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An experimental observation

Pinning of a ferroelectric domain wall
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From: T. J. Yang et. al., Direct Observation of Pinning and Bowing of a
Single Ferroelectric Domain Wall, PRL, 1999



Forced mean curvature flow

Consider an interface moving by forced mean curvature flow:

v(x) = k(x)+ f(x), xeTl cR™.

v,: Normal velocity of the
interface

rx: Mean curvature of the
interface

Force

™l

Can formally be thought of as a viscous gradient flow from an energy
functional

HO(T) + / F)dx, T = 0E
R"+1ﬁE



The interface as the graph of a function

vu(x) = k(x)+ f(x), xeTlC R"!
IfI(t) ={(xy) st. y=u(x,t)}, u: R" — R, then this is equivalent to

)

ut(x):\/1+|Vu(x)|2%div &)2 1+ [Vu(x) F(x u(x)

1+ |Vu(x)|
Formal approximation for small gradient:

ur(x, t) = Au(x, t)+ f(x, u(x, t))

This describes the time evolution of a nearly flat interface subject to line
tension in a quenched environment.



What are we interested in?

Split up the forcing into a heterogeneous part and an external, constant,
load F so that
F(Xv.y) = _f(Xay) + Fa
and get
up(x, t) = Au(x, t) — f(x, u(x, t)) + F.

Question
What is the overall behavior of the solution u depending on F7?

» Hysteresis: There exists a
stationary solution up to a
critical F*

» Ballistic movement:
V= %t) — const.

Average interface velocity

» Critical behavior:
- *|Q
|V| = |F_ F | F* External force




The periodic case

up=Au—f(u)+F (1)

u: T'xRT - R, fe G(T'xR,R), f(xy) = f(x,y+1), / f=0
x[0,1]

Thm (Dirr-Yip, 2006):
» There exists F* > 0 s.t. (1) admits a stationary solution for all
F<F*
» For F> F™ there exists a unique time-space periodic (‘pulsating
wave’) solution (i.e., u(x, t+T) = u(x, t) +1).
» If critical stationary solutions (i.e., stationary solutions at F = F*)
are non-degenerate, then |v| = + = |F — F”‘|1/2 + o |F— F*|1/2)

Existence of pulsating wave solutions can also be shown for MCF-graph
case, forcing small in C' (Dirr-Karali-Yip, 2008).



Overview: MCF in heterogeneous media

vV v v v

Caffarelli-De la Llave (Thermodynamic limit of Ising model with
heterogeneous interaction)

Lions-Souganidis (Homogenization, heterogeneity in the coefficient)
Cardaliaguet-Lions-Souganidis (Homogenization, periodic forcing)
Bhattacharya-Craciun (Homogenization, periodic forcing)
Bhattacharya-D. (Phase transformations, elasticity)



Random environment

ur(x, t,w) = Au(x, t,w) — f(x, u(x, t,w),w) + F, (2)
uU:R"xRTxQ—=R, fR"XRxQ—=R, u(x0)=0.

Specific form of f.
Short range interaction: physicists call this ‘Quenched Edwards-Wilkinson
Model.



Random environment

ur(x, t,w) = Au(x, t,w) — f(x, u(x, t,w),w) + F, (2)
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Pinning sites on lattice “(Lattice)

fL(X,y,w) = Z filw)p(x—i,y—j), ¢ € CT(R" xR,[0,00)),
i€z, jez+1/2

e(xy) =0if [[(xV)|l, >n <1/2, o(xy) =—-1if [|(xy)|l, < ro-



Random environment

ur(x, t,w) = Au(x, t,w) — f(x, u(x, t,w),w) + F, (2)
uU:R"xRTxQ—=R, fR"XRxQ—=R, u(x0)=0.

Poisson process “(Poisson)”

X Y, W) Z fk SO(X Xk ) y_yk(w))v pE COO(RH xR, [0, OO))7

keN

e(xy) =0if [[xV)l; > n, @lxy)==1if [[(xV <0, Y > 1



Existence of a stationary solution

Do solutions of the evolution equation become pinned by the obstacles
for sufficiently small driving force, even though there are arbitrarily large
areas with arbitrarily weak obstacles?



Existence of a stationary solution, n =1

Do solutions of the evolution equation become pinned by the obstacles
for sufficiently small driving force, even though there are arbitrarily large
areas with arbitrarily weak obstacles?

Theorem (Dirr-D.-Scheutzow, 2009):
Case (Lattice): Let f;; > 0 be so that

P({fj>aq})>p

for some q, p > 0. Then, there exists F** >0 and v: R - R, v> 0 so
that, a.s., for all F < F**,

0> Kv—fH(x v(x),w) + F.
Here, K is either the Laplacian or the mean curvature operator.

This implies that v is a supersolution to the stationary equation, and thus
provides a barrier that a solution starting with zero initial condition can
not penetrate (comparison principle for viscosity solutions).



Existence of a stationary solution, n > 1

Do solutions of the evolution equation become pinned by the obstacles
for sufficiently small driving force, even though there are arbitrarily large
areas with arbitrarily weak obstacles?

Theorem (Dirr-D.-Scheutzow, 2009):

Case (Poisson): Let (xk,y,) be distributed according to a n+ 1-d
Poisson process on R" x [r1, 00) with intensity \, f be iid strictly positive
and independent of (xk,y,). Then there exists F** >0 and v: R — R,
v> 0 so that, a.s., for all F < F**,

0> Kv— fP(x, v(x),w) + F.

Here, K is either the Laplacian or the mean curvature operator.

This implies that v is a supersolution to the stationary equation, and thus
provides a barrier that a solution starting with zero initial condition can
not penetrate (comparison principle for viscosity solutions).



A percolation problem
Let Z=2" x N.
We consider site percolation on Z: let p € (0,1).
Each site is declared open with probability p, independent for all sites.
Theorem (Dirr-D.-Grimmett-Holroyd-Scheutzow):

There exists p. < 1 such that if p > p,, then a random non-negative
discrete 1-Lipschitz function w: Z" — N exists with (x, w(x)) a.s. open

for all xe Z".

Idea:

Blocking argument. Define A-path: Finite sequence of distinct sites x;
from a to b so that x; — xi_1 € {*e,p1} U{—ep1te:j=1,...,n}.

Admissible if going up only to closed sites.
Which sites on the positive side are reachable from anywhere below?
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Proof of Lipschitz-Percolation Theorem

> Define G:={be Z:
there ex. path to b from some a € Z" x {...,—1,0}}.

» We have P(he, 1 € G) < C(cq)", thus there are only finitely many
sites in G above each x € Z".

> Define w(x) := min{t > 0: (x,t) ¢ G}.
» Properties of w follow from the definition of admissible paths.

Electronic Communications in Probability, 15 (2010)



Proof of Pinning-Theorem in n4+1 dimensions

> Rescale so that each box of size / x h contains an obstacle at x, y,
of strength fy with probability p..

» Construct supersolution
fo

> inside obstacles: parabolas: Avi, = F1 < -
> outside obstacles: ming{v(x — xx)}, where Avoue = —F on
B.,(0)\ B,(0), v=10on dB,,(0), Vv-v =0 on 9B,,(0)
> gluing function vgue with gradient supported on gaps of size d,
Vglue = Y-
> scaling:
CA > Fa(h "+ d)" and Fp> %.

» Works for lattice model if n =1 and Poisson model for any n.
» Works also for MCF.
arXiv:0911.4254v1 [math.AP]



Depinning

Can we exclude pinning for unbounded obstacles, if the probability of
finding a large obstacle is sufficiently small and the driving force is
sufficiently high?



Depinning (only n =1, only Lattice case)

Can we exclude pinning for unbounded obstacles, if the probability of
finding a large obstacle is sufficiently small and the driving force is
sufficiently high?

Theorem (Dirr-Coville-Luckhaus, 2009):
Nonexistence of a stationary solution

Let f; be so that P({f; > q}) < aexp(—pq) for some a, 5 > 0. Then
there exists F*** > 0 so that a.s. no stationary solution v > 0 for
equation (2) at F > F* exists.

Proof by asserting that every possible stationary solution of (2) with Dirich-
let boundary conditions u(—L) = 0, u(L) = 0 becomes large as L — oc.
(The pinning sites are not strong enough to keep the solution flat.)



Depinning (only n =1, only Lattice case) (cont.)

Theorem (D.-Scheutzow, 2010):

Existence of a finite velocity

Let u; solve il,'(f) = (U,',l(t) + U,'+1(t) — 2U,‘(t) - f,-(u,-(t),w) + F)+ with
zero initial condition, i € Z. Aussume that

B = sup,cz Esup,_ s< <, 5 exp{Ao(y,w)} < oo. Then there exists

V: [0,00) — [0, 00), non-decreasing, not identically zero, depending only
on A and f3, such that

Uo(t)
t

> V(F) forallt>0.

We can choose N
V(F) =sup,sa LA(F—3) —log(—1= — ﬁﬁ) log 3). In particular,
the expected value of the velocity is strictly positive for F > F***,

Idea of proof: Every solution of the initial value problem (in space!)
0= (uj—1 + uip1 — 2u; — fi(ui(t),w) + F)T — a;, for any initial condition
for wp, u_1, for a; small in a suitable average sense, must become
negative for some j a.s..



Proof of depinning

Central Lemma:

Let f;: Q — No, i,j € Z be random variables s.t. f;: Q x Z — [0, 00)
defined as f(w, ) := f,j( ) are independent. Assume that there

ex. 6>0,A>0st. §:= supk,,EZEexp()\fk/) < 00. Then there ex. Qg of
full measure such that for any function w: Q x Z — Ny and any w € Qg
we have

k— 00

k
1 - _
limsup P E (W,-_1 + wipr — 2w — fi(w, w;) + F)Jr > WF),
=1

where V(F) : —sup#>>\/ ()\F Iog(1 —= *1627;“) Iogﬂ)

Proof: Let 1 > A and define
Yi = Z exp(A(Wk — Wk—1) — psk),

all paths w of length k
starting at presc. values at i € {—1,0}

= Z (Alw fi(w,w;) + F)*. A calculation shows that for
E}x—u

= Bexp(— )\F)<1 — — m) Yi/7* is a non-negative super-
martingale.



Proof of depinning

Central Lemma:

Let f;: Q — No, i,j € Z be random variables s.t. f;: Q x Z — [0, 00)
defined as f(w, ) := f,j( ) are independent. Assume that there

ex. 6>0,A>0st. §:= supk,,EZEexp()\fk/) < 00. Then there ex. Qg of
full measure such that for any function w: Q x Z — Ny and any w € Qg
we have

K
limsup = Z Wii1 4 wipr — 2w, — fi(w, W,)+F) > V(F),

k— 00

where V(F) := sup#>>\l ()\F log (1 == — %) - IogB) >0

Proof (cont): Thus there ex. a set p of full measure such that
supken, Y/ is finite. We then have

1 1
limsup = sup(A(wx — wk—1) — usx) < limsup - log Yx < log~.
k— 00 k k— 00 k

So, Alimsup Wk —

k—00 k

!« logy+uV(F) =0 on {Iimsupsk < V(F)}ﬁQo

k—00 k



Steps in the proof of the theorem

| 4

Note that the processes u; and i; are ergodic (as stationary processes
depending on independent and stationary random variables).

Assume the statement of the theorem is false, i.e., 1Eup(t) < V(F)
for some t. Then there exist F and ty, such that Eii(ty) < V(F).

By the ergodic theorem, we have

Eip = lim,_ % Z::':_()I(U;_l + Ui — 2u; — f,-(u,-,w) + F)+ < V(F)
a.s.

Discretize by rounding to the nearest integer, obtaining a path

w;: Z — N. Apply the Lemma by choosing

fij ‘= SUPyc[j— 5 j+.5] [ﬁ(Y7w)1 +2.

We obtain

(Uim1+uip1 —2ui— fiuj, w)+F) T > (Wimi+wipr —2wi— fi(wi, w)+ )+

and thus, n—1

V(F) > limsup - Z(Ui71+Ui+]_ —2u;i—fi(u,w)+F)" > V(F) as.
n

—00 -
i=0

Back to the continuum problem by discretizing the continuous
equation in x. There are some more technical difficulties regarding
dependencies of the resulting f;;.



Summary of the results

n > 1, obstacles scattered by Poisson process, any strength

Average interface velocity

*ok *
F F External force



Summary of the results (cont.)

n =1, on a lattice, obstacles with exponential tails

Average interface velocity

*k * kokok
F F F External force



Many open questions

» Almost sure statement for depinning
(i.e., liminf, o "°£t) > V(F) as.)
» Nonexistence/positive velocity in higher dimensions
> Nonexistence but no positive velocity possible?
» Nonlocal operators
» Growth of correlations and Hoélder seminorm near critical F*
» Behavior at F= F*



Thank you for your attention.
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