Nr(hRf(*)) is
equivalent to the product category (hRf(*))n 3 an object consists of a tuple Y
RSVEEEEFY SUS

the data include the choice of an object Yole]2 together with maps Yol - Yole12

+-Y12 expressing the object as a sum, other data are implied by these, for example

ol?
plus all kind of choices related to the sum in Rf(*) ;s for example

a projection Y ,vY , - (YOIVYIZ)/YOI ~Y, -

There is a map of simplicial categories
Nr(hRf(*)) _ hS.Rf(*) ,
it is the forgetful map which in degree n takes

( Yol’ le, cee , choices )

Yn—l,n

to

( YO]»—»YO VY. > ... >—+Yo

1Yo lezv...vY

n-1,n ° (fewer) choices ) .

1

One can similarly form a simplicial category Nr(hRn(*)) , and the inclusion

R (%) - Re(*¥)  induces one

NL(hR™ (%)) ——> NL(BRg (%)) .
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Composing with the map above we obtain a map
NL(BR®(¥)) ——— hS.Re (%) .

For varying n these maps are compatible by means of suspension, the diagrams
NL (BR™(¥)) ————> hS.R (%)

z z

n+l

NF(hR (*¥)) ——> hS.Rf(*)

commute. Thus there results a map in the limit,
. n .
]:Tl;gl Nr(hR (%)) ——— 1_1r;1 ) hS.Rf(*)
A basic result now asserts that this map is a homotopy equivalence [11].

Up to homotopy, the term on the right is hS.Rg(%) again. To see this, it
suffices to know that the self map I of hS.Rf(*) given by the suspension, is a

homotopy equivalence. There is a cofibration sequence of functors on Rf(*) ,
identity>——> C —» I

where C denotes the cone functor. By the additivity theorem (cf. the proof of lem—
ma 1.1) this implies a homotopy of the induced maps on hS.Rf(*) s

idvi ~ C.
As the cone map is nullhomotopic it follows that the suspension map is a homotopy-

inverse with respect to the additive H-space structure, in particular therefore it is

a homotopy equivalence. A(x) has thus been re-expressed by 'group completion' as

A(®) = Qllip NF(hRn(*))I .
n

Suppose now that F 1is a representable abelian-group-valued homotopy functor, and
e+ [ ,|hRf(*)l] ———3 F

a map of semigroup-valued functors, as in the lemma. By hypothesis ¢ converts cofi-
bration sequences into sums. Applying this to the cofibration sequence id>—»C —» I ,
we obtain that ¢ + ¢I, 1is the zero map, in other words ¢I, = (-1)® . Let us define

a map
v+ [ LInR)1) —— F
as the composite
[ LRI — [ ,lhRf(*m——(b—»F,

multiplied by (-1)® . Then Wn =Y so we can obtain a map in the limit

n+1 7%

v : [ ,llim bR®*(¥)|] —— F .
o
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This is a map of semigroup-valued functors, hence, thanks to Segal [7]1, it factors

through a unique map of abelian-group-valued functors
s n
[ ,QINP(I%:I; R (%)) |] ——— F
that is, through a map
o' : [ LAK)] —— F

since N (Lim hR7(x)) ~ Llim N (hR"(%)) .

In view of its construction, the map ¢' extends the map
[ LRIl —— [ IR ()] —— F ,

at least for even n . For odd n it must be checked if there is a sign left. There

is not. For the diagram
hR™ (%) ——— hR (%)
I A(*)
BR™H (4) —— BR (%)

commutes only up to application of I to A(x) , in other words, the diagram com-
mutes up to homotopy and composition with the homotopy-inverse on A(x) . This gives

another sign which cancels the former. o

In order to define A(X) for simplicial sets X 1in general, one uses the cate-
gory R(X) of the retractive spaces over X ; the objects are the triples (Y,r,s)
where r:Y - X 1is a retraction and s a section of r . The appropriate finiteness
condition to use is that Y be generated by X together with finitely many additio-
nal simplices. The category Rf(X) of the finite objects in R(X) 1is a category

with cofibrations and weak homotopy equivalences, and one defines

AX) = thS.Rf(X)I .

For some purposes it is useful to know that the finiteness condition may be re-
laxed to a condition of finiteness up to homotopy, replacing Rf(x) by a somewhat
larger category Rhf(X) . This leads to the same A(X) , up to homotopy [11]. (In
fact, one could even use spaces dominated by finite ones, in a suitable sense. This
would replace the group of connected components (the integers) by a larger group (a

suitable projective class group), but it would not alter the higher homotopy groups).

The category R(X) 1is a framework for studying what may be called the equivari-
ant homotopy theory parametrized by X . Another framework for studying that same
theory is the category of simplicial sets with G-action where G 1is a Zoop group

for X, that is, a simplicial group such that there exists a universal G-bundle
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over X , a principal G-bundle E(G,X) with (weakly) contractible total space. Such
a G always exists for connected X ; for example, Kan [4] has given a construction

which is functorial for connected pointed X .

Let U(G) denote the category of pointed simplicial sets with G-action. The
finiteness condition is somewhat delicate, it involves a freeness condition. By de-
finition, Uf(G) is the subcategory of those G-simplicial sets which are free (in
the pointed sense) and finitely generated over G . It is a category with cofibrations
and weak homotopy equivalences, so QI|hS.Uc(G)| is defined. One shows this recovers
A(X) , up to homotopy, if G 1is a loop group of X . 1In fact [11], if E is a uni-

versal G-bundle over X then an explicit homotopy equivalence is given by the map
hS.Rf(X) —> hS.UL(G)
(Y,r,s) — (Y % E) UX * .

A homotopy equivalence in the other direction can also be explicitly described [11],
it is the map hS.Uf(G) - hS.Rhf(X) which takes a G-simplicial set Z to the asso-

ciated bundle * xC (Z x E) (=space of orbits for the diagonal action).

Let us discuss maps now. If (C,...) and (C',...) are categories with cofi-
brations and weak equivalences, a functor C - C' will be called exact if it preserves
all the relevant structure. Such a functor induces a map of the associated simplicial

categories. For example, the above homotopy equivalences were of this type.

Two kinds of maps on A(X) arise in this way. A map X - X' induces an exact
functor R(X) -» R(X') by taking (Y,r,s) to (X'UXY,...) , this restricts to an
exact functor Rg(X) - Rf(X') , hence induces A(X) -» A(X') . On the other hand, if
X » X 1is the projection of a fibre bundle, it induces an exact functor R(X) - R(X)
by pullback. If the fibre is finite (resp. finite up to homotopy) the functor restricts
to an exact functor from Rf(x) to Rf(i) (resp. Rhf(i) ) and hence it induces a
map A(X) » A(X) called the transfer.

Let us note as an aside that the transfer on A(X) provides yet another way for
constructing a transfer in stable homotopy. For the stable homotopy of X is a re-

tract of A(X) , cf. [10], so a transfer may be defined as the composite map

QUX) —> A(X) — A — QX) .

Returning to A(X) , we want to know that upon translation into the context of
spaces with group action, the two maps described correspond to the usual 'induction'
and 'restriction' maps, respectively. Concerning induction this is checked in [11].
Let us check here that restriction corresponds to the transfer. Suppose then that G
is a simplicial group and H a simplicial subgroup such that the simplicial set of
orbits * xH G is finite, up to homotopy. Let EG be any contractible simplicial

. . o s n+l
set on which G acts freely, for example the diagonal simplicial set of [n]lw G .



399

Then EG 1is a universal G-bundle over the simplicial sets of orbits = xC EG , SO,

as mentioned above, the associated-bundle construction gives an exact functor

U@y —> R(* xC E)
M ———> x xC (M x EG)

inducing a homotopy equivalence hS.Uf(G) - hS.Rhf(* xC EG) . But EG may also be
considered as a universal H-bundle over * xH EG or what is the same thing,

(* xH G) xG EG , and there is a commutative diagram

UH) — R((x xB ¢) xC Eg)

UGy ——— R(* x® EG)

where the arrow on the left is the forgetful map given by the restriction of the
action from G to H , and the arrow on the right is the pullback. Thus restriction
corresponds to the transfer. (Note we are admitting here [11] that the category of
finite objects Uf(H) may be enlarged to a category Uhf(H) of objects which are
finite up to homotopy).

Lemma 1.3. Let G be a finite group, EG a universal G-bundle, and BG = % xG EG

a classifying space. Then the composite map

inclusion transfer
A(x) —————» _transter

A(BG) A(EG) =~ A(%)

is given by multiplication with the order of G , in the sense of the additive

H-space structure.

Proof. We give two proofs. The first proof uses spaces with group action. The

'inclusion' map A(*) -» A(BG) 1is induced from the exact functor
R(¥) — U(G)
Y—— G, A Y ,
Its composite with the transfer is then simply the same map, but considered as a map

to R(x) , that is, the composite map is given by smash product with the discrete

set G, .

The second proof uses spaces over a space. As a general remark, if X - X' is
a fibre bundle whose fibre is of finite type, and if X - X' is any map, the resul-

ting pullback diagram induces a commutative diagram

AKX xgy X') —— ARY

]

A(X) — > AXY)
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in which the vertical arrows are transfers. In particular therefore we have a commu-

tative diagram

A(EG *BG EG) ———> A(EG)

T

A(EG) ———— A(BG)

The composite through the lower right is the map of the lemma, essentially. On the
other hand, EG *sa EG 1is isomorphic to the disjoint union of EG with itself
indexed by the elements of G . Thus the composite map through the upper left is

given by the corresponding sum of the identity map on A(EG) with itself. o

We end this review by a discussion of pairings. Pairings in the algebraic
K-theory of spaces can be constructed in a context of group completion [10], but it
is perhaps more satisfactory to treat them in the general context of categories with

cofibrations and weak equivalences.

We shall need to know a feature of the basic construction that it shares with,
say, the group completion construction. Namely it is possible to iterate the con-
struction, in a sense, but the iteration does not really produce anything new. Speci-
fically, if (C,..) 1is a category with cofibrations and weak equivalences, one can
write down a certain bisimplicial category wS.S.C . But by the additivity theorem

there are homotopy equivalences
wS. (8,0) ——— S.0)" ,
hence
N, (wS.C) ——uS8.8.C ,
and consequently
IwS.Cl ——> QIN.(uS.C) | —— QlwS.S.Cl
since the H-space wS.C 1is group-like.

Let a bi-exact functor of categories with cofibrations and weak equivalences

mean a functor

A x B —m>C

(A, B)—m>AAB

which becomes an exact functor if one fixes either variable. That is, for every
A€ A and B € B the partial functors AA(-): B> C and (-)AB: A > C are exact.

The bi-exact functor induces a pairing of the weak equivalences
lwAl x  |wBl —— |wCl ;

this may be defined on the level of nerves as the map which in degree n takes the
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pair of sequences of weak equivalences

AlﬂAz-f...-’An , BI-*BZ—)...—an

to the sequence of weak equivalences in C ,

A A B —-’AZAB

1 1 —)...——-)AnABn.

2
As this pairing takes |wA| v |wB|l into the basepoint (since AAO = OAB = 0 ) it

factors through the smash product,
IwvAl A |wBl — [wCl

The point now is simply that the same construction can be made for filtered objects.

There results a pairing
IwS.Al A |wS.Bl ——— [wS.S.CI

and hence, by passing to loop spaces,

QlwS.Al A QlwS.Bl] — —— > QqluwS.Cl|

t

Q(IwS. Al A 1wS.Bl) ———— 9alwS.S.Cl

The broken arrow represents the desired pairing. Certain naturality properties are

immediate from the definition, for example the fact that the diagram

IvAl A |wB| ——— |wC!

QlwS.Al A QlwS.Bl —— QlwS.Cl
commutes up to homotopy.

In the case of the algebraic K-theory of spaces, we can obtain a pairing
A(X) A AX') » A(XxX') from the smash product pairing U(G) x U(G') - U(GxG') where
G and G' are appropriate loop groups. Alternatively we could use the bi-exact
functor R(X) x R(X') » R(XxX') given by fibrewise smash product. We omit the veri-

fication that the resulting pairings are the same, up to homotopy.

Other pairings are sometimes of interest. The bi-exact functor

Uy * U(Ty) ———s U, )

I_XE ) . I xI
ST T @A) (= 3 x " t(z) [z, > * )

@, 2) ——>1I o n

+n

induces a pairing A(BI ) A A(BZ,) - A(BL which we refer to as the juxtaposition

m+n)
pairing. It is related, of course, to the former pairing, and may be expressed in
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terms of it as the composite map

A(BZm) A A(BZn) _ A(BEmXBZn) _ A(B2m+n)

where the map on the right is induced from the map BZm X BEn - Bzm+n given by

juxtaposition of permutations.

2. The operations. Let P" denote the n-th power map which takes a pointed set X
to the n-fold smash product

P’X = XA ...AX

——n——
regarded as a Zn—set by permutation of the factors. We denote P?X the subset of
P"X of the tuples involving at most j distinct elements different from the base-
point. P? is functorial for maps, not just isomorphisms, so we can extend to sim-
plicial sets by degreewise extension; that is, if X 1is a pointed simplicial set
n n
we let (ij)k = Pj(xk) .
Definition. 6°X = P"X / PE_IX.
In other words, 6"X is the maximal quotient of the n-fold smash product

XA...AX which is En-free (in the pointed sense).

Lemma 2.1. The functor 6% respects weak homotopy equivalences.

Proof. We show more generally that each of the functors
X —> P'X / P?X

has this property. We proceed by induction on j , starting from the case j =0
which is clear. 1If F1 - F, is a cofibration of functors each of which respects
weak homotopy equivalences then, by the gluing lemma, the quotient functor FZ/FI
also respects weak homotopy equivalences. In view of this remark the inductive step

from j~1 to j follows from the identities

Tl . . n T n
PX/P.X PX/P._ X P.X / P._.X
/¥ @x /2T 0/ @fx /0

PPx / PT X
j i-

. .
. Surj (i) N J (BIx / P'}_lx)

where n denotes the standard set of cardinality n , Surj(n,j) is the set of sur

jective maps from n to j , and, as before, ) denotes the half-smash-product.

We continue to let n denote the standard set with n elements. Is(n,kUl)

denotes the set of isomorphisms from n to kU1 .

o
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Lemma 2.2. There is a natural isomorphism

5 XI

"xvy) o~ e"xve™v \V/ Ismixun) DN¢ !oe¥x a ely
k+1l=n
O<k<n

Proof. By naturality it suffices to check this in the case where X and Y are

sets rather than simplicial sets. A non-basepoint element on the left hand side of
the asserted equation may be identified to an injective map n - X_UY_ where X_
denotes the complement of the basepoint in X , and similarly with Y_ . 1In turn
this may be identified to the equivalence class represented by a partition n ~ kUl
together with a pair of injective maps k » X_ and 1 - Y_ . Thus we obtain a non-
basepoint element on the right, giving the desired one-one correspondence. As regards
naturality (with respect to maps of pointed sets, not just their isomorphisms), the
point is that as soon as any of the given description turns out to be invalid then

the element in question is immediately annihilated (identified to the basepoint) and

the element to which it corresponds under the isomorphism, is also annihilated. a

The maps g™ may be assembled to one
= n .
6 = T oe" i R — T UG)
and by lemma 2.1, 6 respects weak homotopy equivalences, that is, restricts to
BRe(#) ——> T hlUc(Z) .

. . . . . n
It is convenient to rewrite the latter as a map (keeping the notation 8 for the
restricted maps)

n

8 = s hRf(*) —_— 1 x T th(En)

nn;O o nxl

where 6° is the trivial map with value 1, the multiplicative unit of U(Zo) = R(*x) .
Lemma 2.2 may now be restated to say that the map 9 1is one of H-spaces if the right

hand side is equipped with the multiplication arising from the bi-exact functor
—_
m U(Zn) x T U(En) n U(Zn)

X psee) 5 (Y ,0) — (2,2),..)

o°?

Zk*XI1
z, =V 1s@uaun X xar
k+l=n
From this bi-exact functor we obtain a pairing
( ﬂn A(BZn) Yy A ( ﬂn A(BZn) ) —— nn A(BEn) .

(In fact, even though the map

QIhS.(ﬂn uf(zn))l — QIhS.Uf(En)I
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is only a weak homotopy equivalence, we can get the pairing well-defined, not just
well-defined up to weak homotopy. For the corresponding map for finite products is
an isomorphism. So there are well-defined pairings involving the finite products
indexed by O0,1,...,m , and from these we can get the pairing as stated, by inverse

limit).
From the pairing we obtain a multiplicative H-space structure on

1 x nnal A(an) .

Lemma 2.3. The H-space 1 x ﬂn>] A(an) is group-like.

Proof. If M 1is any space, and f a homotopy class of maps,

f € [ M, 1 xT

sl A(BZn) 1,

let us write

o= (1,8, £, ...

where fn € [M,A(BEn)] . The multiplication of such series is given by

(fg) = z f g
n k+1=n k °1

where f denotes the composite map

k 81
diag

£, x
v diagl oy Tk Z 81

A(sz) x A(BEl) —_> A(B2k+1) .

The neutral element is the series (1,0,0,...) , and the inverse of (l,fl,fz,...)
may be obtained by inductively solving the equations
0o = g, *+ T f

k+l=n
0<kgn

k 81
using the fact that the additive H-space structure on A(an) is group-like.

Proposition 2.4. There is a map of H-spaces, unique up to weak homotopy,
A(X) ——> ﬂn A(BEn)
and denoted 6 again, by abuse of notation, having the properties that %=1,

ol = id , and that the diagram

ARP(x) ——» hR (%) ——> T hlg (2 )

hRf(*) > A(*) > ﬂn A(BEn)

commutes up to weak homotopy, for every m .
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Proof. This results by application of the universal property of lemma 1.2 to the map

of H-spaces given by the composition
hRf(*) E— I nn;l huf(En) —_ 1 x nn;l A(BZn) .

The relevant hypotheses are checked in lemma 2.3 above and lemma 2.5 below. o

Lemma 2.5. For every n , the two composite maps

t on
BS,Re () =g PR () ——> Wl (2) — A(BI)

are homotopic.

Proof. We use

Sublemma. To a cofibration W X in R(x) there is canonically associated a

filtration Y = Yn_1>—b... Y, with Y, = 8"X , together with isomorphisms

Y, /Y N Is(mll) 2K ok a ol x/w)) (vhere l=n-k) .

k k+1

To deduce the lemma from the sublemma we apply lemma 1.1 to the canonical fil-

tration Y »—...>>Y, . We obtain that the composition of the map 6% t ,
(W X) —>3 08%x ,
with the map th(Zn) - A(BZn) , 1s homotopic to the composition of the latter with
(W—X) — Y v Yn_I/Yn Voees V YO/Y]

which is 6" (svq) in view of lemma 2.2 and the isomorphisms of the sublemma.

It remains to prove the sublemma. The term Y, in the filtration is defined as
the simplicial subset of 8"x involving tuples with at least k elements in W .
To establish the asserted isomorphisms it suffices, by mnaturality, to treat the case
where X 1is a set rather than simplicial set. A non-basepoint element of 6TX may
then be identified, as before, to an injective map into the complement of the base-
but not in Y

point, n - X_ . If the element is in Y the associated map

s PRI
takes precisely k elements into W . Tie element may thuz ;e identified to the
equivalence class represented by a partition n ~ kUl together with a pair of injec-
tive maps k- W_ and 1 - (X/W)_ , it therefore corresponds to a non-basepoint
element on the right. In checking the naturality of this isomorphism we must take
into account that a map (W #arX)———)(W'>—+ X') will not take the complement of W
in X into the complement of W' in X' , in general. The effect of this is that
certain (extra) elements are annihilated by the induced maps of the left and right

terms of the equation. But such elements correspond under the isomorphism.

To validate the application of the sublemma, we should also show that the functor
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(W X) > Y, respects weak homotopy equivalences. This is a verification along
the lines of lemma 2.1, but more complicated. We bypass this verification, replacing
it by the following argument. It is certainly true that (W »— X)b—)Yk takes weak
homotopy equivalences to homology equivalences (by excision and the isomorphisms of
the sublemma this follows from lemma 2.1). This now suffices for the purpose of the
lemma. The reason is that A(BZn) may also be defined in terms of the somewhat
larger category of weak equivalences hZUf(Zn) , the maps inducing isomorphisms in
homology with integral coefficients. Indeed, the exact functor of Uf(Zn) to itself
given by double suspension, induces endomorphisms of both hZS.Uf(Xn) and hS.Uf(Zn)
which are homotopic to the respective identity maps, and it takes the former into the
latter, by the Whitehead theorem; thus the inclusion hS.Uf(Zn) - hZS Uf(Zn) is a

homotopy equivalence. o

We shall need in a moment

Lemma 2.6. The product A(*)(n) , Wwhere A(*)(n) = A(x¥) , can be given a

n
nx1
composition law so that the map

ﬂn A(BZn) _ ﬂn A(x) (n)

whose components are the transfer maps A(BEn) -+ A(x) , 1s a map of H-spaces.

Proof. The composition law is induced from the bi-exact functor

nn;O R(*)(n) x nn;O R(*)(n) D ”n;o R(*)(n)

(XOQX|9'°°) ’ (Y03Y1,~-°) F-—-_————* (ZO’ZI"")
Iy
2, = VG 0 N EAY)
k+l=n
The asserted compatibility of composition laws is simply the fact that the diagrams

ZkXZI v
X, ¥ —— I % XA

X

U(Ek) U(Zl) —_— U(Z

k+1)

X

R(*) x R(¥x) ——————— R(%)

IRXI
X,Yl—>(2k+1xk 1*))\XAY

commute, where the vertical arrows are given by forgetting the action. o
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Proposition 2.7. The composition of the operation 6" with the transfer map,

on ¢n
A(x) —> A(BEn) — 5 A(x) ,

is the same, up to weak homotopy, as the polynomial map on A(*) given by the poly-

nomial x(x-1)...(x-n+1) .

Proof. 1In view of the preceding lemma, the map A(¥) — ﬂn A(BZn) ——»ﬂn A(*)(n) is
one of H-spaces, so the uniqueness clause of the universal property (lemma 1.2)
applies, and to show the map equals a certain other map, up to weak homotopy, it will
therefore suffice to make that comparison after composition with hRf(*) - A(x) .
Alternatively, in view of the defining property of 6 (proposition 2.4) it suffices

to show that the composite map
MR (¥) — Tl (2 ) —> T hRf(*)(n) —> T AG)
may be re-expressed in terms of polynomial maps in the asserted way.

The polynomials pn(x) = x(x~-1)...(x-n+1) can be recursively defined in terms

of the identity
(@-1) p _,(x) +p (x) = p _,(x)x ,

the asserted comparison will therefore be established once we show that the maps

n
hR () —%a® R, (%) ——— A(%)
satisfy a similar identity, up to homotopy.

In view of lemma 1.1, the required homotopy

n-1 n n-1 .1
(@=Dxé,_,8 vV ¢ 6 >~ ¢ 00 A8

will be implied by a cofibration sequence of functors R(x) - R(x) ,

n-1 n-1 _1 n
(n 1))\d>n_l6 > ¢n_le A —>» ¢ne .

To establish the existence of that cofibration sequence it suffices, by naturality,

to treat the case where X 1is a pointed set rather than simplicial set. ¢n9nX is

n-1

obtained from ¢n_|6 X A X by discarding those elements which are represented by

non-injective maps

n-1U1l — X R

“_lx there are precisely n-1 such

and for every non-basepoint element of ¢n_]9
non-injective maps, depending on where the extra element 1 1is being mapped; or re-
expressed functorially, the set of those maps is obtained by half-smash—product with

the set (n-1) . o




408

We conclude with a brief discussion of generalizations and variants.

The operation 6% may be regarded as the special case X = x of a map
A(X) —— A(DX)

where

= n n
DX = Er  x "X

(the bundle over the classifying space of I, associated to the permutation represen-
tation of L, on the factors of the cartesian product X! ). These more general
operations also satisfy the 'Cartan formula' in the sense that A(X) — nn;l A(D,X)

is a map of H-spaces if the right hand side is equipped with the composition law
arising from the juxtaposition pairings A(DyX) x A X) » A(D, X)) . It is not

m+n
clear on the other hand what, if any, takes the role of proposition 2.7.

The elementary construction of the 6% is compatible not just with weak homotopy
equivalences (lemma 2.1), but also with other types of weak equivalences. Specifi-
cally it is compatible with the rational homology equivalences. It may be shown that
thQS.Uf(G)I is the same, up to homotopy, as K(Q[G]) , the algebraic K-theory of
the rational group ring Q[G] . Thus one obtains operations 6%: K(Q) - K@z,

The analogue of proposition 2.7 is true for these operations, that is, the composite
of 6% with the transfer K(Q[En]) - K(Q) may be re-expressed as a polynomial map,

in the same way.

A variant of the construction may be used to construct the exterior power opera-
tions in the algebraic K-theory of a commutative ring R . This corresponds, on the
elementary level, to the possibility of taking a projective R-module P to its n-th
tensor power P®@p...®pP and then decomposing this suitably. It is not in general
possible, however, to extract from P its 'Z,-free part', a module which is projec-
tive over R[En] rather than just R . Thus the method fails to provide operations

K(R) » K(R[Z,]) , 1in general.

Indeed, not just the method, even the result seems to fail in general. Specifi-
cally in the case R =2 , the ring of integers, there cannot exist operations
K(2) - K(zlz D) which satisfy the analogue of proposition 2.7. For their existence
would imply, as in the introduction, that for every prime p the transfer map
ij(z[zp])(p) - Kj(z)(p) is surjective for j > O . But this is not true. In parti-
cular, the transfer map K3(Z[22]) - K3(2) 1is not surjective on the 2-torsion. To

see this, let
€, 8: Z[Zz] —_— Z

denote the two ring homomorphisms given by the augmentation and by the identification
of I, with the group of units of Z , respectively. Let 2Z' be obtained from 2

by inverting 2 . The map
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e' x &' : Z'[ZZ] — 2' x 2"

is an isomorphism of rings, so the transfer map K(Z'[Zz]) - K(Z') may be identified

to the sum of e} and &, . The augmentation map e4 1is trivial on the reduced part
E(Z'[Zz]) = fibre( K(2'[Z3] - K(Z') ) , so the transfer map may be identified to &,
on that part. In view of theorems of Quillen (the localization theorem and the compu-
tation of the K-theory of finite fields) the map K3(Z) - KB(Z') is an isomorphism

on the 2-torsion. We compare the two diagrams
~ ~ ,
K3(Z[22]) — K2 [z,
(transfer) (84 84 = transfer

'
K3(Z) ——%—-’ K3(Z )

where the arrow on the left can be either the transfer or &, , respectively. If

the transfer were surjective on the 2-torsion, we could conclude from this comparison

that the map §,: i3(Z[22]) - K3(Z) were also surjective on the 2-torsion. But this

is false, as was shown by Guin-Waléry and Loday [2] as a consequence of the Lee-

Szczarba computation of K3(Z) and of work of their own on excision.
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