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ALGEBRIAC K-THEORY OF SPACES,
CONCORDANCE, AND STABLE HOMOTOPY THEORY

Friedhelm Waldhausen

It is known [7] that there is a splitting, up to
homotopy,
AX) = aA5(x) « wnPTFF(x)
as well as another
ASx) = 0°7(X,) * m(x) -
It will be shown here that the factor p(X) is trivial.
Hence we have
THEOREM. A(X) = 07s™(X,) x WnPIF(x) .

The method of proof is to establish a version of the
Kahn-Priddy theorem for pu(X) . As p(X) is a homology
theory there results a kind of growth condition for the
homotopy groups. But p(X) is connected, so the growth
condition boils down to zero growth and thus we can
conclude that p(X) is trivial.

To explain what is meant by a Kahn-Priddy theorem we

have to know about transfer maps. First, there is a
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transfer for the algebraic K-theory of spaces: A(X) is
made from spaces over X , so if ; - X 1is a fibration
with fibre of finite type, pullback induces a map A(X) -
A(§) , cf. [8]. Next, if the fibration is a finite
covering projection then the transfer can be considered in
the framework of the 'manifold approach’ of [7], in
particular everything in theorem 1 of that paper is
compatible with the transfer. It follows that QmSm(X+)
and AS(X) have transfers for finite covering projections
which are compatible to the transfer on A(X) , and
compatible to each other, in the sense that it is possible
to fill in the broken arrows so that the following diagram
commutes, up to homotopy,

2"s"(X,) —— AS(X) — A(X)

i |

Q"s"(X,) —— AS(X) — AX) .

N - -

It could be checked directly that these transfers agree
with the usual ones (which are defined for all homology
theories) but we will not need this fact.

Let EH denote the symmetric group, BEn its
classifying space, and EXn the universal bundle. Let
X(X) denote the reduced part, the factor in the splitting
A(X) = A(3%) x X(X) , i.e., X(X) = fibre(A(X) - A(»)) .

The transfer gives a map
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A(BS ) —— A(BS ) ——> A(ES,) = AC¥)

Let p be a prime and let the subscript (p) denote the
localization at p . Following the method of Segal [2] it
was shown in [6] that the Kahn-Priddy theorem is valid for
the algebraic K-theory of spaces in the sense that for
every p the map

A% (o) T A0 ()
is surjective for every j > O .

Our main task here will be to show that the analogous
map
T AS(BS ), . —— 7.A5(%)

J p’(p) J (p)
is also surjective. This would follow at once if we knew
that the map A(X) - AS(X) were transfer commuting.
However we do not know this, so we must proceed
differently.

In [6] there were constructed maps (’operations’)
8™ 1 A(%) —— A(B3) .

They have the property, among others, that the composite of
8" with the transfer map

A(BEn) —_ A(Ezn) x A(%)
is homotopic to the polynomial map of A(%) to itself

associated with the polynomial x(x-1)...(x-n+l) .

LEMMA. The map AS(X) - A(X) 1is compatible with the
operation " in the sense that it is possible to fill in

the broken arrow so that the diagram
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A506) —— A(%)
i l
S
A (BEn) —_ A(BEn)
commutes up to (weak) homotopy. Also, AS(*) - A(%) is a

map of ring spaces.

Since AS(*) - A(*) 1is a coretraction, up to

homotopy, we obtain from the lemma

COROLLARY 1. There is a map AS(*) A»AS(BED) whose
composite with the transfer AS(BEn) - AS(*) is the
polynomial map on AS(*) associated with the polynomial

x(x-1)...(x—n+1) .

The desired Kahn-Priddy theorem for AS(X) now
follows from corollary 1 by a formal argument. The
argument may be found in the introduction to [6]. (The
argument involves an application of Nakayama’'s lemma, so
one has to know the homotopy groups of AS(*) are finitely
generated. As AS(*) is a factor of A(%) this follows
from Dwyer’s theorem that the homotopy groups of A(%*) are

finitely generated [1].) Thus,

COROLLARY 2. For every prime p , the (transfer) map
S S
AT (B2 AT (3¢
A By T A )

is surjective for every j > O .
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It was explained earlier that the map Qwa(X+) -
S .
A7(X) is transfer commuting. Hence we know that in the
partially defined map of short exact sequences
7 0°S7(B3_ ), | — w AS(BS (B3
. T, —_—3 T,
J p+’(p) J l p)(p) T (B2p)

S
® T oTA e T Mg

(r)

the left arrow can be filled in. It follows that the right
arrow can also be filled in. From corollary 2 we therefore

conclude

COROLLARY 3. For every prime p and for every j > O

there is a surjective map

THEE) (py T Ty -

Proof of theorem. p(X) is a homology theory, so it
suffices to show that p(*) 1is contractible; or that for
every prime p the localization u(*)(p) is. We show by
induction on j that the homotopy groups wju(*)(p) are
trivial.

The induction beginning is provided by the fact that
pu(*) is connected. In fact, u(%*) is known to be
2-connected: this follows from the double splitting
theorem together with the fact [5] that the map ijmSco -
ij(*) is an isomorphism for j ¢ 2 .

Suppose now that j > O and that wip(*)(p) =0 if

i ¢ j-1 . By the spectral sequence of a generalized
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homology theory we obtain that the reduced group wju(X)(p)
is trivial for every X . Taking X = BEp we therefore
conclude from corollary 3 that there is a surjective map
0 = m_p(B= — 7 pu* .
#B%) (p) #0m)
Hence Wju(*)(p) = 0 . This completes the inductive step

and hence the proof.
It remains to prove the lemma.

To prove the lemma we need a framework where an
explicit description of AS(X) and of the map AS(X) -
A(X) are available. The 'manifold approach’ of [7]
provides such a description in terms of smooth manifolds.
Namely, supposing that X 1is a manifold, one considers
partitions of Xx[0,1] , that is, triples (M,F,N) where
Xx0 CM , Xx1 C N , and where F 1is the common frontier of
M and N . These form a simplicial category h%#(X) as
described [loc.cit.]. There is a simplicial subcategory
h@E(X) ; briefly, those partitions where M is obtained
from X x [0,e] by attaching of k m-handles. It is
shown in [7] that A(X) ., or rather a connected component
of it, is obtained by the Quillen + construction from the
(homotopy) direct limit, with respect to n, m, k, of the
h@ﬁ(XXJn) where J denotes an interval. It is also shown

that AS(X) is similarly obtained from the ?ﬁ(XxJn) s
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where 9E(X) denotes the simplicial set of objects of the
simplicial category h@E(X) . The map AS(X) - A(X) is
thus represented by the inclusion map ?E(XXJH) -
h?PE(XxJn) )

It has been discussed in [7] that h@m(XxJn) , the
union of the h@E(XxJn) . has a composition law given by
gluing (at least in the limit with respect to n) . The
composition law restricts to one on 9m(XXJn) (in the
limit again). It results that both AS(X) and A(X) are
H-spaces (infinite loop spaces, in fact) and that the map
AS(X) - A(X) 1is a map of H-spaces. This takes care of the
addition.

We next come to the multiplication or, what is the
appropriate general notion, the exterior pairing
A(X)AA(X') = A(XxX') . We claim that it restricts to a
pairing AS(X)AAS(X') - AS(XXX') . This is seen by the
same argument as before. Namely we check that the pairing
is definable in terms of an explicit construction on the
simplicial category of partitions. It will therefore
restrict to the corresponding construction on the subspace
given by the simplicial set of partitions.

The exterior pairing is induced by the fibrewise smash
product which to a pair of spaces, over X and X',
respectively, associates a space over XxX'. We want to

represent that, up to homotopy, by a construction with
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manifolds. Let (M,..) and (M',..) be partitions in
#(X) and #(X') ., respectively. We form the space (a
subspace of Xx[0,1]xX'x[0,1] )
MxM' U Xx[0,e]xX'x[0,1] U Xx[0,1]xX"'x[0,e'] .
Then for sufficiently small e and &' this space has the
homotopy type of the fibrewise smash product
M XX M,
it is a manifold (with corners), and, up to some bending of
corners, it defines a partitition in %(XxX'x[0,1]) . We
have thus obtained a map, well defined up to some choices
(*contractible choices’)
DAL < B (X') —— bR (0 x[0,1])

and restricting in the desired way. This completes the
account of the multiplication.

The case of the operations is a little more delicate,
and the verification takes much longer. We need a
modification of the 'manifold approach’ where the
simplicial category of the partitions is replaced by
another simplicial category. The modified construction is
needed only in the case X = % which is somewhat easier
than the general case. We restrict to that case.

We consider compact smooth submanifolds M of
codimension O in euclidean space Rd containing a
neighborhood of the origin. We manufacture a simplicial

category from such manifolds. First, we define a
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simplicial set @Q(d) where a k-simplex is a smooth family,
parametrized by the simplex Ak, of manifolds of the type
considered. Next we regard Q(d) as the simplicial set of
objects in a simplicial category hQ(d) (in fact, a
simplicial partially ordered set): there is a morphism
from M to M' if and only if M CM' and if furthermore
the two inclusion maps, of boundaries,

M —— C1(M'-M) e&—— oM’
are homotopy equivalences.

We define hQE(d) to be the connected component of
hQ(d) which contains the particular M ,

M = unit disk, with k unknotted m-handles attached,
and we let th(d) denote the union of the hQE(d) . Ve
define QE(d) (resp. Qm(d)) to be the simplicial set of
objects of hQE(d) (resp. th(d)) .

As in [7] we have to discuss stabilization with
respect to d, m, and perhaps k. This is a little
technical.

Part of the technicalities is that we should admit now
smooth manifolds with general corners as described in the
appendix to [7]; that is, topological submanifolds of Rd
of codimension O which are equipped with suitable extra
structure to specify potential smoothings. As explained
[loc.cit.] the modification does not alter the homotopy
types of the simplicial sets, resp. simplicial categories,

which we here consider.
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After the modification (which, by abuse, we suppress
from the notation) we have a map
h@(d) —— h@(d+1)
MbF——Mx [-1,+1] .
So, by using that map, we can form the stabilization with
respect to dimension,

lép hQ(d) .

We can obtain a homotopy equivalent simplicial
category hQ@'(d) by restricting to those submanifolds M
of RY which satisfy DY(1) € Int(M) . M C Ine(d%(2))
where Dd(r) denotes the disk of radius r . In view of
the isomorphism of Cl(Dd(2)—Dd(1)) with Sd_IX[O,l] we
obtain an isomorphism of hQ'(d) with one of the
simplicial categories of [7] .

he'(d) — he(stl)
M —— c1(M - %(1)) .
and hence a homotopy equivalence
n#(s?1) —— ha(a) .

It restricts to other homotopy equivalences QEF"(Sd_1

) -
m..d-1 m
Q(d) , h#(S” ") > h@ (d) , and so on.
The stabilization map hQ(d) - h@Q(d+1) corresponds,
under the homotopy equivalence, to a map
np(s4 !y —— np(sd) .
Up to homotopy, that map factors through h?(Dd) , SO we

have a homotopy equivalence
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1§m hQ(d) = lém () .

Similarly we have homotopy equivalences
lim Q(d) =~ lim Q(Dd) , and so on.

As a result, therefore, theorem 1 of [7] may be
restated to say, among other things, that the inclusion map
lém ai(d) — 1§m hal(d)

is an approximation to the map AS(*) - A(3¢) .

As regards the limits with respect to m and k ,
there is the happy technical point that the details don’t
really matter. The reason is that, as we already know, the
map AS(X) - A(X) 1is a coretraction, up to homotopy: this
will allow us to restrict the necessary checking, below, to
a checking on representatives only. All we need to know
about those limits, therefore, is that they exist in some
weak sense; say, as homotopy direct limits with respect to
stabilization maps which exist only after geometric
realization and are well defined up to (weak) homotopy, and
compatible to each other. Thus we may simply take the
stabilization maps of [7] and transport them to the present
situation by means of the homotopy equivalences above.

The simplicial set Qm(d) (resp. the simplicial
category th(d) } has an additional structure, namely it
is a partial monoid in the sense of [3] with respect to

gluing. (The monoid is only partial because the result of
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the gluing should be a manifold again, and should be of the
correct type.) As a result,

lé@ Qm(d) (resp. lép th(d) )

is the underlying space of a I'-space in the sense of [4].
Let BF( lim (h)Q™(d) ) denote the realization of that
I'-space. Then the loop space QBF( lim (h)Qm(d) ) serves
as a ’group completion’ for the H-space lim (h)Qm(d) , and
there is a map
lim (h)@"(d) —— B( lim (h)a"(d) )
which, up to (weak) homotopy, is universal for H-maps of
lim (h)Qm(d) into group-like H-spaces [4]. The map
hol%m OBL.( lém @"(d) ) — holim B.( 1Eifm he™(d) )
m
may be identified, by [7] and the homotopy equivalences
lim Q(d) = lim 9(Dd) , etc., above, to the map As(*) -
A(>) .
We claim now that to show the existence of the broken
arrow in the diagram
A0 —— A(%)
i l
AS(Bs ) —— A(BS,)
it will suffice to show that the arrow exists if the source

AS(%) = holim B.( 1im @"(d) )
m d

is replaced by just

Q"(d) .
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This is seen by the following series of reductions.
First, suppose the broken arrow can always be found if
restricted to

OBL( lim €"(d) ) .

d

Then, for varying m, these arrows are automatically
compatible to each other, up to homotopy: this follows
from the fact that AS(BEH) e»A(BEn) is a coretraction, up
to homotopy. As a result, the arrows can therefore be
assembled to a map of the homotopy direct limit, and the
resulting diagram is weakly homotopy commutative (the two
composite arrows are homotopic when restricted to any
compactum).

For the next reduction we have to invoke the universal
property of ’‘group completion’, we must therefore keep
track of H-space structures. The maps 8" can all be

assembled into a single map

0 : A() —— TTA®B3)
n

which is an H-map with respect to the additive structure on
A(%) and a suitable H-space structure on the product [6].
That H-space structure is manufactured from the exterior
pairings

A(BEp) A A(BEq) — A(BEPXBXq) A(B2p+q)
together with the additive structure. Now both of these

exist, compatibly, on AS (the account above gives this

o~

i e
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only in the compact case, but the general case follows by
an exhaustion argument from this). Hence we have a map of
H-spaces
TT AS(8s,) —— TT ABZ,) .
n n n
and both of these are in fact group-like H-spaces by an
easy formal argument [6]. It results that in the diagram
. oM
QBF(le Q(d)) —— A()
i l
S

l‘l’ A°(B3) — nT]‘ A(B3)

all the solid arrows are H-maps. Now suppose that the
broken arrow can be filled in if restricted to 13p Qm(d) .
Using the fact that the bottom arrow is a coretraction, up
to homotopy, we obtain that the filled-in arrow is
necessarily an H-map. Hence, by the universal property for
H-maps into group-like H-spaces, we conclude that the arrow
extends to (B(lim €"(d)) .
Finally, suppose that in the diagram
1im @"(d) —— A(%)
i l

ez ) —— A@B3)
the broken arrow can always be found if restricted to
Qm(d) . By the coretraction argument again, the arrows are
then compatible and assemble to a map of the homotopy
direct limit with respect to d , which is homotopy

equivalent to the actual direct limit.
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It remains to see that the desired factorization
exists if restricted to Qm(d) .

Recall from [6] that the map o™ A(¢) - A(BEn) is
defined in terms of the functor from pointed spaces to free
pointed En—spaces,

Y — Gn(Y) =Y/ (coordinate axes U fat diagonal) .
In detail, 6%(Y) = Y'/E"(Y) where E(Y) is the subspace
of the tuples (yl,...,yn) having the property that at
least one of the Y is equal to the basepoint or that at
least two of the y; are equal to each other.

In [6] the construction has been done simplicially.

We want the topological version here. There are routine
ways to pass back and forth between the simplicial and the
topological contexts [8]. But there is a little extra
technical point. Namely if Y 1is allowed to be a
topological space of the pointed homotopy type of a CW
complex, there is, unfortunately, no reason to suppose that
the diagonal map Y e-Y2 is a cofibration. So the above
definition of Gn(Y) would not give the correct homotopy
type. On the other hand, for the purposes of [6] one is
interested in 6" only up to homotopy (up to weak homotopy
equivalence of functors, to be precise). There is
therefore a variety of ways to correct the defect. For
example one can combine " with some correction functor,

such as the geometric realization of the singular complex.
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Another technical point is the remark that it is not
really necessary to work with pointed spaces throughout.
Specifically, we want the following modification here. Fix
a (weakly) contractible 2n—space W . Consider the
category of the En—spaces having the En-homotopy type, in
the strong sense, of a finite free En—CW complex relative
to W . Then there are functors between the pointed
situation and the W-situation given by product with W and
by quotienting out W , respectively. These functors
induce homotopy equivalences of the respective
subcategories of weak homotopy equivalences.

As a result we may modify o" by allowing the
basepoint of 9n(Y) to be blown up into some contractible
En—space LU

Specifically, therefore, we have the following
representative, up to homotopy, of 6™ on the simplicial
category th(d) . Let W be defined as the subspace of
(Rd)n given by the union of the coordinate axes and of the
fat diagonal; that is, W = fn(Rd) in the notation used
before. Then for M in h&m(d) the map is given by

M — M U 2 rY) .

We want to modify the construction a little further so
that the result can be a manifold (with corners). Let
Ne(fn(Rd)) denote the e-neighborhood of §n(Rd) .

Suppose, for the moment, we know that M® 1is in general
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position with respect to fn(Rd) . Under this assumption
we obtain that, for sufficiently small e ,
M U N (ERD)
is indeed a manifold, and is essentially independent of
e .

By modifying the construction some more, we can
re—interpret its result as a partition in the sense of [7]
(cf. above). Namely let & < e and suppose that 7T 1is
sufficiently large. Then

(H U N E @) ) - Ine( NyE"ED) )
defines a 2n—equivariant partition in
N ENEY) - Ine( Ny RY) ) ® aNg(ERD) x [0.1]
and hence a partition in #%(C) where C 1is the orbit
space
c = an(E"®Y) /3,
Thus, if the assumption of general position could be
generally justified, we would have obtained a factorization
Q"(d) —— ha"(d) —— A(¥)

l l

$(C) —— h¥(C)
. : N
i i 6

AS(c) ——  A(C)
S
A (BED) —_ A(BEn)
where we use the sublemma below to provide the broken

arrows in the middle; i.e., to show that %(C) and h%#(C)
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(rather than just Qm(C) and h@m(C) ) relate naturally
to AS(C) and A(C) , respectively. To complete the proof
of the lemma it thus remains to establish that sublemma and
to justify the appeal to general position, above.

As to the latter, there is certainly no problem as far
as the part of fn(Rd) coming from the coordinate axes is
concerned: we just restrict (h)Qm(d) to the homotopy
equivalent simplicial subset (resp. —category) of the M
containing the disk Dd(l) in its interior (and being
contained in the interior of Dd(2) ; the latter has the
effect of ensuring that one and the same T , above, will
do).

Concerning the remaining part of fn(Rd) , the fat
diagonal, there is a potential problem only at such points
(yl,...,yn) € M*  where one or more of the y; are
boundary points of M .

We will take for granted that in fact there is no such
problem at all in the following special case: the case
where near all the Y concerned, the boundary is actually
flat (i.e., there is a neighborhood of A in Rd inside
of which M looks like euclidean half-space, up to a rigid
motion).

More precisely, what we take for granted in this case
is the following: that near such a point, MU Ne(fn(Rd))

is a manifold (with corners) and essentially independent of
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e (i.e., varies with € 1in a locally trivial way); the e
here is allowed to be a sufficiently small constant > O
or, more generally, a function which is Cl—close to such a
constant.

Our theme will now be that in the general case there
is no problem either, and that we can convince ourselves of
this by means of suitably chosen isomorphisms to compare
with the special case.

To this end we note that we can restrict (h)Qm(d) to
the homotopy equivalent simplicial subset (resp. —category)
of the manifolds which are actually smooth rather than
smooth with general corners [7] as so far. Thus, given
M , and given any n-tuple (yl,...,yn) € M* we can find
a ’'trivializing’ diffeomorphism of Rd whose effect is to
make the boundary JM flat near the points A SRR A
We can, and will, assume here that in first approximation
the diffeomorphism is the identity at each of the points
Yyr-ooo¥y - But this implies that the induced
diffeomorphism of (Rd)n is Cl—close to the identity map
near the point (yl,...,yn) . Thus we obtain, locally, the
desired comparison.

To draw the desired conclusion globally, we must
impose a condition of uniformity on the construction. For
example it would suffice to know that the trivializing

diffeomorphisms could be found out to a certain distance,
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uniformly, and Cl—close to the identity, again uniformly.
But this is no problem. For it suffices to treat a finite
number of (parametrized families of) M’s at a time. This
is enough to give the factorization on one finite piece at
a time (i.e., finite simplicial subcategory in the case of
th(d) , resp. finite simplicial subset in the case of
Qm(d) ) and is therefore enough to give, eventually, a
factorization up to weak homotopy.

We are left to show now

SUBLEMMA. If X 1is a manifold then
(1) there is a natural map h%P(X) - A(X) extending, up to
the sign (-1)" ., the map hQ™(X) - A(X) ;
(2) there is a factorization
P(X) —— h¥(X)
i l

AS(x) — AX) .

The first part is in effect in [7]: the required map
may be given in terms of a composite map
BF(X) —— b (X). —— A(X)
where hﬁhf(X). denotes the simplicial category of weak
homotopy equivalences of retractive spaces over X of

homotopically finite type, and where the second map is from

[s].
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The content of the sublemma really is that this map
can be described without the auxiliary use of a homotopy
theoretic device such as h%hf(X). . This amounts to
showing that the 'manifold approach’ [7] can be extended to
cover the ¥. construction of [8] (or rather a technical
variant referred to as the J. construction in section 1.3
of [8]). Given then that theorem 1 of [7] can be restated
in terms of that construction, the compatibility asserted
in part (2) of the sublemma will be an automatic
consequence.

Let X be a manifold. We consider submanifolds
M C Xx[0,1] as in the definition of the partitions [7],
but now we consider sequences of such,

Mo C M1 c...cC Mn .
These form a simplicial set @7n(X) . We make it into a
simplicial category in two ways which we will denote by the
prefixes i and h , respectively. In each case there
will be a morphism from {Mp} to {Mé} only if Mp (w Mﬁ
for all p and if Mé n Mq is not bigger than Mp for
all p<q.

In i@gn(X) there is, by definition, a morphism from
{Mp} to {Mﬁ} if and only if, in addition to the above

conditions, we have

M UM =M
P o P
for all p . Note there is really no condition on the
inclusion Mo - M; . Thus, for example, the category
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i@ﬂo(X) is contractible. In general, the role of these
morphisms is to provide a systematic way of ignoring the
Mo’s in those filtrations. (By abuse one could think of a
morphism in i@ﬂn(X) as an isomorphism of the nonexistent
quotient-manifolds {Mp/Mo} - {Mé/Mé} J)

In h@ﬂn(X) there is a morphism from {Mp} to {Mﬁ}
if and only if, in addition to the above conditions, we
have that the inclusion maps

Mp U Mé - Mé
are homotopy equivalences. (We omit using a refined
condition here, as in the definition of the simplicial
category of partitions; stably, in the limit, such a
distinction would not be essential anyway.)

We also need a simplicial subset gﬂE(X) and
corresponding simplicial subcategories i@ﬂE(X) and
h@ﬂz(X) . Again we omit using a refined condition, and we
let @ﬂg(X) denote the simplicial set of the sequences
Mo c...C Mn where all the inclusions are homotopy
equivalences.

For varying n , these simplicial objects assemble to
bisimplicial objects. We assert that, in the limit with
respect to dimension, the square

1997(X) —— 197 (X)

l l

hPT(X) —— b7 (X)

may be identified to the square on p. 149 of [7] ,
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Np(Lip #(x:J)) —— Np(1im 2"(0%)

l |

Nr(l:iim n#(XxJ%)) —— Nr(lzifm n"(xxJ%))

or rather the square obtained from that by homotopy direct
limit with respect to m .

This is seen as follows. First, one shows the square
is homotopy cartesian; the method is that of proposition
5.1 of [7], essentially. Next, there is a natural
transformation from the latter square to the former, and it
will suffice to show that the transformation is a homotopy
equivalence on three of the four corners. This is
trivially true in the case of the lower left corner (both
terms are contractible by the initial object argument). In
the case of the upper left corner one uses a degreewise
argument, namely one shows that for every n there is a
homotopy equivalence, in the limit with respect to
dimension, between i@ﬂg(X) on the one hand and the n-fold
product (lim fif(XXJd))n on the other. And finally, in the
case of the lower right corner, one reduces, by proposition
5.4 of [7] and an analogue of that in the filtered case at
hand, to the map

1:_1)m N (b7 (X)) —— b8, (X)

which is a homotopy equivalence by [8].

ALGEBRAIC K-THEORY OF SPACES 415

Since i@go(X) is contractible, the ’'l-skeleton’ of
the simplicial object [n] F—#i@ﬂn(X) may be identified,
up to homotopy, to the suspension of i@ﬂl(X) . By
adjointness there is therefore a map into the loop space,

197, (X) — Q]i?7.(X)| .
In view of the above assertion (the comparison of diagrams)
that loop space may be identified, in the limit with
respect to dimension, to AS(X) . But also
i@ﬂl(x) ~ $(X) ,
at least in the limit with respect to dimension (by the
initial object argument, essentially). Thus we obtain the
required factorization
#(X) — bF(X)
i l
X)) — AX)

This completes the argument.

Remarks. The vanishing of p(X) is equivalent to the
statement that a certain map thomb(X) e»WhDIFF(X) is a
homotopy equivalence [7]. The statement may be regarded as
a stable version (stable with respect to dimension) of
Igusa’s theorem that Higher singularities of smooth
functions are unnecessary. It is therefore not surprising

that, conversely, the vanishing of p(X) may be deduced

from Igusa’s theorem.
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There is still another proof of the vanishing of
p(X) , using quite different methods again. Namely there

is a method, due to Goodwillie, to obtain information about
DIFF

Wh of a highly connected map. There is another method

to obtain information about A of a highly connected map.
The computations obtained by these two methods are, of

course, similar looking. But, and this is the point, they

are not quite identical: the only way to avoid a

contradiction is to conclude that p(X) must be trivial.

These computations also provide a generalization of !

the vanishing of p(X) . The ultimate statement is that,
generally, stable K-theory may be identified to Hochschild |
homology provided that the latter is understood,
throughout, over the universal ground ring, QmSw. The case
of the ground ring QmSoo itself here is precisely the |
statement that p(*) (and hence p(X) in general) is

trivial.
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