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Overview of ideas

e (Can noise have a constructive influence in a complicated system?

e Stochastic resonance (and related effects)
- Well-known and much-studied in physics & biological literature
- When matched with multiscale dynamics, can be surprisingly regular

e Motor proteins
— Analysis predicts regularity and synchrony
e Regularity for single (or few) proteins
e Synchrony for large populations
— Details of mathematical proof speak to real physical behavior!
- Finally (1), what can we say about motor protein dynamics?



Structure, function of motor proteins
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Properties of models

e thermally-driven, single molecule --> stochastic model

e large-scale motion, induced by small-scale reaction
— This suggests memoryless statistics

e Wide variety of models:
— diffusion in complex potential: MD or at least fine structure

e Oster, Peskin (94); Peskin, Elston (00); Atzberger, Peskin (06);
Wang, Oster (02, 04); Julicher, Prost (1995); many more

— empirically-determined coarse-grained models

e Huxley (57), Kolomeisky, Fisher (98,99,01,03); Kafri, Lubensky,
Nelson (04)

— ratchet models

e Reimann (02), Riemann & Hanggi (98,...), Peskin, Oster, Odell
(95), many more

e adding a cargo to the molecular motor model creates regularity
e Schilstra, Martin (06)
e Crucial component: elastic tether!

e Families of motors: useful in muscle contraction
e Howard (97); Duke (99, 00); many more



Large deviation / Rare events
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Stochastic Resonance
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Tilted-potential models

Cargo
QO
M otor
D
de = ]?( VV(z)+ S (z,y)) dt + /2Dy AWy,
B
D¢

dy = S'(z,y)) dt + /2Dc dW,,.
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Effective potential with and w/out cargo





proportion of occurences

Numerical simulations — Tilted potential
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Theorem (Tilted potential)

Theorem. (D., Vanden-Eijnden, Comm. Math. Sci. ‘07) Let V(x)

be periodic + decreasing shift, S(X,y) = S(x-y) be convex with
S(0) = S’(0) = 0. Also assume that S”(0) is sufficiently small.
Consider the SDE system

D
dz = - f‘;( V'(z) + S (z,y)) dt + \/2Das dW,,
B
D
dy = k—(TJT(_S/(x’ Y))dt + \/2D¢c dW,,.
B
Define the nondimensional parameters
kBT 5 — DC
€ = —
S"(0)D?’ Dy

In the limit
n e lim e—0, 6§—0, elogi!—>peclcR

the jump times become regular (variance goes to 0) and their
mean depends only on .



Theorem p.2 (TP — more precise)

There is a map 7: ] — R with the following property:

Let X¢, Y be any realization of the system above. Define X = k if X¢ is
“in the basin of attraction of the local minimum near x = k”. Define £(t) =
|t/7(6)], then there is some ty > 0 such that for all T > 0,h > 0,

lim P (Sup
e—0 teTs,

X —f(t—l—to)‘ > h) =0,
where we define

T, =[0,71\ | (k7(B) — h, kr(8) + h).

k=0

However (!), it is not true that X; converges pathwise uniformly to £(t), the
best we can do is

T
lim P (/ X — &(t+1to) 2 dt > h) = 0.
€E— O




Asymptotics

Let 7,, be the first passage time to (n + 1/2)D
Let t,, = 7., — 7,1 (the time between crossings).
Then all moments of t,, are O(e).

Interesting asymptotics:

formula for nth moment of ¢,, involves ((n)!!



proportion of occurences

Numerical simulations — Tilted potential
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Fisher-Kolomeisky models

Fisher & Kolomeisky (97,99,01,03)
— Each step forward involves N intermediate biochemical transitions
— Each step is reversible, occurs with constant rate
— Strength of F-K model: determining transition rates
e in particular, dependence on external forcing
— For constant force, these reproduce empirical data very well
e N=2---myosin V
e N =4 --- kinesin
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Fisher-Kolomeisky model (Myosin V, N=2)

e Motor can have both heads, or one head, attached
— With both attached, either front or back can detach
— With one attached, loose head can reattach forward or backward
e Each of these steps are governed by chemical kinetics, thus
modeled by Poisson process
— Associate an intensity A to any event, then in small interval dt the
probability of the event is A dt

Define: y — position of cargo, x — position of motor

D
pick up back foot: ug = kg [ATP] exp (—93’ k—TF> :
B

D
pick up front foot: wg = kg [ATP]exp (00_ k—TF ) :
B

D
loose foot steps forward: u; = ki exp (HT—F> ,
kT

D
loose foot steps back: wy; = ki exp (91_ k—TF) :
B

motion of cargo: § = —y 1F + /2y~ 1kgTW.

force: F'= F(x —y).



Experimentally-determined constants (myosin-V)
(all within 5% tolerances, some better)

Constants set by motor:

kar = 7x10° M~* s_l,ko_ =5 M st
kf=12s"', kl =6x10"°s7
05 =0.135, 6, = 0.750,
07 =0.035, 6; = 0.080,
kpT =4 x 107%'], D = 36nm,

Flactirer nrafila Af tho tothor
1 /1o uvliy J:J.I.U.l..l..l.\/ Ul vuvllUu uvvCLT vuv1llvUl .
F = kd + (bd)",
k=5x10"2pNnm~*, b=1.6x 10" 2pN"/Onm1.

One choice of experimentally-controllable constants:

[ATP]=2x107° M, ~vy=1x10"*kgs™ .



Experimental procedures to determine constants
A

Laser trap

Feedback control

Distance [nm]

Feedback
control

Rief M, Rock RS, Mehta AD, Mooseker MS, Cheney RE, Spudich JA,
PNAS 97 (17): 9482-9486 AUG 15 2000

Time [s]



position (nm)

Numerical simulations - KF model for myosin V
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Histogram, v = 104 kg/sec, [ATP]=2mM
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e CV is about 39%!!



Theorem (K-F with only forward stepping allowed N = 1)

e Theorem. (D., Vanden-Eijnden, Bull. Math. Bio. '‘07) Let X be the
position of the motor (integer multiple of D) and Y the position of

the load (real). Let f(-) be any function which is monotone
increasing and

A(X,Y) = exp(f(X — Y)/e)
e Let t(X,y) be a random variable with CDF

P(r(z,y) <T)=1—exp </0 M, p(x,y,t)) dt) :

where ¢(x,y,t) is the flow of the equation
dn _
— =7 fl@=m), n0)=y.

e Define the jump times of the motor to be 1,=0, and

Tna1 — Tn = T(X(Tn), Y (70)).



Theorem p.2

Define X(t) by X— X+1 at each 1, and constant otherwise, and between
jumps let Y evolve by Y’ = f(X-Y)

Consider the limit where
e—0, v—o00, €elogy—p

(thus constraining y = y(¢) ) and consider the rescaled jump times

Tn = Tn/7(€)

Then there exist a period T>0, and j* a positive integer, such that for any
integer n and h>0,

limP< sup I%n+1—(%n+T)]>h) = 0.
=0 \j*<j<i*+n

NB: Similar (but much harder to state!!!) theorems if we allow multi-
step motors, allow backward stepping, and for populations of motors.
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Velocity vs. ATP, v = 104 kg/s
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Clearly: nontrivial dependence on [ATP]

More exciting: in the correct region!!



Dependence of mean observables on params

Main question: how do we use this model to predict observables?
- E.g. velocity, distance between motor and cargo
— Mostly means, but higher moments as well

Idea: in the v —> ~o limit, for each position of the cargo we get a
“steady-state” for the position of the motor

So do asymptotics in neighborhood of oo
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effective force (pN)
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Connection to stochastic resonance

e Typical properties of motor — cargo complex:
— motor steps are “barrier-crossing” events
e state-dependent activation energy I(s)
— € -- nondimensional temperature is small
e (ratio of kg1 to activation energy)
— when cargo approaches motor, becomes easier to jump
— cargo much larger than motor, thus moves relatively slowly

e Conclusions:
- Timescale of motor stepping should be something like exp(I(s)/¢)

— This looks like jumping events from SR example above

— Similar timescale matching works



Large populations of motors

Relevant (at least!) for muscle contration

Muscle cells are made of myofibrils in parallel

Myofibrils are serially-stacked sarcomeres

Sarcomeres contract when motors pull filaments past each other
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Alberts et al., text, Mol. Biol. Cell., 2004



3 states of activation for myosin head

State 1 /_\ State 2
M

’ /

no force leftward force on actin

N
;

no force

A = exp(—(AGgi ke + Kd(2z +d) /kBT)),
Ao = k% ppexp(—rd(z +d)/2kgT),
A3 = Kbind



relative displacement (nm)

Displacement v. time for various forces

kiDP = 2.00e+01, Force = 25pN .. . 155 pN
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Conclusions

Regularity under load
- Apply SR-type arguments
— Why is this good for a motor? The cell is a crowded place!

Synchrony in large populations
— SR + auto-catalyzation effect
— Could be related to macroscopic phenomena!

This suggests new experimental regimen
— Consider all parameters set by motor except y and [ATP];
— Our theory predicts various behaviors in different parameter regimes
e E.g. mean and standard deviation of velocity
— Nonmonotonicity vs. [ATP]
e Can be checked experimentally

Genericity:



Genericity

e Genericity -- all we need is:
— Motor’s ability to move is force-dependent
— Motor’s local timescale to move is exponential in force
- “nondimensional temperature” is small
e Ratio of kgT to work done in one step is small enough

e Small enough: e.g. if work is 8 kgT, ¢ = 1/8, and e® ~ 3000 !
— NB: motor can choose work, but kgT is fixed!

e Many motor proteins are in the 5kgT— 15 kT range
— Thus work is small enough so that events occur
— But large enough so that regularity is possible!



Context and future directions

Related biological processes
— more complicated motor protein models
— Chromosome transport

Other places we’ve applied similar techniques:
— ODE - bifurcation theory - Fitzhugh-Nagumo (PRE '05 - with Muratov)
— Chemical kinetics problems (JCP '06 - also with Muratov)
— Rigorous nontrivial limits for multiscale Markov chains (JSP '06)
— Spatiotemporal wavetrains in SPDE (Nonlinearity '06)

Moral of the story: In a wide variety of contexts, there are
parameter regimes in which noise induces dynamics, but does so
in @ regular way.
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