Fifth Workshop on Random Dynamical Systems University of Bielefeld, 4-5 October 2012

Quasi-stationary measures and metastability

Alessandra Bianchi

Department of Mathematics, University of Padova

in collaboration with A. Gaudillière (Marseille)

October 5, 2012

Outline

1. Introduction

- Metastable systems.
- Markovian models.
- Metastable state: restricted ensemble and quasi stationary measure

2. Exit time: law and sharp average estimates

- Exponential law of the exit time.
- Sharp estimates on average exit time and relaxation time.
- Example: Curie-Weiss model.

3. Escape from metastability

- Soft measures as generalization of quasi-stationary measures.
- Transition times and mixing time asymptotics.

Metastability is a common dynamical phenomenon related to first order phase transition.

If the parameters of the system change along the line of the first order phase transition, *the system moves from one metastable state to the new equilibrium*.

Main features: This transition takes a long time, while the system stays in an apparent equilibrium.

Rigorous description

Due to the work of Lebowitz & Penrose (J. Stat. Phys., 3, 1971):

"We shall characterize metastable thermodynamic states by the following properties:

(a) only one thermodynamic phase is present,

- (b) a system that starts in this state is likely to take a long time to get out,
- (c) once the system has gotten out, it is unlikely to return. "

Rigorous description

Due to the work of Lebowitz & Penrose (J. Stat. Phys., 3, 1971):

"We shall characterize metastable thermodynamic states by the following properties:

(a) only one thermodynamic phase is present,

(b) a system that starts in this state is likely to take a long time to get out,

(c) once the system has gotten out, it is unlikely to return. "

one phase of metastable state \longrightarrow region $\mathcal{R} \subset \mathcal{X}$ of the phase space metastable state $\longrightarrow \mu_{\mathcal{R}} = \mu(\cdot | \mathcal{R})$, the restricted ensemble.

Main question: Show properties (b) and (c) by analyzing the exit time from \mathcal{R} : $\mathcal{T}_{\mathcal{R}^c}$.

Metastability in stochastic dynamics

Previous results and techniques

A simple example: Let $X_t \in \mathbb{R}$ solution of $dX_t = -V'(X_t) + \sqrt{2\varepsilon} dW_t$

• Large deviations techniques [Freidlin, Wentzell ('84)]:

(1)
$$\lim_{\varepsilon \to 0} \varepsilon \log \mathbb{E}_x \mathcal{T}_y = \Delta$$
 (2) $\lim_{\varepsilon \to 0} \mathbb{P}_x \left(\frac{\mathcal{T}_y}{\mathbb{E}_x \mathcal{T}_y} > t \right) = e^{-t}$

- Pathwise approach[Cassandro, Galves, Olivieri, Vares ('84)]: It focuses on typical trajectories and exponential law of the exit time. By LD techniques, it provides (1)-(2). Developed and generalized in many ways: [Neves, Schonmann ('92)], [Ben Arous, Cerf ('96)], [Schonmann, Shlosman ('98)], [Gaudillière, Olivieri, Scoppola ('05)].
- Potential theoretic approach [Bovier, Eckhoff, Gayrard, Klein ('01-'04)]: It focuses on relation between exit time and capacities, (and spectrum of the generator), providing sharp results (T finite): [Bovier, Manzo ('02)] [B., Bovier, Ioffe, '09], [Bovier, Den Hollander, Spitoni ('10)], [Beltrán, Landim ('10)].

• Large deviations techniques [Freidlin, Wentzell ('70)]:

(1)
$$\lim_{\varepsilon \to 0} \varepsilon \log \mathbb{E}_x \mathcal{T}_y = \Delta$$
 (2) $\lim_{\varepsilon \to 0} \mathbb{P}_x \left(\frac{\mathcal{T}_y}{\mathbb{E}_x \mathcal{T}_y} > t \right) = e^{-t}$

- Pathwise approach[Cassandro, Galves, Olivieri, Vares ('84)]: It focuses on typical trajectories and exponential law of the exit time. By LD techniques, it provides (1)-(2). Developed and generalized in many ways: [Neves, Schonmann ('92)], [Ben Arous, Cerf ('96)], [Schonmann, Shlosman ('98)], [Gaudillière, Olivieri, Scoppola ('05)].
- Potential theoretic approach [Bovier, Eckhoff, Gayrard, Klein ('01-'04)]: It focuses on relation between exit time and capacities, (and spectrum of the generator), providing sharp results (T finite): [Bovier, Manzo ('02)] [B., Bovier, Ioffe, '09], [Bovier, Den Hollander, Spitoni ('10)], [Beltrán, Landim ('10)].

Our main goal: Give a different description of metastable state and find simple hypotheses to get sharp estimates on the average exit time and prove its exponential law.

Markovian models

Markovian Models

Markov process $X = (X_t)_{t \in \mathbb{R}}$ on a finite set \mathcal{X} with generator

$$\mathcal{L}f(x) = \sum_{y \in \mathcal{X}} p(x,y)(f(y) - f(x))$$

For $\mathcal{R} \subset \mathcal{X}$ metastable set, let $X_{\mathcal{R}}(X_{\mathcal{R}^c})$ be the reflected process on $\mathcal{R}(\mathcal{R}^c)$. Assume:

- 1) X irreducible and reversible w.r.t μ ;
- 2) $X_{\mathcal{R}}, X_{\mathcal{R}^c}$ irreducible \longrightarrow reversible w.r.t. $\mu_{\mathcal{R}}$ and $\mu_{\mathcal{R}^c}$.

Markovian models

Markovian Models

Markov process $X = (X_t)_{t \in \mathbb{R}}$ on a finite set \mathcal{X} with generator

$$\mathcal{L}f(x) = \sum_{y \in \mathcal{X}} p(x,y)(f(y) - f(x))$$

For $\mathcal{R} \subset \mathcal{X}$ metastable set, let $X_{\mathcal{R}}(X_{\mathcal{R}^c})$ be the reflected process on $\mathcal{R}(\mathcal{R}^c)$. Assume:

> 1) X irreducible and reversible w.r.t μ ; 2) $X_{\mathcal{R}}$, $X_{\mathcal{R}^c}$ irreducible \longrightarrow reversible w.r.t. $\mu_{\mathcal{R}}$ and $\mu_{\mathcal{R}^c}$.

• Consider the sub-Markovian kernel on ${\mathcal R}$

$$r^*(x,y) = p(x,y), \quad ext{for all } x,y \in \mathcal{R}$$

and let $e_{\mathcal{R}}(x) = \sum_{y \notin \mathcal{R}} p(x, y)$ (escape probability from \mathcal{R}).

Quasi-stationary measure

From Perron-Frobenius Theorem and Darroch & Seneta('62):

• \exists a measure $\mu_{\mathcal{R}}^*$ on \mathcal{R} , called **quasi stationary measure** defined as

$$\mu_{\mathcal{R}}^{*}(y) = \lim_{t \to \infty} \mathbb{P}_{x}(X(t) = y | \mathcal{T}_{\mathcal{R}^{c}} > t) \qquad \text{Yaglom limit}$$

• Moreover
$$\exists \phi^* > 0$$
 s.t.
1. $\mu_{\mathcal{R}}^* r^* = (1 - \phi^*) \mu_{\mathcal{R}}^* \longrightarrow \text{left eigenvector}$
2. $\mathbb{P}_{\mu_{\mathcal{R}}^*}(\mathcal{T}_{\mathcal{R}^c} > t) = e^{-\phi^* t} \longrightarrow \text{exponential law}$
3. $\mathbb{E}_{\mu_{\mathcal{R}}^*}(\mathcal{T}_{\mathcal{R}^c})^{-1} = \phi^* = \mu_{\mathcal{R}}^*(e_{\mathcal{R}}) \longrightarrow \text{exponential rate}$.

Quasi-stationary measure

From Perron-Frobenius Theorem and Darroch & Seneta('62):

• \exists a measure $\mu_{\mathcal{R}}^*$ on \mathcal{R} , called **quasi stationary measure** defined as

$$\mu_{\mathcal{R}}^{*}(y) = \lim_{t \to \infty} \mathbb{P}_{x}(X(t) = y | \mathcal{T}_{\mathcal{R}^{c}} > t) \qquad \text{Yaglom limit}$$

• Moreover
$$\exists \phi^* > 0$$
 s.t.
1. $\mu_{\mathcal{R}}^* r^* = (1 - \phi^*) \mu_{\mathcal{R}}^* \longrightarrow \text{left eigenvector}$
2. $\mathbb{P}_{\mu_{\mathcal{R}}^*}(\mathcal{T}_{\mathcal{R}^c} > t) = e^{-\phi^* t} \longrightarrow \text{exponential law}$
3. $\mathbb{E}_{\mu_{\mathcal{R}}^*}(\mathcal{T}_{\mathcal{R}^c})^{-1} = \phi^* = \mu_{\mathcal{R}}^*(e_{\mathcal{R}}) \longrightarrow \text{exponential rate}$.

• Choose $\mu_{\mathcal{R}}^*$ instead of $\mu_{\mathcal{R}}$ in order to describe the metastable state.

Advantages and disadvantages.

- $\mu_{\mathcal{R}}^*$ immediately provides the exponential law of $\mathcal{T}_{\mathcal{R}}$, that in general is hard to deduce.
- $\mu_{\mathcal{R}}^*$ is not explicitly given, then preventing from getting quantitative estimates.

Question: Are $\mu_{\mathcal{R}}^*$ and $\mu_{\mathcal{R}}$ very different?

Advantages and disadvantages.

- $\mu_{\mathcal{R}}^*$ immediately provides the exponential law of $\mathcal{T}_{\mathcal{R}}$, that in general is hard to deduce.
- $\mu_{\mathcal{R}}^*$ is not explicitly given, then preventing from getting quantitative estimates.

Question: Are $\mu_{\mathcal{R}}^*$ and $\mu_{\mathcal{R}}$ very different?

Let $\gamma_{\mathcal{R}}$ be the spectral gap of $X_{\mathcal{R}}$ and define $\boldsymbol{\varepsilon}_{\mathcal{R}} := \frac{\phi^*}{\gamma_{\mathcal{R}}}$.

Proposition 1. If
$$\varepsilon_{\mathcal{R}} < 1$$
, then $\left\| \frac{\mu_{\mathcal{R}}^*}{\mu_{\mathcal{R}}} - 1 \right\|_{\mathcal{R},2}^2 \leq \frac{\varepsilon_{\mathcal{R}}}{1 - \varepsilon_{\mathcal{R}}}$

Advantages and disadvantages.

- $\mu_{\mathcal{R}}^*$ immediately provides the exponential law of $\mathcal{T}_{\mathcal{R}}$, that in general is hard to deduce.
- $\mu_{\mathcal{R}}^*$ is not explicitly given, then preventing from getting quantitative estimates.

Question: Are $\mu_{\mathcal{R}}^*$ and $\mu_{\mathcal{R}}$ very different?

Let $\gamma_{\mathcal{R}}$ be the spectral gap of $X_{\mathcal{R}}$ and define $\varepsilon_{\mathcal{R}} := \frac{\phi^*}{\gamma_{\mathcal{R}}}$.

Proposition 1. If $\varepsilon_{\mathcal{R}} < 1$, then $\left\| \frac{\mu_{\mathcal{R}}^*}{\mu_{\mathcal{R}}} - 1 \right\|_{\mathcal{R},2}^2 \leq \frac{\varepsilon_{\mathcal{R}}}{1 - \varepsilon_{\mathcal{R}}}$

Remark. Note that $\varepsilon_{\mathcal{R}} = \gamma_{\mathcal{R}}^{-1} / \mathbb{E}_{\mu_{\mathcal{R}}^*}(\mathcal{T}_{\mathcal{R}^c}).$

For metastable systems, we expect $\varepsilon_R \ll 1$ with some parameter of the system (e.g. size of the system $\to \infty$, $T \to 0$)

Exponential law of the exit time

Assume that $\varepsilon_{\mathcal{R}} \to 0$ and let $S_{\mathcal{R}} := \frac{1}{\gamma_{\mathcal{R}}^*} \ln \frac{2}{\delta(1-\delta)\zeta_{\mathcal{R}}}$ (local mixing time), with $\zeta_{\mathcal{R}} := \min_{x \in \mathcal{R}} \{ \mu_{\mathcal{R}}^{*2}(x) / \mu_{\mathcal{R}}(x) \}$, $\gamma_{\mathcal{R}}^*$ the spectral gap of r^* , and $\delta = O(\varepsilon_{\mathcal{R}})$.

THM 1. [Exponential law] If $S_{\mathcal{R}} \cdot \phi^* = o(1)$ as $\varepsilon_{\mathcal{R}} \to 0$, then

1)
$$\mathbb{E}_{\mu_{\mathcal{R}}}(\mathcal{T}_{\mathcal{R}^{c}}) = \phi^{*-1}(1+o(1))$$

2) $\mathbb{P}_{\mu_{\mathcal{R}}}(\mathcal{T}_{\mathcal{R}^{c}} > t \cdot \phi^{*-1}) = e^{-t}(1+o(1))$

Remark. In fact we can prove much more. We can consider general initial measure ν , and get exact corrective terms which are matching in the regime $S_{\mathcal{R}} \cdot \phi^* = o(1)$.

Sharp average estimates

Recall that: If $A, B \subset \mathcal{X}, A \cap B = \emptyset \implies \operatorname{cap}(A, B) = \sum_{a \in A} \mu(a) \mathbb{P}_a(\tau_A^+ > \tau_B^+).$

As shown in a series of papers by Bovier, Eckhoff, Gayrard & Klein ('01-'04), capacities enter in the computation of the average exit time from A to B.

Main advantage of capacities, is that they satisfy a two-sided variational principle

Sharp average estimates

Recall that:

$$\text{If }A,B\subset \mathcal{X}\text{, }A\cap B=\emptyset \implies \text{cap}(A,B)=\sum_{a\in A}\mu(a)\mathbb{P}_a(\tau_A^+>\tau_B^+).$$

As shown in a series of papers by Bovier, Eckhoff, Gayrard & Klein ('01-'04), capacities enter in the computation of the average exit time from A to B.

Main advantage of capacities, is that they satisfy a two-sided variational principle

Generalized capacities

For $k, \lambda > 0$, define an extended system $\mathcal{X}' = \mathcal{X} \cup A' \cup B'$, A', B' copies of A, B.

Fifth Workshop on Random Dynamical Systems, University of Bielefeld, 4-5 October 2012

10

Definition $(k, \lambda$ -capacities): $\operatorname{cap}_k^{\lambda}(A, B) = \operatorname{cap}(A', B')$.

When $\lambda = +\infty \longrightarrow B = B'$ and $\operatorname{cap}_k^{\infty}(A, B) = \operatorname{cap}_k(A, B)$. In particular $\operatorname{cap}_{\infty}^{\infty}(A, B) = \operatorname{cap}(A, B)$.

Definition $(k, \lambda$ -capacities): $\operatorname{cap}_{k}^{\lambda}(A, B) = \operatorname{cap}(A', B')$.

When $\lambda = +\infty \longrightarrow B = B'$ and $\operatorname{cap}_k^{\infty}(A, B) = \operatorname{cap}_k(A, B)$. In particular $\operatorname{cap}_{\infty}^{\infty}(A, B) = \operatorname{cap}(A, B)$.

THM 2. [Mean exit time] If $S_{\mathcal{R}} \cdot \phi^* = o(1)$ as $\varepsilon_{\mathcal{R}} \to 0$, and choosing $\phi^* \ll k \ll \gamma_{\mathcal{R}}$,

$$\phi^{*-1} = \frac{\mu(\mathcal{R})}{\mathsf{cap}_k(\mathcal{R}, \mathcal{R}^c)} (1 + o(1))$$

Definition $(k, \lambda$ -capacities): $\operatorname{cap}_{k}^{\lambda}(A, B) = \operatorname{cap}(A', B')$. When $\lambda = +\infty \longrightarrow B = B'$ and $\operatorname{cap}_{k}^{\infty}(A, B) = \operatorname{cap}_{k}(A, B)$. In particular $\operatorname{cap}_{\infty}^{\infty}(A, B) = \operatorname{cap}(A, B)$.

THM 2. [Mean exit time] If $S_{\mathcal{R}} \cdot \phi^* = o(1)$ as $\varepsilon_{\mathcal{R}} \to 0$, and choosing $\phi^* \ll k \ll \gamma_{\mathcal{R}}$,

$$\phi^{*-1} = \frac{\mu(\mathcal{R})}{\operatorname{cap}_k(\mathcal{R}, \mathcal{R}^c)} (1 + o(1))$$

THM 3. [relaxation time] If $S_{\mathcal{R}} \cdot \phi^* = o(1)$ and $S_{\mathcal{R}^c} \cdot \phi^{c*} = o(1)$ with $\varepsilon_{\mathcal{R}}, \varepsilon_{\mathcal{R}^c} \to 0$, and choosing $\phi^* \ll k \ll \gamma_{\mathcal{R}}$ and $\phi^{c*} \ll \lambda \ll \gamma_{\mathcal{R}^c}$, then

$$\mathcal{T}_{rel} \equiv \frac{1}{\gamma} = \frac{\mu(\mathcal{R})\mu(\mathcal{R}^c)}{\operatorname{cap}_k^{\lambda}(\mathcal{R}, \mathcal{R}^c)} (1 + o(1))$$

Fifth Workshop on Random Dynamical Systems, University of Bielefeld, 4-5 October 2012

11

A simple example: the Curie-Weiss model

Let $m \in \Gamma = \{-1, -1 + \frac{2}{N}, \dots, 1\}$ (magnetization) a 1D-parameter

Let $\mu(m) \propto e^{-\beta N F_N(m)}$ the Gibbs measure on Γ and consider a dynamics reversible w.r.t. μ with transition rates $p(m, m^{\pm}) \propto e^{-\beta N \nabla_{\pm} F_N}$.

For some values of the parameters

Fifth Workshop on Random Dynamical Systems, University of Bielefeld, 4-5 October 2012

12

Questions:

- 1. Law and average of $\mathcal{T}_{\mathcal{R}^c}$ w.r.t. $\mu_{\mathcal{R}}$?
- 2. Relaxation time?

Studied by [COGV('84)], [MP('98)], [BEGK('01)],[BBI('09)].

Questions:

- 1. Law and average of $\mathcal{T}_{\mathcal{R}^c}$ w.r.t. $\mu_{\mathcal{R}}$?
- 2. Relaxation time?

Studied by [COGV('84)], [MP('98)], [BEGK('01)],[BBI('09)].

First step: verify the hypotheses

We want to show that $\varepsilon_{\mathcal{R}}, \varepsilon_{\mathcal{R}^c} \xrightarrow[N \to \infty]{} 0$ and $S_{\mathcal{R}} \cdot \phi^* = o(1), S_{\mathcal{R}^c} \cdot \phi^{c*} = o(1).$

Questions:

- 1. Law and average of $\mathcal{T}_{\mathcal{R}^c}$ w.r.t. $\mu_{\mathcal{R}}$?
- 2. Relaxation time?

Studied by [COGV('84)], [MP('98)], [BEGK('01)],[BBI('09)].

First step: verify the hypotheses

We want to show that $\varepsilon_{\mathcal{R}}, \varepsilon_{\mathcal{R}^c} \xrightarrow[N \to \infty]{} 0$ and $S_{\mathcal{R}} \cdot \phi^* = o(1), S_{\mathcal{R}^c} \cdot \phi^{c*} = o(1).$

1. $\phi^* = \mu_{\mathcal{R}}^*(e_{\mathcal{R}}) \le \mu_{\mathcal{R}}(e_{\mathcal{R}}) = \mu(\partial \mathcal{R}) \le e^{-\beta N \Gamma_1}$.

and similarly $\phi^{c*} \leq e^{-\beta N \Gamma_2}$, with $\Gamma_1 < \Gamma_2$.

Questions:

- 1. Law and average of $\mathcal{T}_{\mathcal{R}^c}$ w.r.t. $\mu_{\mathcal{R}}$?
- 2. Relaxation time?

Studied by [COGV('84)], [MP('98)], [BEGK('01)],[BBI('09)].

First step: verify the hypotheses

We want to show that $\varepsilon_{\mathcal{R}}, \varepsilon_{\mathcal{R}^c} \xrightarrow[N \to \infty]{} 0$ and $S_{\mathcal{R}} \cdot \phi^* = o(1), S_{\mathcal{R}^c} \cdot \phi^{c*} = o(1).$

1. $\phi^* = \mu_{\mathcal{R}}^*(e_{\mathcal{R}}) \le \mu_{\mathcal{R}}(e_{\mathcal{R}}) = \mu(\partial \mathcal{R}) \le e^{-\beta N \Gamma_1}$.

and similarly $\phi^{c*} \leq e^{-\beta N \Gamma_2}$, with $\Gamma_1 < \Gamma_2$.

2. $\gamma_{\mathcal{R}}^{-1} \leq \mathcal{T}_{mix}^{\mathcal{R}} \leq c(\beta) N^{3/2} \quad \longleftarrow \text{ argument used in [Levin,Luczak, Peres ('10)]}$. and similarly $\gamma_{\mathcal{R}}c^{-1} \leq c(\beta) N^{3/2}$.

Questions:

- 1. Law and average of $\mathcal{T}_{\mathcal{R}^c}$ w.r.t. $\mu_{\mathcal{R}}$?
- 2. Relaxation time?

Studied by [COGV('84)], [MP('98)], [BEGK('01)],[BBI('09)].

First step: verify the hypotheses

We want to show that $\varepsilon_{\mathcal{R}}, \varepsilon_{\mathcal{R}^c} \xrightarrow[N \to \infty]{} 0$ and $S_{\mathcal{R}} \cdot \phi^* = o(1), S_{\mathcal{R}^c} \cdot \phi^{c*} = o(1).$

1. $\phi^* = \mu_{\mathcal{R}}^*(e_{\mathcal{R}}) \le \mu_{\mathcal{R}}(e_{\mathcal{R}}) = \mu(\partial \mathcal{R}) \le e^{-\beta N \Gamma_1}$.

and similarly $\phi^{c*} \leq e^{-\beta N \Gamma_2}$, with $\Gamma_1 < \Gamma_2$.

- 2. $\gamma_{\mathcal{R}}^{-1} \leq \mathcal{T}_{mix}^{\mathcal{R}} \leq c(\beta) N^{3/2}$ (argument used in Levin,Luczak& Peres paper). and similarly $\gamma_{\mathcal{R}} c^{-1} \leq c(\beta) N^{3/2}$.
- 3. With the above estimates we get easily $S_{\mathcal{R}}, S_{\mathcal{R}^c} \leq c(\beta)N^3$.

\rightarrow Then the required hypotheses follow.

Second step: compute the capacities

We make use of the two-side variational principle over the capacities. Test functions and flows are provided by the 1D process over the magnetizations, where capacities can be computed explicitly.

Then, for all $\phi_{\mathcal{R}}^* \ll k \ll \gamma_{\mathcal{R}}$ and $\phi_{\mathcal{R}^c}^* \ll \lambda \ll \gamma_{\mathcal{R}^c}$

1.
$$\operatorname{cap}_k(\mathcal{R}, \mathcal{R}^c) = \frac{1}{Z_N} \cdot \frac{1}{\sqrt{\pi N}} c(m_0) e^{-\beta N f_N(m_0)} (1 + o(1)),$$

2.
$$\operatorname{cap}_k^{\lambda}(\mathcal{R}, \mathcal{R}^c) = \frac{1}{Z_N} \cdot \frac{1}{2\sqrt{\pi N}} c(m_0) e^{-\beta N f_N(m_0)} (1 + o(1)),$$

where $c(m_0) = \sqrt{(1-m_0^2)|f_N''(m_0)|}.$

The result

From Theorems 1.,2. and 3., it holds

(i) $\mathcal{T}_{\mathcal{R}^c}$ has asymptotic exponential law w.r.t. $\mu_{\mathcal{R}}$ with mean

$$\mathbb{E}_{\mu_{\mathcal{R}}}(\mathcal{T}_{\mathcal{R}^c}) = \frac{\pi N}{\beta c(m_0)c(m_-)} e^{\beta N\Gamma_1}(1+o(1))$$

(ii) The relaxation time γ^{-1} is given by

$$\gamma^{-1} = \frac{2\pi N}{\beta c(m_0)c(m_-)} e^{\beta N \Gamma_1} (1 + o(1))$$

Soft measure and escape from metastability

Recall property (c) of Lebowitz & Penrose:

"once the system has gotten out, it is unlikely to return "

What does it mean "to get out" from \mathcal{R} ? Exit from \mathcal{R} ? When the system just exited \mathcal{R} , the probabilities to go back to \mathcal{R} or proceed in \mathcal{R}^C are equal, and (c) fails.

Soft measure and escape from metastability

Recall property (c) of Lebowitz & Penrose:

"once the system has gotten out, it is unlikely to return "

What does it mean "to get out" from \mathcal{R} ? Exit from \mathcal{R} ? When the system just exited \mathcal{R} , the probabilities to go back to \mathcal{R} or proceed in \mathcal{R}^C are equal, and (c) fails.

 \longrightarrow look for a definition of "true escape"

Soft measure and escape from metastability

Recall property (c) of Lebowitz & Penrose:

"once the system has gotten out, it is unlikely to return "

What does it mean "to get out" from \mathcal{R} ? Exit from \mathcal{R} ? When the system just exited \mathcal{R} , the probabilities to go back to \mathcal{R} or proceed in \mathcal{R}^C are equal, and (c) fails.

 \longrightarrow look for a definition of "true escape"

Main Idea

If the dynamics spends in \mathcal{R}^c a time $\geq S_{\mathcal{R}^c}$ (local mixing in \mathcal{R}^c) then it is close to $\mu^*_{\mathcal{R}^c}$.

Define the "true escape from \mathcal{R} " as the first time that the "dynamics on \mathcal{R} " makes an excursion in \mathcal{R}^c of order $\geq S_{\mathcal{R}^c}$.

Fifth Workshop on Random Dynamical Systems, University of Bielefeld, 4-5 October 2012

16

Formally:

• For any $\lambda > 0$ and $\sigma_{\lambda} \sim \exp(\lambda)$ indep. of X, sub-Markovian kernel on \mathcal{R} :

$$r^*_\lambda(x,y) = \mathbb{P}_x(X(au^+_\mathcal{R}) = y, L_{\mathcal{R}^c}(au^+_\mathcal{R}) \leq \sigma_\lambda)$$

where $L_A = \text{local time in } A \subset \mathcal{X}$ and G_A its right-continuous inverse.

Formally:

• For any $\lambda > 0$ and $\sigma_{\lambda} \sim \exp(\lambda)$ indep. of X, sub-Markovian kernel on \mathcal{R} :

$$r^*_\lambda(x,y) = \mathbb{P}_x(X(au^+_\mathcal{R}) = y, L_{\mathcal{R}^c}(au^+_\mathcal{R}) \leq \sigma_\lambda)$$

where $L_A = \text{local time in } A \subset \mathcal{X}$ and G_A its right-continuous inverse.

• Define the transition time:

$$\mathcal{T}_{\mathcal{R}^c,\lambda} = L_{\mathcal{R}}(G_{\mathcal{R}^c}(\sigma_{\lambda}))$$

 $\sigma_{\lambda} = \text{length of blue-path}$ $G_{\mathcal{R}^c}(\sigma_{\lambda}) = \text{length of black-path}$ $\mathcal{T}_{\mathcal{R}^c,\lambda} = \text{length of red-path}$

By similar arguments to those used for the analysis of r^* , we define the **soft measure** $\mu^*_{\mathcal{R},\lambda}$ on \mathcal{R} as

$$\mu_{\mathcal{R},\lambda}^*(y) = \lim_{t \to \infty} \mathbb{P}_x(X(G_{\mathcal{R}}(t)) = y | \mathcal{T}_{\mathcal{R}^c,\lambda} > t)$$

It turns out that $\exists \phi_{\lambda}^{*} > 0 \text{ s.t.}$ 1. $\mu_{\mathcal{R},\lambda}^{*} r_{\lambda}^{*} = (1 - \phi_{\lambda}^{*}) \mu_{\mathcal{R},\lambda}^{*} \longrightarrow \text{left eigenvector}$ 2. $\mathbb{P}_{\mu_{\mathcal{R},\lambda}^{*}} (\mathcal{T}_{\mathcal{R}^{c},\lambda} > t) = e^{-\phi_{\lambda}^{*}t} \longrightarrow \text{exponential law}$ 3. $\mathbb{E}_{\mu_{\mathcal{R},\lambda}^{*}} (\mathcal{T}_{\mathcal{R}^{c},\lambda})^{-1} = \phi_{\lambda}^{*} = \mu_{\mathcal{R},\lambda}^{*} (e_{\mathcal{R},\lambda}) \longrightarrow \text{average time}$

Remark 1. $\mu_{\mathcal{R},\lambda}^*$ is continuous interpolation between $\mu_{\mathcal{R}} = \mu_{\mathcal{R},0}^*$ and $\mu_{\mathcal{R}}^* = \mu_{\mathcal{R},\infty}^*$.

Remark 2. The same construction can be done for the dynamics on \mathcal{R}^c : For k > 0 and taking a time (\mathcal{R})-excursion bound of $\sigma_k \sim \exp(k)$, we construct $\mu^*_{\mathcal{R}^c,k}$.

Transition time and mixing time

THM 4. All the results proved for $\mathcal{T}_{\mathcal{R}^c}$ and ϕ^* , hold for $\mathcal{T}_{\mathcal{R}^c,\lambda}$ and ϕ^*_{λ} under analogous hypotheses ($\varepsilon_{\mathcal{R}} \ll 1$ and $S_{\mathcal{R},\lambda} \cdot \phi^*_{\lambda} = o(1)$ as $\varepsilon_{\mathcal{R}} \to 0$). In particular:

1. $\mathcal{T}_{\mathcal{R}^c,\lambda}$ has asymptotic exponential law w.r.t. $\mu_{\mathcal{R}}$, with rate ϕ_{λ}^*

2. ϕ_{λ}^{*} satisfied sharp asymptotics expressed in term of capacity

Transition time and mixing time

THM 4. All the results proved for $\mathcal{T}_{\mathcal{R}^c}$ and ϕ^* , hold for $\mathcal{T}_{\mathcal{R}^c,\lambda}$ and ϕ^*_{λ} under analogous hypotheses ($\varepsilon_{\mathcal{R}} \ll 1$ and $S_{\mathcal{R},\lambda} \cdot \phi^*_{\lambda} = o(1)$ as $\varepsilon_{\mathcal{R}} \to 0$). In particular:

- 1. $\mathcal{T}_{\mathcal{R}^c,\lambda}$ has asymptotic exponential law w.r.t. $\mu_{\mathcal{R}}$, with rate ϕ_{λ}^*
- 2. ϕ_{λ}^{*} satisfied sharp asymptotics expressed in term of capacity

THM 4. All the results proved for $\mathcal{T}_{\mathcal{R}^c}$ and ϕ^* , hold for $\mathcal{T}_{\mathcal{R}^c,\lambda}$ and ϕ^*_{λ} under analogous hypotheses ($\varepsilon_{\mathcal{R}} \ll 1$ and $S_{\mathcal{R},\lambda} \cdot \phi^*_{\lambda} = o(1)$ as $\varepsilon_{\mathcal{R}} \to 0$). In particular:

1. $\mathcal{T}_{\mathcal{R}^c,\lambda}$ has asymptotic exponential law w.r.t. $\mu_{\mathcal{R}}$, with rate ϕ_{λ}^*

2. ϕ^*_{λ} satisfied sharp asymptotics expressed in term of capacity

THM 4. All the results proved for $\mathcal{T}_{\mathcal{R}^c}$ and ϕ^* , hold for $\mathcal{T}_{\mathcal{R}^c,\lambda}$ and ϕ^*_{λ} under analogous hypotheses ($\varepsilon_{\mathcal{R}} \ll 1$ and $S_{\mathcal{R},\lambda} \cdot \phi^*_{\lambda} = o(1)$ as $\varepsilon_{\mathcal{R}} \to 0$). In particular:

1. $\mathcal{T}_{\mathcal{R}^c,\lambda}$ has asymptotic exponential law w.r.t. $\mu_{\mathcal{R}}$, with rate ϕ_{λ}^*

2. ϕ_{λ}^{*} satisfied sharp asymptotics expressed in term of capacity

From 1. and 2.

$$\mathbb{E}_{\mu_{\mathcal{R}}}(\mathcal{T}_{\mathcal{R}^{c},\lambda}) = \phi_{\lambda}^{*^{-1}}(1+o(1)) = \frac{\mu(\mathcal{R})}{\mathsf{cap}_{k}^{\lambda}(\mathcal{R},\mathcal{R}^{c})}(1+o(1))$$

Moreover, the truly escape from \mathcal{R} is given by the time $G_{\mathcal{R}^c}(\sigma_{\lambda})$, (first excursion $\sim \sigma_{\lambda}$) for $\lambda = O(S_{\mathcal{R}^c,0}^{-1})$. Indeed it holds, for all $x \in \mathcal{X}$,

$$\begin{cases} \|\mathbb{P}_x(X(G_{\mathcal{R}^c}(\sigma_{\lambda})) = \cdot) - \mu_{\mathcal{R}^c}\|_{\mathsf{TV}} \leq \lambda S_{\mathcal{R}^c,0} + o(1) \\ \|\mathbb{P}_x(X(G_{\mathcal{R}^c}(\sigma_{\lambda})) = \cdot) - \mu\|_{\mathsf{TV}} \leq \mu(\mathcal{R}) + \lambda S_{\mathcal{R}^c,0} + o(1) \end{cases} \end{cases}$$

Moreover, the truly escape from \mathcal{R} is given by the time $G_{\mathcal{R}^c}(\sigma_{\lambda})$, (first excursion $\sim \sigma_{\lambda}$) for $\lambda = O(S_{\mathcal{R}^c,0}^{-1})$. Indeed it holds, for all $x \in \mathcal{X}$,

$$\begin{cases} \|\mathbb{P}_{x}(X(G_{\mathcal{R}^{c}}(\sigma_{\lambda})) = \cdot) - \mu_{\mathcal{R}^{c}}\|_{\mathsf{TV}} \leq \lambda S_{\mathcal{R}^{c},0} + o(1) \\ \|\mathbb{P}_{x}(X(G_{\mathcal{R}^{c}}(\sigma_{\lambda})) = \cdot) - \mu\|_{\mathsf{TV}} \leq \mu(\mathcal{R}) + \lambda S_{\mathcal{R}^{c},0} + o(1) \end{cases} \end{cases}$$

THM 5. [mixing time] If $S_{\mathcal{R}} \cdot \phi^* = o(1)$ and $S_{\mathcal{R}^c} \cdot \phi^{c^*} = o(1)$ as $\varepsilon_{\mathcal{R}}, \varepsilon_{\mathcal{R}^c} \to 0$, and taking $\lambda = O(S_{\mathcal{R}^c,0}^{-1})$,

$$\mathcal{T}_{mix} \leq \frac{4}{\gamma} \left(\frac{1 - \mu(\mathcal{R})}{1 - 2\mu(\mathcal{R})} \right) \left(1 + o(1) \right)$$

Fifth Workshop on Random Dynamical Systems, University of Bielefeld, 4-5 October 2012

20

Transition and mixing time of the Curie-Weiss model:

Recall that we get:

• $\mathcal{T}_{\mathcal{R}^c}$ has exponential law w.r.t. $\mu_{\mathcal{R}}$;

•
$$\mathbb{E}_{\mu_{\mathcal{R}}}(\mathcal{T}_{\mathcal{R}}c) = \frac{\pi N}{\beta c(m_0)c(m_-)} e^{\beta N\Gamma_1}(1+o(1));$$

•
$$\gamma^{-1} = \frac{2\pi N}{\beta c(m_0)c(m_-)} e^{\beta N\Gamma_1} (1 + o(1)).$$

By Theorem 6., with no need of further computations, it holds:

(i) $\mathcal{T}_{\mathcal{R}^c,\lambda}$ has exponential law w.r.t. $\mu_{\mathcal{R}}$, with mean

$$\mathbb{E}_{\mu_{\mathcal{R}}}(\mathcal{T}_{\mathcal{R}^{c},\lambda}) = \frac{2\pi N}{\beta c(m_{0})c(m_{-})} e^{\beta N\Gamma_{1}}(1+o(1))$$

(ii) The mixing time \mathcal{T}_{mix} is bounded as

$$\gamma^{-1} \leq \mathcal{T}_{mix} \leq \frac{8\pi N}{\beta c(m_0)c(m_-)} e^{\beta N\Gamma_1} (1+o(1)) = 4\gamma^{-1} (1+o(1))$$

Fifth Workshop on Random Dynamical Systems, University of Bielefeld, 4-5 October 2012

21

Thank you for your attention!