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An experimental observation

Pinning of a ferroelectric domain wall

increasing applied field →VOLUME 82, NUMBER 20 P HY S I CA L REV I EW LE T T ER S 17 MAY 1999

was sputtered on the top and bottom surfaces of the crys-

tal. The bottom electrode and fiber probe are grounded.

Both positive and negative voltages are applied to the top

electrode.

In the experiment, the fiber probe is first placed and

maintained in the near field !,5 nm" of the crystal surface
using the shear force technique [2]. Linear polarized

light from an argon ion laser is passed through a half-

wave plate (to change incident polarization) and is incident

normally on the top surface of the crystal. The transmitted

light collected by the fiber probe at the bottom surface

is collimated and passed through a half-wave plate and

quarter-wave plate which are set to compensate for fiber

birefringence. The light is then passed through an analyzer

and is collected by a cooled photomultiplier tube (PMT).

At the start of the scan, the analyzer is rotated to null the

transmitted light in a region away from the domain wall

(region of isotropic refractive index). The background

signal under crossed polarizers is measured and subtracted

from all images. A 13 3 13 mm scan of the crystal

surface around the birefringent domain wall is then made.

The intensity I transmitted through the analyzer to first
order is (the background subtraction above takes care of

oblique coupling of scattered light into the probe) [8]

I ! I0#sin2f sin2u 1 cos2f cos2u

1 1
2 sin!2f" sin!2u" cos!Dnkl"$ . (1)

Here, Dn is the difference in refractive index

(birefringence) between axes parallel and perpendicu-

lar to the domain wall, k is the propagation vector for

light in the crystal, and l is the crystal thickness. I0 is

the intensity detected through the fiber in an isotropic

region of the crystal and is proportional to the incident

intensity on the top surface of the crystal. Also, f is

the angle of incident polarization, and u is the analyzer

direction, measured with respect to the domain wall. Use

of Eq. (1), for a given u and f, and the measured I at an
isotropic region !Dn ! 0" will yield the incident intensity
I0. The measured I at the domain wall for the associated
u and f is used to calculate Dn. The various f and u
are used to make a consistent measurement of Dn.
Figure 2(a) is a single 180± domain wall observed with

both electrodes grounded. The incident light polarization

was 70± to the domain wall. The FWHM of the birefrin-

gent region is 3 mm. The large width of the birefringence
is due to internal fields generated by defects pinning the

domain wall. The width of the birefringent region in these

samples range from less than 100 nm (instrument resolu-

tion limit) to a few microns [8]. Given that the metal elec-

trodes used do not have complete transmission and that

FIG. 2(color). CMNSOM optical signal around the 180±

domain wall at applied fields of (a) 0, (b) 11.5 kV%mm, (c)
12.0 kV%mm, and (d) 21.8 kV%mm. The arrow identifies
the bottom of the domain wall. The open circles X and Y
in (b) and (c) identify pinning defects from the increased
birefringence (brightness) and curvature of the domain wall.
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Forced mean curvature flow
Consider an interface moving by forced mean curvature flow:

vν(x) = κ(x)+
_
f (x), x ∈ Γ ⊂ Rn+1.

_
f

1
κ

v

Γ

vν : Normal velocity of the
interface

κ: Mean curvature of the
interface

_
f : Force

Can formally be thought of as a viscous gradient flow from an energy
functional

Hn(Γ) +

∫
Rn+1∩E

_
f (x) dx, Γ = ∂E.
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The interface as the graph of a function

x

Γ = {(x, y) s.t. y = u(x)}

y

vν(x) = κ(x)+
_
f (x), x ∈ Γ ⊂ Rn+1

If Γ(t) = {(x, y) s.t. y = u(x, t)}, u : Rn → R, then this is equivalent to

ut(x) =
√

1 + |∇u(x)|2 1
n div

 ∇u(x)√
1 + |∇u(x)|2

+

√
1 + |∇u(x)|2

_
f (x, u(x))

Formal approximation for small gradient:

ut(x, t) = ∆u(x, t)+
_
f (x, u(x, t))

This describes the time evolution of a nearly flat interface subject to line
tension in a quenched environment.
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What are we interested in?
Split up the forcing into a heterogeneous part and an external, constant,
load F so that _

f (x, y) = −f (x, y) + F,
and get

ut(x, t) = ∆u(x, t)− f (x, u(x, t)) + F.

Question
What is the overall behavior of the solution u depending on F ?

I Hysteresis: There exists a
stationary solution up to a
critical F ∗

I Ballistic movement:_v = u(t)
t → const.

I Critical behavior:
|
_v | = |F − F ∗|α

Av
er

ag
ei

nt
er

fa
ce

ve
loc

ity

F ∗ External force
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The periodic case

ut = ∆u − f (u) + F (1)

u : Tn×R+ → R, f ∈ C2(Tn×R,R), f (x, y) = f (x, y+1),
∫

Tn×[0,1]
f = 0

Thm (Dirr-Yip, 2006):
I There exists F ∗ ≥ 0 s.t. (1) admits a stationary solution for all

F ≤ F ∗.
I For F > F ∗ there exists a unique time-space periodic (‘pulsating

wave’) solution (i.e., u(x, t+T) = u(x, t) +1).
I If critical stationary solutions (i.e., stationary solutions at F = F ∗)

are non-degenerate, then |v̄| = 1
T = |F − F ∗|1/2

+ o(|F − F ∗|1/2
)

Existence of pulsating wave solutions can also be shown for MCF-graph
case, forcing small in C1 (Dirr-Karali-Yip, 2008).
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Overview: MCF in heterogeneous media

I Caffarelli-De la Llave (Thermodynamic limit of Ising model with
heterogeneous interaction)

I Lions-Souganidis (Homogenization, heterogeneity in the coefficient)
I Cardaliaguet-Lions-Souganidis (Homogenization, periodic forcing)
I Bhattacharya-Craciun (Homogenization, periodic forcing)
I Bhattacharya-D. (Phase transformations, elasticity)
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Random environment

ut(x, t, ω) = ∆u(x, t, ω)− f (x, u(x, t, ω), ω) + F, (2)
u : Rn × R+ × Ω → R, f : Rn × R × Ω → R, u(x, 0) = 0.

Specific form of f.
Short range interaction: physicists call this ‘Quenched Edwards-Wilkinson
Model.’
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Random environment

ut(x, t, ω) = ∆u(x, t, ω)− f (x, u(x, t, ω), ω) + F, (2)
u : Rn × R+ × Ω → R, f : Rn × R × Ω → R, u(x, 0) = 0.

Pinning sites on lattice “(Lattice)”

f L(x, y, ω) =
∑

i∈Zn, j∈Z+1/2
fij(ω)φ(x − i, y − j), φ ∈ C∞(Rn × R, [0,∞)),

φ(x, y) = 0 if ||(x, y)||2 > r1 < 1/2, φ(x, y) = −1 if ||(x, y)||∞ ≤ r0.

fF

f f



Random media 10

Random environment

ut(x, t, ω) = ∆u(x, t, ω)− f (x, u(x, t, ω), ω) + F, (2)
u : Rn × R+ × Ω → R, f : Rn × R × Ω → R, u(x, 0) = 0.

Poisson process “(Poisson)”

f P(x, y, ω) =
∑
k∈N

fk(ω)φ(x−xk(ω), y−yk(ω)), φ ∈ C∞(Rn ×R, [0,∞)),

φ(x, y) = 0 if ||(x, y)||2 > r1, φ(x, y) = −1 if ||(x, y)||∞ ≤ r0, yk > r1.

f
f

F
f
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Existence of a stationary solution

Do solutions of the evolution equation become pinned by the obstacles
for sufficiently small driving force, even though there are arbitrarily large
areas with arbitrarily weak obstacles?



Pinning 12

Existence of a stationary solution, n = 1

Do solutions of the evolution equation become pinned by the obstacles
for sufficiently small driving force, even though there are arbitrarily large
areas with arbitrarily weak obstacles?

Theorem (Dirr-D.-Scheutzow, 2009):
Case (Lattice): Let fij ≥ 0 be so that

P({fij > q}) > p

for some q, p > 0. Then, there exists F ∗∗ > 0 and v : R → R, v > 0 so
that, a.s., for all F < F ∗∗,

0 > Kv − f L(x, v(x), ω) + F.

Here, K is either the Laplacian or the mean curvature operator.

This implies that v is a supersolution to the stationary equation, and thus
provides a barrier that a solution starting with zero initial condition can
not penetrate (comparison principle for viscosity solutions).
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Existence of a stationary solution, n ≥ 1

Do solutions of the evolution equation become pinned by the obstacles
for sufficiently small driving force, even though there are arbitrarily large
areas with arbitrarily weak obstacles?
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A percolation problem
Let Z = Zn × N.
We consider site percolation on Z: let p ∈ (0, 1).
Each site is declared open with probability p, independent for all sites.
Theorem (Dirr-D.-Grimmett-Holroyd-Scheutzow):
There exists pc < 1 such that if p > pc, then a random non-negative
discrete 1-Lipschitz function w : Zn → N exists with (x,w(x)) a.s. open
for all x ∈ Zn.
Idea:
Blocking argument. Define Λ-path: Finite sequence of distinct sites xi
from a to b so that xi − xi−1 ∈ {±en+1} ∪ {−en+1 ± ej : j = 1, . . . , n}.
Admissible if going up only to closed sites.
Which sites on the positive side are reachable from anywhere below?
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Proof of Lipschitz-Percolation Theorem

I Define G := {b ∈ Z :
there ex. path to b from some a ∈ Zn × {. . . ,−1, 0}}.

I We have P(hen+1 ∈ G) ≤ C(cq)h, thus there are only finitely many
sites in G above each x ∈ Zn.

I Define w(x) := min{t > 0 : (x, t) /∈ G}.
I Properties of w follow from the definition of admissible paths.

Electronic Communications in Probability, 15 (2010)
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Proof of Pinning-Theorem in n+1 dimensions
I Rescale so that each box of size l × h contains an obstacle at xk, yk

of strength f0 with probability pc.

dl
h

I Construct supersolution
I inside obstacles: parabolas: ∆v in = F1 < f0

2 .
I outside obstacles: mink{v(x − xk)}, where ∆vout = −F2 on

Brl(0) \ Br0(0), v = 0 on ∂Bρ1(0), ∇v · ν = 0 on ∂Bρ1(0)
I gluing function vglue with gradient supported on gaps of size d,

vglue = yk.
I scaling:

CF1 > F2(h−1/n + d)n and F2 ≥ h
d 2 .

I Works for lattice model if n = 1 and Poisson model for any n.
I Works also for MCF.

arXiv:0911.4254v1 [math.AP]
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Depinning

Can we exclude pinning for unbounded obstacles, if the probability of
finding a large obstacle is sufficiently small and the driving force is
sufficiently high?
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Depinning (only n = 1, only Lattice case)

Can we exclude pinning for unbounded obstacles, if the probability of
finding a large obstacle is sufficiently small and the driving force is
sufficiently high?

Theorem (Dirr-Coville-Luckhaus, 2009):
Nonexistence of a stationary solution

Let fij be so that P({fij > q}) < α exp(−βq) for some α, β > 0. Then
there exists F ∗∗∗ > 0 so that a.s. no stationary solution v > 0 for
equation (2) at F > F ∗∗∗ exists.

Proof by asserting that every possible stationary solution of (2) with Dirich-
let boundary conditions u(−L) = 0, u(L) = 0 becomes large as L → ∞.
(The pinning sites are not strong enough to keep the solution flat.)
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Depinning (only n = 1, only Lattice case) (cont.)
Theorem (D.-Scheutzow, 2010):
Existence of a finite velocity
Let ui solve u̇i(t) = (ui−1(t) + ui+1(t)− 2ui(t)− fi(ui(t), ω) + F )+ with
zero initial condition, i ∈ Z. Aussume that
β := supn∈Z E supn−.5≤y≤n+.5 exp{λf0(y, ω)} < ∞. Then there exists
V : [0,∞) → [0,∞), non-decreasing, not identically zero, depending only
on λ and β, such that

Eu0(t)
t ≥ V(F ) for all t ≥ 0.

We can choose
V(F ) = supµ>λ

1
µ (λ(F− 3)− log( 1

1−e−λ − eλ−µ

1−eλ−µ )− logβ). In particular,
the expected value of the velocity is strictly positive for F > F ∗∗∗.

Idea of proof: Every solution of the initial value problem (in space!)
0 = (ui−1 + ui+1 − 2ui − fi(ui(t), ω) + F )+ − ai, for any initial condition
for u0, u−1, for ai small in a suitable average sense, must become
negative for some i a.s..
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Proof of depinning
Central Lemma:
Let f̄ij : Ω → N0, i, j ∈ Z be random variables s.t. f̄i : Ω× Z → [0,∞)
defined as f̄i(ω, j) := f̄ij(ω) are independent. Assume that there
ex. β̄ > 0, λ > 0 s.t. β̄ := supk,l∈Z E exp(λ̄fkl) < ∞. Then there ex. Ω0 of
full measure such that for any function w : Ω× Z → N0 and any ω ∈ Ω0
we have

lim sup
k→∞

1
k

k∑
i=1

(
wi−1 + wi+1 − 2wi − f̄i(ω,wi) + F

)+ ≥ V̄(F ),

where V̄(F ) := supµ>λ
1
µ

(
λF − log

(
1

1−e−λ − eλ−µ

1−eλ−µ

)
− log β̄

)
≥ 0 .

Proof: Let µ > λ and define
Yk :=

∑
all paths w of length k

starting at presc. values at i ∈ {−1, 0}

exp(λ(wk − wk−1)− µsk),

sk :=
∑k−1

i=0 (∆1w − f̄i(ω,wi) + F )+. A calculation shows that for
γ = β̄ exp(−λF )

(
1

1−e−λ − eλ−µ

1−eλ−µ

)
, Yk/γk is a non-negative super-

martingale.
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Proof of depinning
Central Lemma:
Let f̄ij : Ω → N0, i, j ∈ Z be random variables s.t. f̄i : Ω× Z → [0,∞)
defined as f̄i(ω, j) := f̄ij(ω) are independent. Assume that there
ex. β̄ > 0, λ > 0 s.t. β̄ := supk,l∈Z E exp(λ̄fkl) < ∞. Then there ex. Ω0 of
full measure such that for any function w : Ω× Z → N0 and any ω ∈ Ω0
we have

lim sup
k→∞

1
k

k∑
i=1

(
wi−1 + wi+1 − 2wi − f̄i(ω,wi) + F

)+ ≥ V̄(F ),

where V̄(F ) := supµ>λ
1
µ

(
λF − log

(
1

1−e−λ − eλ−µ

1−eλ−µ

)
− log β̄

)
≥ 0 .

Proof (cont): Thus there ex. a set Ω0 of full measure such that
supk∈N0 Yk/γk is finite. We then have

lim sup
k→∞

1
k sup(λ(wk − wk−1)− µsk) ≤ lim sup

k→∞

1
k log Yk ≤ log γ.

So, λ lim sup
k→∞

wk − wk−1
k < log γ+µV(F ) = 0 on

{
lim sup

k→∞

sk
k < V(F )

}
∩Ω0
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Steps in the proof of the theorem
I Note that the processes ui and u̇i are ergodic (as stationary processes

depending on independent and stationary random variables).
I Assume the statement of the theorem is false, i.e., 1

t Eu0(t) < V(F )
for some t. Then there exist F and t0, such that Eu̇0(t0) < V(F ).

I By the ergodic theorem, we have
Eu̇0 = limn→∞

1
n
∑n−1

i=0 (ui−1 + ui+1 − 2ui − fi(ui, ω) + F )+ < V(F )
a.s.

I Discretize by rounding to the nearest integer, obtaining a path
wi : Z → N. Apply the Lemma by choosing
f̄ij := supy∈[j−.5,j+.5]⌈fi(y, ω)⌉+ 2.

I We obtain
(ui−1+ui+1−2ui−fi(ui, ω)+F )+ ≥ (wi−1+wi+1−2wi−f̄i(wi, ω)+F )+

and thus,
V(F ) > lim sup

n→∞

1
n

n−1∑
i=0

(ui−1+ui+1−2ui− fi(ui, ω)+F )+ ≥ V(F ) a.s.

I Back to the continuum problem by discretizing the continuous
equation in x. There are some more technical difficulties regarding
dependencies of the resulting fij.
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Summary of the results
n ≥ 1, obstacles scattered by Poisson process, any strength
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External forceF ∗F ∗∗
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Summary of the results (cont.)
n = 1, on a lattice, obstacles with exponential tails

F ∗∗∗
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External forceF ∗F ∗∗
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Many open questions

I Almost sure statement for depinning
(i.e., lim inft→∞

u0(t)
t ≥ V(F ) a.s.)

I Nonexistence/positive velocity in higher dimensions
I Nonexistence but no positive velocity possible?
I Nonlocal operators

I Growth of correlations and Hölder seminorm near critical F ∗

I Behavior at F = F ∗



Fin 31

Thank you for your attention.
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