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Part 1. Incompressible flow:

#(t) = v(z(t)), z(0) ==z9€R? or zg€ M.

(a) Hamiltonian flows.




Perturbation:

1
dX{ = ~v(X{)dt + o(X/°)dW;  (random),
g

1
dX§ = —v(X7)dt+b(X[)dt (deterministic).
g

The dynamics consists of the fast motion
(with speed of order 1/¢) along the unper-
turbed trajectories together with the slow mo-
tion (with speed of order 1) in the direction
transversal to the unperturbed trajectories.



Averaging - consider h : R?2 — G. Then

h(X;)—Y: as e|0.

Locally (away from the vertices of the graph):

a¥r _ b(¥1) , (deterministic), where
dt  T(Y)
dl ~ (b,VH)
T(h) = — b(h) = ——dl )
(h) [y(h) IVH| (1) /ﬂh) VH|

dY; = a(Yy)dW+b(Y;)dt (random perturbations).

Behavior at the vertices. Random pertur-
bations - Freidlin and Wentzell. Deterministic

perturbations - regularization required. (Brin
and Freidlin).



(b) Locally Hamiltonian flows (there are re-
gions where the unperturbed dynamimcs is
ergodic). Example: H = Hp(z1,z2) + ax1 +
Bxo, a/B - irrational.




M - manifold with an area form,
v - iIncompressible vector field,
X§ - process with generator L = 1L, + Lp.




Unperturbed dynamics:

Uq,...,Un - periodic sets

£1,....,En - ‘ergodic components’

Flow on &; is isomorphic to a special flow over
an interval exchange transformation.

Graph:

- Each edge corresponds to one of Uy

- Three types of vertices:

(a) Those corresponding to &;,

(b) Those corresponding to saddle points,
(c) Those corresponding to equilibriums (but
not saddles).

The flow is Hamiltonian on U, with a Hamil-
tonian H. Denote: h, - coordinate on I;.



Theorem 1 The measure on on C([0,0),G)
induced by the process Y = h(X;) converges
weakly to the measure induced by the process
with the generator £ with the initial distribu-
tion h(X§).

The limiting process is described via its gen-
erator L, which is defined as follows.

Let Ly f(hg) = ap(hg) f" + by (hy) f/

be the differential operator on the interior of
the edge I (coefficients are defined below).

For f € D(L), we define Lf = Lif in the
interior of each edge, and as the limit of L.f
at the endpoints of I.



D(L) consists of f € C(G)NC?2(1I;) such that
(@) limp, o Lipf(h) = ¢ exist and are the
same for all edges entering the same vertex V.
(b) At vertices corresponding to &;:

mn
V . / .
lim hp) = lim Lpf(hg).
kZ::lpk hk_@f( k) AL rf(hy)

(the same with O instead of gV for vertices
corresponding to saddles).
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Coefficients:
In local coordinates in U (w = dxdy):

1
dXE = “v(XE)dt + w(XE)dt + o(XE)dWy.
9

Then,

1

_ -+ -1 <OéVH,VH>
ar(h) = 5T M) |

[VH]|

dl and

1

R Tel
b (hi) = ET_l(hk) 20w, VH) +a- HD

Y (hi) VH| 7

where a = oo™,

1 / (aVH,VH)
Yk

V
S
Pe =75 VH
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Ingredients of the proof.

(1) Assume (temporarily) that the area mea-
sure A\ is invariant for the process for each «.

For the limit Y; of Y7 = h(X}), we should
have

T
ELf(Yr) = f(Yo) = | £F(Ya)ds] = 0.

Need to prove the following lemma.
Lemmal For each function f € D(L) and
each T’ > 0 we have

B lf (h(X5)) (X))~ [ £F(h(XE))ds] — O

uniformly in z € T? as e — O.
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(2) Localization (can deal with a star-shaped
graph with one accessible vertex)
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(3) Need:

B Lf (X3~ F (X))~ [ L7 (h(XD))ds] — 0

Split [0,T] into intervals:
[0,00], log,71], [T1,01], lo1,72], ...

On intervals [m,,on] (inside periodic compo-
nent) - averaging (Freidlin-Wentzell) with small

modifications.
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On intervals [on, 7,41] (getting from the er-
godic component into the periodic compo-

nent):

Eolf(h(X5,, D~ FXEN— [ LF((XD)ds] ~

Tn+1 on
EL[£(h(X2)) = F(h(XE)) — [ LF(A(XE))ds] =

f(0)e* —E,7 - Lf(0).

- How can we calculate E, 77
- Why can we assume that we start with the
invariant measure v?
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]EUT ~ ]E/,LJ
If A\ is invariant: NG IBYL SO

A
E,m ﬂ -E, 0 ~ const - €.

A(U)

If )\ 1S not invariant: consider
dXt = —v(X )dt—|—u(X )dt—l—a(X )dW4,

(replace u by some @ so that X is invariant for
the new process).

By the Girsanov Theorem:
vy, Eyr=EyT

So, Evr = i‘ég)) o (the gluing conditions
are the same as for the measure-preserving

process).

16



(4) Why does Ezo%f — 0 as £ | 07 (time to
reach UF)

Let u(t,y), y € M\Uyg, be the probability that
the process starting at y does not reach Uy
before time ¢.

ous(t,y)

1
= ( L —L €
ot (D+€ v)u

u*(0,y) =1, ye M\Ug, u°(t,y)=0, t>0.
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(a) Lemma (Zlatos): All H3(M\Uy)-eigenvalues
for vV are zero on £ implies that the L2(&)-
norm (and so L1(&)-norm) of w8(¢,-) tends to
zero as € | O for each t > 0.

(b) A uniform bound on fundamental solution
doesn’t get affected by adding an incompress-
ible drift term.

(a) and (b) imply that Ezo — 0. With some
effort possible to show that E,oF — O.
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Part 2: Averaging of deterministic per-
turbations

Recall

1
dX[7° = “u(X;7%)dt + b(X/["°)dt+
g

su(X[79)dt + /o (X[7F)dW,.

Let V¢ = h(X/"°) be the corresponding pro-
cess on the graph G. We demonstrated that
the distribution of Y, converges, ase | 0, to
the distribution of a limiting process, which
will be denoted by Z;*. Z7, in turn, converges
to the distribution of a limiting Markov pro-
cess on G when s | O.
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The limiting process Z; can be described as
follows. It is a Markov process with continu-
ous trajectories which moves deterministically
along an edge I, of the graph with the speed
_ 1 1 2(b, VH)
bih) = 5 (T~ | R o
If the process reaches V corresponding to an
ergodic component, then it either remains at
V' forever or spends exponential time in V
and then continues with deterministic motion
away from V along a randomly selected edge
(with probabilities which can be specified).
The same if V corresponds to a saddle point,
but no exponential delay.
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Theorem 2 The measure on on C([0,0),G)
induced by the process Z7 converges weakly
to the measure induced by the process Z; with
the initial distribution h(Xg).

The process Z; is defined by the determinis-

tic system. The stochastic perturbations are
used just for regularization purposes.
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Part 3.
X¥ =b(X¥), XE==zeR%

dX;° = b(X;")dt + eo (X, F)dWy, Xg© ==z

in terms of PDEs:

out 2 4 92us
o = > aii(x)
t 2 i=1 0x;0

+ b(x) - Vyu®,

L j

u®(0,2) = g(x), = € R™.

D =
v
el 5
91. “ rf— — .
2 ol k 7
.}{

u®(t,r) = Eg(X; ™).



Action functional:

1 /T 4. . .
Sor(9) =5 [ 3 a0 (@h=bilen)) (¢ =b;(e0)at,
1,J=1

if o - absolutely continuous,

So.1(v) = +o0, otherwise.
aij = (a_l)ij.
Quasi-potential:

igf{SO,T(SD) 2 ©(0) = Om, p(T') = On}.

22



Tmn - the time it takes the process to go from
Om to a small neighborhood of Oy,.

ngn ~ eXp(an/gz),
Consider the process (and solution of PDE)

at times t(e) with In(t(e)) ~ A/e2. Suppose,
for example, that z € Dy and Vio < Vog.

If A < Vip, then u®(t(e),x) — g(O1).
If A > Vio, then w®(t(e),z) — g(O»).
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Nonlinear problem:

out 2 4 . 92us
= (e, b AV 57
ot 5 fL'7jEZ:1 azg(fc u )8332-83:]- + b(x) zU
u®(0,7) = g.

equivalent to the system

dXL%E = p(XLPE)dt+eo(XLPE uf(t—s, X1E))dWs,
u*(t,x) = Eg(Xf’x’g).

Construct Vq» using a(t, g(zg)).

If A < Vio, then still ue(t(e),z) — g(O1).

IfA> ‘712, then new effects appear for «° and
the processes.
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Result in the non-linear case (2 equilibriums):

als.c)

Theorem:
Igilrg u(exp(N\/e2),z) = cn(N), = € Dp.
Corollary: If x € D1, then the distribution of

gg&ﬁj)}’x’g converges to the measure u{ =
a100, + a200,, where the coefficients a; and

ap can be found from the equations c1(\) =
a19(01) + a29(02), a1 +az = 1.
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Multiple equilibriums.

- Need to look at V&) — Vaz:0) (0, On),
which determine the hierarchy of cycles;

- The hierarchy of cycles may evolve in time
(i.e., depends on \).
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