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Auf der Morgenstelle 14, D-72076 Tübingen, Germany
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The 4D quasicrystal of Elser and Sloane, obtained from the root lattice E8 by the
cut-and-project method, can be parametrized by the points of an 8D torus. This
allows for an explicit analysis of its point and inflation symmetry structure.

1 Introduction

It is well known that the local isomorphism class (LI-class) of a crystallographic
pattern P in R

n (i.e. a pattern whose periods span R
n) consists of P and its

translates. Since the translate P+ℓ equals P for any ℓ in the lattice Λ of periods
of P , the LI-class is in one-to-one correspondence with points of a fundamental
domain of Λ which (on identifying opposite facets) is an n-dimensional torus,
T

n. This can now be used to find all patterns in LI(P) with special symmetries
(relative to the origin) which is a standard procedure in crystallography.

For repetitive, but non-crystallographic P , however, the LI-class has a
much richer structure and contains uncountably many (2ℵ0) translation classes.
It is thus much more difficult to classify the complete symmetry structure of
such classes, and no general answer is known. If the pattern happens to be
quasi-crystallographic (in the sense that it stems from a standard projection
scheme), the key to parametrizing its LI-class is to use the fundamental domain
of the embedding lattice. This is the so-called torus parametrization that has
been introduced recently 1 and then applied to some of the most frequently
used quasicrystallographic tilings 1,2 in two and three dimensions.

It is the aim of this contribution to extend this set of examples to the Elser-
Sloane quasicrystal in four dimensions. 3 It is constructed by the projection
method from the root lattice E8 and has the Coxeter group H4 of order 14400
as its point symmetry group, together with an inflation/deflation symmetry
with scaling factor τ = (1 +

√
5)/2. It is of interest due to its role in the

hierarchy of quasicrystals with τ inflation.
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2 Setup and application to inversion symmetry

In what follows, we shall use the notation and the main results of Ref. 1
without further reference. We standardize our parametrization such that the
origin of the embedding space is at a lattice point of E8, and the window
(having point symmetry H4) is symmetric around the origin of internal space.
With this convention, the tiling obtained by cut-and-project with the physical
space cutting through the origin has parameter t = 0.

To each symmetry operation on the LI-class now corresponds a linear (or,
more generally, affine) operator on the torus, and tilings with special properties
can be found as fixed points of that operator on the torus. Also, the number
of solutions can be counted: an equation of the form

Ax + t = x mod T
8 (1)

has precisely | det(A − 11 )| different solutions, provided 1 is not an eigenvalue
of A (for details, also on the singular case, see the appendix of Ref. 1).

Let us illustrate this with the simplest case, that of inversion symmetry. In
view of our standardization, the corresponding operator in 8-space is defined
by the isometry x 7→ −x. Restricting this to the torus, we are thus asking for
the number of solutions of t = −t mod T

8, which is | det(−2 · 11 )| = 28 = 256.
They are the 2-division points of the torus (solving 2t = 0 on it). We shall see
a little later how these points (and hence the tilings parametrized by them)
are distributed over other properties.

There is one subtlety which has been suppressed so far: the parametriza-
tion is one-to-one only for regular members of the LI-class (those where the
cut space never hits the boundary of the window), while it is multiple-to-one
for the remaining singular tilings, which are then grouped into classes. 1

3 Inflation structure

One of the most interesting properties of non-periodic tilings is the existence
of inflation/deflation symmetries, and in the present case there is one with
inflation multiplier τ (the golden ratio). To describe this, we start with the
corresponding situation for the Fibonacci chain, discussed in detail in Ref. 1.
It is shown there that one has an Fibonacci chains invariant under n-fold
inflation, where

an = an−1 + an−2 + 1 − (−1)n (2)

with initial values a1 = a2 = 1. This follows from the determinant argument
discussed above and can directly be calculated from the eigenvalues τ and
−1/τ of the corresponding operator on the torus (T2 in this case).
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This result can directly be used for our present task. The number of points
on the 8-torus that are invariant under n-fold inflation (denoted by In) is given
by the fourth power of the number an, because we get the same eigenvalues

as before, but now with multiplicity 4. Next, let us denote by b
(4)
n the number

of fixed points under In which are not fixed by Im for any m < n. It can
recursively be calculated by

b(4)
n = a4

n −
∑

m|n,m<n

b(4)
m . (3)

These numbers correspond to points that can be grouped into n-cycles, so

c
(4)
n = b

(4)
n /n must be an integer. Table 1 lists these numbers for 1 ≤ n ≤ 8.

n 1 2 3 4 5 6 7 8
a4

n 1 1 256 625 14641 65536 707281 4100625

b
(4)
n 1 0 255 624 14640 65280 707280 4100000

c
(4)
n 1 0 85 156 2928 10880 101040 512500

Table 1: Inflation orbit counts of the Elser-Sloane tiling. They also apply to any other 4D
cut-and-project patterns with τ -inflation.

To summarize these findings, one can attach a dynamical ζ-function to the
inflation operator I on the torus. It reads

Z4(x) =
(1 − 4x − x2)4(1 + 4x − x2)4(1 − x − x2)28(1 + x − x2)28

(1 − 7x + x2)(1 − 3x + x2)12(1 + 3x + x2)16(1 + x)32(1 − x)38
. (4)

This serves as generating function for the counts a4
n via

log(Z4(x)) =
∞∑

n=1

a4
n · xn

n
(5)

and – through an Euler product decomposition – also for the counts c
(4)
n :

1

Z4(x)
=

∞∏

n=1

(1 − xn)c
(4)
n = (1 − x)1(1 − x2)0(1 − x3)85(1 − x4)156 . . . (6)

This ζ-function has the functional equation Z4(x) = Z4(1/x) and conforms to
the “Riemann hypothesis” that its zeros α satisfy N2[α] = −1 where N2, the
norm of the quadratic field Q(τ), is defined by N2[r + sτ ] = r2 + rs − s2.

Let us point out here that the 256 inversion symmetric tilings of section 2
coincide with the 256 tilings invariant under I3. This is so because τ3 = 2τ +1
and the corresponding equations on the torus define the same set of solutions.
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4 Space group and point group structure

So far, except inversion symmetry, we have only discussed inflation symmetry,
which does not depend on point group symmetry. But the window of our
quasicrystal is a special polytope 3 with H4 symmetry, and so the generalized
point group of the LI-class is H4, and its space group is the semi-direct product
of H4 with the limit translation module of the tiling. The action of this space
group can easily be lifted to an affine action on the torus T

8. Since the space
group is symmorphic, its action on the torus, where one computes modulo
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Figure 1: Classification of torus points according to their space group symmetry. Each
vertex corresponds to a Wyckoff position, i.e., a class of points whose stabilizers are conju-
gate subgroups of the space group of the 8D periodic structure. The order of the stabilizer
is inscribed into each vertex (except for H4). Incidence relations of Wyckoff positions are
indicated by connecting lines (those with smaller stabilizers contain others with bigger stabi-
lizers). A Wyckoff position consists of a space group orbit of some (rational) affine subspace,
wrapped on the torus. Vertices for Wyckoff positions of dimension zero (special points) are
drawn with thick lines. They are discretely embedded on the torus. Each space group orbit
of special points corresponds to one circle. Circles which touch each other represent orbits

of special points with the same point group symmetry.
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lattice or module translations, in fact agrees with that of the point group, so
that we need not distinguish between space group and point group action.

Let us now see how single members of the LI-class reflect this point group
structure, seen through their torus parameters. To this end, we have computed
the set of Wyckoff positions and their incidence relations for our quasicrystal
(see Fig. 1 and its caption). This was done with a program called CrystGap.4,5

On the torus, Wyckoff positions consist of unions of subtori of various dimen-
sions, whose points have conjugate stabilizers. Fig. 1 shows the hierarchy of
these subtori (which is closely related to the classification of lower-dimensional
examples 1), together with their incidence relations. The latter also imply sub-
group relations for their stabilizers, which make up an only small but essential
part of the (very complex) subgroup lattice of H4. The point groups contained
in Fig. 1 as stabilizer of some point on the torus (and thus of some tiling) make
up only a small fraction of the set of all subgroups of H4.

Some points with non-trivial point group symmetry also have non-trivial
inflation symmetry. Here, we shall discuss the inflation symmetry only for the
special points, which are discrete on the torus. They all have a unique inflation
symmetry. The only point with H4 symmetry coincides with that of τ inflation
(I) symmetry. Points in the three orbits of length 60 (stabilizer size: 240), as
well as points in the orbit of length 75 (192), have I3 symmetry. In fact, the
points in these orbits make up all 255 such points. The three orbits of length 60
are permuted by I, whereas the 75-orbit is reshuffled internally by I. The two
orbits of length 120 (120) and the orbit of length 144 (100) are I4 symmetric.
The pair of 120-orbits is permuted by I2. Finally, the pair of orbits of length
400 (36) is permuted by I4; all of its points are invariant under I8.

Conversely to the case of I3 symmetry, the special points do not make up
all points with I8 or even I4 symmetry. The lacking points are to be found on
the other tori, which have positive dimension. These contain, in fact, a dense
set of points (all rational points) with some inflation symmetry, although of
varying degree. For this reason we have confined ourselves to special points.
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