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Overview of ideas 

• Can noise have a constructive influence in a complicated system?

• Stochastic resonance (and related effects) 
– Well-known and much-studied in physics & biological literature
– When matched with multiscale dynamics, can be surprisingly regular

• Motor proteins
– Analysis predicts regularity and synchrony

• Regularity for single (or few) proteins
• Synchrony for large populations

– Details of mathematical proof speak to real physical behavior!
– Finally (!), what can we say about motor protein dynamics?



Structure, function of motor proteins

Vale, R.D., Milligan, R.A. Science 288: 88-95 (2000) 

Myosin II – muscle contractionKinesin – vesicle transport





Properties of models

• thermally-driven, single molecule --> stochastic model
• large-scale motion, induced by small-scale reaction

– This suggests memoryless statistics

• Wide variety of models:
– diffusion in complex potential: MD or at least fine structure

• Oster, Peskin (94); Peskin, Elston (00); Atzberger, Peskin (06); 
Wang, Oster (02, 04); Jülicher, Prost (1995); many more

– empirically-determined coarse-grained models
• Huxley (57), Kolomeisky, Fisher (98,99,01,03); Kafri, Lubensky, 

Nelson (04)
– ratchet models

• Reimann (02), Riemann & Hanggi (98,…), Peskin, Oster, Odell 
(95), many more

• adding a cargo to the molecular motor model creates regularity
• Schilstra, Martin (06)
• Crucial component: elastic tether!

• Families of motors: useful in muscle contraction
• Howard (97); Duke (99, 00); many more



Large deviation / Rare events



Stochastic Resonance
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Tilted-potential models

Motor

Cargo



Effective potential with and w/out cargo




Numerical simulations – Tilted potential
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Theorem (Tilted potential)

• Theorem.  (D., Vanden-Eijnden, Comm. Math. Sci. ‘07)  Let V(x) 
be periodic + decreasing shift, S(x,y) = S(x-y) be convex with 
S(0) = S’(0) = 0.  Also assume that S’’(0) is sufficiently small.  
Consider the SDE system

• Define the nondimensional parameters 

• In the limit

• the jump times become regular (variance goes to 0) and their 
mean depends only on β. 



Theorem p.2 (TP – more precise)



Asymptotics

Let τn be the first passage time to (n+ 1/2)D
Let tn = τn − τn−1 (the time between crossings).
Then all moments of tn are O(²).
Interesting asymptotics:
formula for nth moment of tn involves ζ(n)!!



Numerical simulations – Tilted potential
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Fisher-Kolomeisky models

• Fisher & Kolomeisky (97,99,01,03)
– Each step forward involves N intermediate biochemical transitions
– Each step is reversible, occurs with constant rate
– Strength of F-K model:  determining transition rates

• in particular, dependence on external forcing
– For constant force, these reproduce empirical data very well

• N = 2 --- myosin V
• N = 4 --- kinesin



Fisher-Kolomeisky model (Myosin V, N=2)

• Motor can have both heads, or one head, attached
– With both attached, either front or back can detach
– With one attached, loose head can reattach forward or backward

• Each of these steps are governed by chemical kinetics, thus 
modeled by Poisson process
– Associate an intensity λ to any event, then in small interval dt the 

probability of the event is λ dt



Experimentally-determined constants (myosin-V)
(all within 5% tolerances, some better)



Experimental procedures to determine constants

Rief M, Rock RS, Mehta AD, Mooseker MS, Cheney RE, Spudich JA, 
PNAS 97 (17): 9482-9486 AUG 15 2000

Laser trap

Feedback control



Numerical simulations – KF model for myosin V



Histogram, γ = 10-4 kg/sec, [ATP]=2mM

• CV is about 3%!!
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Theorem (K-F with only forward stepping allowed N = 1)

• Theorem.  (D., Vanden-Eijnden, Bull. Math. Bio. ‘07)  Let X be the 
position of the motor (integer multiple of D) and Y the position of 
the load (real).  Let f(·) be any function which is monotone 
increasing and   

• Let τ(x,y) be a random variable with CDF

where φ(x,y,t) is the flow of the equation

• Define the jump times of the motor to be τ0=0, and 



Theorem p.2

• Define X(t) by X→ X+1 at each τn and constant otherwise, and between 
jumps let Y evolve by Y’ = f(X-Y)

• Consider the limit where 

(thus constraining γ = γ(ε) ) and consider the rescaled jump times

•

• Then there exist a period T>0, and  j* a positive integer, such that for any 
integer n and h>0, 

• NB:  Similar (but much harder to state!!!)  theorems if we allow multi-
step motors, allow backward stepping, and for populations of motors.



Velocity vs. ATP, γ = 10-4 kg/s
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Clearly: nontrivial dependence on [ATP]

More exciting: in the correct region!!



Dependence of mean observables on params

• Main question:  how do we use this model to predict observables?
– E.g. velocity, distance between motor and cargo
– Mostly means, but higher moments as well

• Idea: in the γ → ∞ limit, for each position of the cargo we get a 
“steady-state” for the position of the motor

• So do asymptotics in neighborhood of ∞



γ→∞ limit
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γ→∞ limit + data
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γ → ∞ limit
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•Combination of nonlinearity in elastic tail and rare events

•Intermediate [ATP] gives two “gain regions”



• Typical properties of motor – cargo complex:
– motor steps are “barrier-crossing” events 

• state-dependent activation energy I(s)
– ε -- nondimensional temperature is small 

• (ratio of           to activation energy)
– when cargo approaches motor, becomes easier to jump
– cargo much larger than motor, thus moves relatively slowly

• Conclusions:
– Timescale of motor stepping should be something like 

– This looks like jumping events from SR example above

– Similar timescale matching works

kBT

Connection to stochastic resonance



Large populations of motors

• Relevant (at least!) for muscle contration
• Muscle cells are made of myofibrils in parallel
• Myofibrils are serially-stacked sarcomeres
• Sarcomeres contract when motors pull filaments past each other

Alberts et al., text, Mol. Biol. Cell., 2004



3 states of activation for myosin head
State 1 State 2

State 3

M

A

M

A

A

M

no force

no force leftward force on actin

λ1 = exp(−(∆Gstroke + κd(2x+ d)/kBT )),

λ2 = k
0
ADP exp(−κδ(x+ d)/2kBT ),

λ3 = kbind



Displacement v. time for various forces



Conclusions 

• Regularity under load
– Apply SR-type arguments
– Why is this good for a motor?  The cell is a crowded place!

• Synchrony in large populations
– SR + auto-catalyzation effect
– Could be related to macroscopic phenomena!

• This suggests new experimental regimen
– Consider all parameters set by motor except γ and [ATP];
– Our theory predicts various behaviors in different parameter regimes

• E.g. mean and standard deviation of velocity
– Nonmonotonicity vs. [ATP]

• Can be checked experimentally

• Genericity:



Genericity

• Genericity -- all we need is:
– Motor’s ability to move is force-dependent
– Motor’s local timescale to move is exponential in force
– “nondimensional temperature” is small

• Ratio of kBT to work done in one step is small enough

• Small enough:  e.g. if work is 8 kBT, ε = 1/8,  and e8 ≈ 3000 !
– NB:  motor can choose work, but kBT is fixed!

• Many motor proteins are in the 5kBT→ 15 kBT range
– Thus work is small enough so that events occur
– But large enough so that regularity is possible!



Context and future directions
• Related biological processes

– more complicated motor protein models
– Chromosome transport

• Other places we’ve applied similar techniques:
– ODE – bifurcation theory – Fitzhugh-Nagumo (PRE ’05 – with Muratov)
– Chemical kinetics problems (JCP ’06 – also with Muratov)
– Rigorous nontrivial limits for multiscale Markov chains (JSP ’06)
– Spatiotemporal wavetrains in SPDE (Nonlinearity ’06)

• Moral of the story:  In a wide variety of contexts, there are 
parameter regimes in which noise induces dynamics, but does so 
in a regular way.
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