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Motivation: Effective large scale behavior of random media

– description by statistics

– effective large scale behavior

 stochastic homogenization

– qualitative theory

 well-established
 formula for effective properties

In practice: Evaluation of formula requires approximation

– only few results; non-optimal estimates for approximation error

– lack of understanding on very basic level
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Motivation: Effective large scale behavior of random media

– description by statistics

– effective large scale behavior

 stochastic homogenization

– qualitative theory

 well-established
 formula for effective properties

In practice: Evaluation of formula requires approximation

– only few results; non-optimal estimates for approximation error

– lack of understanding on very basic level

Our motivation:
Quantitative methods leading to optimal estimates
...model problem: linear, elliptic, scalar, on Z

d
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Summary

◮ Framework: discrete elliptic equation with random coefficients

◮ Qualitative homogenization

◮ Homogenization formula and corrector – periodic case

◮ Corrector equation in probality space

◮ Main results

◮ A decay estimate for a diffusion semigroup
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Discrete elliptic equation with random coefficients

Z
d

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

x

∇∗
a(x)∇u(x) = f (x)

Coefficient field

a : Zd → R
d×d
diag,λ

0 < λ 6 a(x) 6 1

(uniform ellipticity)
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Discrete elliptic equation with random coefficients

Z
d

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

x

∇∗
a(x)∇u(x) = f (x)

Coefficient field

a : Zd → R
d×d
diag,λ

0 < λ 6 a(x) 6 1

(uniform ellipticity)

Lattice Z
d

sites x, y, coord. directions e1, . . . , ed

Gradient ∇
∇u = (∇1u, . . . ,∇du), ∇iu(x) = u(x + ei) − u(x)

(negative) Divergence ∇∗ (= ℓ2-adjoint of ∇)

∇∗g = ∇∗
1g1 + . . . +∇∗

dgd , ∇∗
i gi(x) = g(x − ei) − g(x).
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Discrete elliptic equation with random coefficients

Z
d

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

x

∇∗
a(x)∇u(x) = f (x)

Coefficient field

a : Zd → R
d×d
diag,λ

0 < λ 6 a(x) 6 1

(uniform ellipticity)

Random coefficients

Ω := (Rd×d
diag,λ)

(Zd)

= space of coefficient fields

〈·〉 = probability measure on Ω

= ”the ensemble”

Behavior in the large  stochastic homogenization
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Simplest setting: {a(x)}x∈Zd are independent and identically
distributed according to a random variable A

Most general setting: 〈·〉 is stationary and ergodic
Stationarity: ∀z ∈ Z

d : a(·) and a(· + z) have same distribution

Z
d

a

z

shift by z

Z
d

a(·+z)

Ergodicity: If ∀z ∈ Z
d F(a(· + z)) = F(a) then F = 〈F〉 a. s.
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Qualitative homogenization



Numerical simulation - 1d, Dirichlet problem

∇∗
a(x)∇u(x) = 1, x ∈ (0, L) ∩ Z, L ≫ 1

u(0) = u(L) = 0

statistics of a independent, identically, distributed
uniformly in (0.2, 1)

L = 50

a
a
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L = 100

L = 500

L = 2000
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L = 100

L = 500

L = 2000
−∇ · ahom∇u = 1

u(0) = u(1) = 0

ahom = 〈a−1〉−1
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Qualitative homogenization result

Kozlov [’79], Papanicolaou & Varadhan [’79]

Suppose 〈·〉 is stationary & ergodic. Then:

∃ unique ahom ∈ R
d×d
sym such that:

Given f0(x̂) consider right-hand side fL(x) = L−2f0(
x
L
), x ∈ Z

d

Solve discrete

Dirichlet problem
:

{
∇∗

a(x)∇uL = fL in x ∈ ([−0, L) ∩ Z)d

uL = 0 outside ([0, L) ∩ Z)d

Solve continuum

Dirichlet problem
:

{
−∇ · ahom∇u0 = f0 in x ∈ [0, 1)d

u0 = 0 outside [0, 1)d

Then limL↑∞ uL(Lx̂) = u0(x̂) almost surely.
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Motivation of this talk: approximation of ahom

...requires quantitative estimates for corrector problem
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Motivation of this talk: approximation of ahom

...requires quantitative estimates for corrector problem

Related, but different:

– homogenization error, i.e. for |uL(L·) − u0(·)|
(Naddaf et al., Conlon et al., ...)

– correlation function in Euclidean field theory
(Naddaf/Spencer, Giacomin/Olla/Spohn,...)
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Formula for ahom

— the periodic case —

Let 〈·〉L be stationary and concentrated on L-periodic coefficients:
∀z ∈ Z

d
a(·+ Lz) = a(·) a. s.



Formula for ahom

— the periodic case —

Let 〈·〉L be stationary and concentrated on L-periodic coefficients:
∀z ∈ Z

d
a(·+ Lz) = a(·) a. s.

We may think about the L-periodic ensemble 〈·〉L as a periodic
approximation of the stationary and ergodic ensemble 〈·〉.



Definition of ahom,L = ahom,L(a)

∀e ∈ R
d : ahom,Le := L−d

∑
x∈[0,L)d a(x)(e +∇ϕ(x))

where ϕ(·) = ϕ(a, ·) is the L-periodic (mean-free) solution to

∇∗
a(x)(e +∇ϕ(x)) = 0 x ∈ [0, L)d
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Definition of ahom,L = ahom,L(a)

∀e ∈ R
d : ahom,Le := L−d

∑
x∈[0,L)d a(x)(e +∇ϕ(x))

where ϕ(·) = ϕ(a, ·) is the L-periodic (mean-free) solution to

∇∗
a(x)(e +∇ϕ(x)) = 0 x ∈ [0, L)d

ϕ is called the corrector associated with a and e

◮ existence and uniqueness by Poincaré’s inequality:
∑

x∈[0,L)d |ϕ(x)|2 . L2
∑

x∈[0,L)d |∇ϕ(x)|2

◮ stationarity: ϕ(a(· + z), ·) = ϕ(a, · + z) for all z ∈ Z
d a.s.
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b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

e
ahome

Intuition of ahom,L:
Given e ∈ R

d and associated ϕ,
consider uL(x) := e · x +ϕ(x). Then

∇∗
a∇uL = 0

average gradient = L−d
∑

x∈[0,L)d

∇uL(x) = e

average flux = L−d
∑

x∈[0,L)d

a(x)∇uL(x) = ahom,Le
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Formal passage L ↑∞ yields:

Def. for stationary corrector ϕ = ϕ(a, x) for 〈·〉 defined by

(i) corrector equation

∇∗
a(x)(e +∇ϕ(a, x)) = 0 for all x ∈ Z

d a.e. a ∈ Ω

(ii) sublinear growth on average

lim
L↑∞

L−d
∑

[0,L)d

∣

∣L−1ϕ(a, x)
∣

∣

2
= 0.

(iii) stationarity
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Formal passage L ↑∞ yields:

Def. for stationary corrector ϕ = ϕ(a, x) for 〈·〉 defined by

(i) corrector equation

∇∗
a(x)(e +∇ϕ(a, x)) = 0 for all x ∈ Z

d a.e. a ∈ Ω

(ii) sublinear growth on average

lim
L↑∞

L−d
∑

[0,L)d

∣

∣L−1ϕ(a, x)
∣

∣

2
= 0.

(iii) stationarity

Def. for homogenized coefficient matrix

ahome = lim
L↑∞

L−d
∑

[0,L)d a(e +∇ϕ)
ergodicity

= 〈a(e +∇ϕ)〉
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Can we directly get existence of stationary corrector for 〈·〉
from existence of periodic corrector by limit L ↑∞ ?
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Can we directly get existence of stationary corrector for 〈·〉
from existence of periodic corrector by limit L ↑∞ ?

No, since Poincaré’s inequality degenerates for L ↑∞:

∑
x∈[0,L)d |ϕ(x)|2 . L2

∑
x∈[0,L)d |∇ϕ(x)|2

In fact, for d 6 2 stationary correctors in general do not exist!
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The corrector equation in L
2
〈·〉

D
∗
a(0)(e + Dφ) = 0 .



From Z
d to Ω by stationarity

Def.: A random field f (a, x) is called stationary, if

∀x, z, a f (a(·+z), x) = f (a, x+z).

Def.: The stationary extension of a random variable F(a) is defined by

F(a, x) := F(a(·+x)).

Z
d

a

z

shift by z

Z
d

a(·+z)
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From Z
d to Ω by stationarity

Def.: A random field f (a, x) is called stationary, if

∀x, z, a f (a(·+z), x) = f (a, x+z).

Def.: The stationary extension of a random variable F(a) is defined by

F(a, x) := F(a(·+x)).

Z
d

a

z

shift by z

Z
d

a(·+z)

random variables
(·)←→ stationary random fields

physical space

(∇i , Z
d)

stationarity
 

probability space

(Di , Ω)
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The horizontal derivative

∇iF(a, x) = F(a, x+ei) − F(a, x)

= F(a(·+ei), x) − F(a, x) =: DiF(a, x),
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The horizontal derivative

∇iF(a, x) = F(a, x+ei) − F(a, x)

= F(a(·+ei), x) − F(a, x) =: DiF(a, x),

Def: Horizontal derivative for F(a)

DiF(a) := F(a(·+ei)) − F(a),

D∗
i F(a) := F(a(·−ei)) − F(a)

Z
d

a

Z
d

a
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Corrector problem in probability

D
∗
a(0)(e + Dφ) = 0
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Corrector problem in probability

D
∗
a(0)(e + Dφ) = 0

Homogenization formula in probability

ahome = 〈a(0)(e + Dφ)〉
e · ahome = inf

F∈L2(Ω)
〈(e + DF) · a(0)(e + DF)〉.
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Does there exists φ s.t. D∗
a(0)(e + Dφ) = 0 ?

Yes if ∃ρ > 0 ∀F 〈(F − 〈F〉)2〉 6 1
ρ
〈|DF |2〉 SG(ρ) for D∗D
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Yes if ∃ρ > 0 ∀F 〈(F − 〈F〉)2〉 6 1
ρ
〈|DF |2〉 SG(ρ) for D∗D

This is the case for the periodic ensemble 〈·〉L.
However, SG(ρL) for D∗D in L2

〈·〉L
degenerates for L ↑∞:

ρL ∼
1

L2
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Does there exists φ s.t. D∗
a(0)(e + Dφ) = 0 ?

Yes if ∃ρ > 0 ∀F 〈(F − 〈F〉)2〉 6 1
ρ
〈|DF |2〉 SG(ρ) for D∗D

This is the case for the periodic ensemble 〈·〉L.
However, SG(ρL) for D∗D in L2

〈·〉L
degenerates for L ↑∞:

ρL ∼
1

L2

Too many variables {a(x)}x∈Zd — too few derivatives D1, . . . Dd .
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Our main assumption (inspired by Naddaf & Spencer [’97]):

Instead of (SG) for D∗D

〈(F − 〈F〉)2〉 .
d∑

i=1

〈(DiF)2〉

assume (SG) for
∑

x∈Zd

(

∂
∂x

)2

〈(F − 〈F〉)2〉 6 1

ρ

∑

x∈Zd

〈

(

∂F

∂x

)2
〉

Z
d

a(x)

x

Z
dx
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Def. vertical derivative

∂F
∂x

:= F − 〈F | {a(y)}y 6=x〉 ∼ ∂F
∂a(x)

...measure how sensitively F depends on a(x).

Basic example

{a(x)}x∈Zd i. i. d. ⇒ SG(ρ) for
∑

x

( ∂
∂x

)2
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Statement of main result



Existence and higher moment bounds

Theorem A [GNO, GO]
i) Let d > 2, suppose SG(ρ) for

∑
x(

∂
∂x

)2. Then

∀q < ∞ 〈φ2q〉 1

2q 6 C (d,λ,ρ, q)

ii) Let d = 2, consider 〈·〉L. Suppose SG(ρ) for
∑

x(
∂
∂x

)2. Then

〈φ2〉
1

2

L 6 C (d,λ,ρ)lnL
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Optimal variance estimate for periodic ensemble

Consider 〈·〉L periodic ensemble and periodic proxy

ahom,L(a) := L−d
∑

x∈[0,L)d

a(x)(e + Dϕ(a, x))

Theorem B [GNO].
Let d > 2, suppose SG(ρ) for

∑
x∈[0,L)d

∂
∂x

. Then

Var〈·〉L

[

ahom,L

]

6 C (d,λ,ρ)L−d
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Optimal variance estimate for periodic ensemble

Consider 〈·〉L periodic ensemble and periodic proxy

ahom,L(a) := L−d
∑

x∈[0,L)d

a(x)(e + Dϕ(a, x))

Theorem B [GNO].
Let d > 2, suppose SG(ρ) for

∑
x∈[0,L)d

∂
∂x

. Then

Var〈·〉L

[

ahom,L

]

6 C (d,λ,ρ)L−d

Remark: ahom,L is spatial average of correlated r.v.
In fact, for 1 − λ≪ 1 and {a(x)}x∈[0,L)d i. i. d. have

Cov〈·〉L

[

a(x)(e +∇ϕ(x)), a(z)(e +∇ϕ(z))
]

∼ ∇2GL(x − z)

Cov〈·〉L

[

ϕ(x), ϕ(z)
]

∼ GL(x − z)

where GL is the L-periodic Green’s function for ∇∗∇.
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Optimal estimate of systematic error

Let 〈·〉∞ be i.i.d. with base measure β, i.e.

〈F〉∞ =

ˆ

Ω

F(a)
∏

x∈Zd

β(da(x)).

Let 〈·〉L be L-periodic and i. i. d. with base measure β, i.e.

〈F〉L =

ˆ

ΩL

F(a)
∏

x∈[0,L)d

β(da(x)).

Theorem C [GNO] Let d > 2. Then

|〈ahom,L〉L − ahom|2 6 C (d,λ,ρ)L−2d

(up to logarithmic corrections for d = 2)
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Optimal estimate of systematic error

Let 〈·〉∞ be i.i.d. with base measure β, i.e.

〈F〉∞ =

ˆ

Ω

F(a)
∏

x∈Zd

β(da(x)).

Let 〈·〉L be L-periodic and i. i. d. with base measure β, i.e.

〈F〉L =

ˆ

ΩL

F(a)
∏

x∈[0,L)d

β(da(x)).

Theorem C [GNO] Let d > 2. Then

|〈ahom,L〉L − ahom|2 6 C (d,λ,ρ)L−2d

(up to logarithmic corrections for d = 2)

combine with 〈|ahom,L − 〈ahom,L〉|2〉 6 C (d,λ,ρ)L−d to get total
L2
〈·〉L

-error.
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Common analytic estimate of the proofs:

optimal decay estimate for the semigroup
exp(−D

∗
a(0)D)



Semigroup representation of φ

u(t) := exp(−tD∗
a(0)D)f , f = −D∗

a(0)e.

then formally φ :=
´∞

0
u(t) dt solves

D∗
a(0)Dφ = −D∗

a(0)e in L
q

〈·〉
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Semigroup representation of φ

u(t) := exp(−tD∗
a(0)D)f , f = −D∗

a(0)e.

then formally φ :=
´∞

0
u(t) dt solves

D∗
a(0)Dφ = −D∗

a(0)e in L
q

〈·〉

This is rigorous as soon as
´∞

0
〈|u(t)|q〉 1

q dt < ∞ !
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Standard:

(SG) for D∗D ⇒ exponential decay of exp(−D∗
a(0)D)

Our estimate:

(SG) for
∑

x

( ∂
∂x

)2 ⇒ algebraic decay of exp(−D∗
a(0)D)

(with optimal rate!)
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Theorem 1 [GNO]: (optimal decay in t)

Let d > 2, suppose SG(ρ) for
∑

x(
∂
∂x

)2. Then for q < ∞ have

〈| exp
(

− tD∗
a(0)D

)

D∗g|2q〉
1

2q

6 C(d,λ,ρ,q) (t + 1)−( d
4
+ 1

2
)





∑

x∈Zd

〈(∂g
∂x

)2q〉
1

2q
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We explain a much simpler situation:

– constant coefficient semigroup D∗D instead of D∗
a(0)D

– initial data f instead of D∗g

– linear exponent p = 2 instead 2q
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We explain a much simpler situation:

– constant coefficient semigroup D∗D instead of D∗
a(0)D

– initial data f instead of D∗g

– linear exponent p = 2 instead 2q

Theorem 2 [GNO]: (optimal decay in t)

Let d > 2, suppose SG(ρ) for
∑

x(
∂
∂x

)2. Then for f with 〈f 〉 =
have

〈| exp
(

− tD∗D
)

f |2〉 1

2 6
1√
ρ





∑

x∈Zd

G2(t, x)





1

2

∑

x∈Zd

〈(∂f
∂x

)2〉 1

2 ,

where G(t, x) denotes the parabolic Green’s function for (∂t+∇∗∇).





∑

x∈Zd

G2(t, x)





1

2

∼ (1+t)−
d
4 ,





∑

x∈Zd

|∇G(t, x)|2





1

2

∼ (1+t)−( d
4
+ 1

2
)
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Argument for Theorem 2:
Set u(t) := exp(−tD∗D)f .
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Argument for Theorem 2:
Set u(t) := exp(−tD∗D)f .

Stationary extension u characterized by parabolic equation
(∂t +∇∗∇)u(t, x) = 0, u(t = 0, x) = f (x)

Green’s representation for u and ∂u
∂y

u(t) =
∑

z∈Zd G(t, z)f (z), ∂u
∂y

(t) =
∑

z∈Zd G(t, z)∂f
∂y

(z)

Spectral gap estimate

〈u2(t)〉 1

2 6
1√
ρ

(∑
y∈Zd 〈(∂u

∂y
(t))2〉

) 1

2

=
1√
ρ

(

∑
y∈Zd

〈

(∑
z∈Zd G(t, z)∂f

∂y
(z)

)2
〉)1

2

stat.
x=y−z
=

1√
ρ

(

∑
y∈Zd

〈

(∑
x∈Zd G(t, y−x)∂f

∂x
(y−x)

)2
〉) 1

2
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(

∑
y∈Zd

〈

(∑
x∈Zd G(t, y−x)∂f

∂x
(y−x)

)2
〉)

1

2

△-inequality

in
(∑

y∈Zd 〈(·)2〉
) 1

2

6
∑

x∈Zd





∑

y∈Zd

〈G2(t, y − x) |
(

∂f
∂x

)

(y − x)|2〉





1

2

G is deterministic,
stationarity
=

∑

x∈Zd





∑

y∈Zd

G2(t, y − x)〈|∂f
∂x

|2〉





1

2

=





∑

y∈Zd

G2(t, y − x)





1

2

∑

x∈Zd

〈|∂f
∂x

|2〉 1

2 .
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Source of difficulty for exp(−tD∗
a(0)D) (Theorem 1)

Instead of representation ∂u
∂y

(t) =
∑

z∈Zd G(t, z)∂f
∂y

(z)

 Duhamel’s formula for divergence form initial data D∗g

∂u(t)

∂y
=

∑

z∈Zd

∇zG(t, a, 0, z) · ∂g

∂y
(z)

+

ˆ t

0

∑

z∈Zd

∇zG(t − s, a, 0, z) · ∂a(z)
∂y
∇zu(s, z) ds.
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Quantitative analysis requires estimates on

|∇xG(t, a, x, y)|p

where G(t, a, x, y) denotes parabolic, non-constant coefficient
Green’s function on Z

d .

need...

– optimal decay in t  (t + 1)−( d
2
+ 1

2
)p

– deterministic, i. e. uniform in a

– exponent p > 2

... can only expect

– averaged in space (with weight)

use: discrete elliptic & parabolic regularity theory
Caccioppoli estimate, Meyers’ estimate, Nash-Aronson, ...
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Future directions

– from scalar to systems (elasticity)

scalar case relies on testing with nonlinear functions |u|p−2u

– from uniform ellipticity
to supercritical percolation

random geometry of percolation cluster
 isoperimetric inequality
 Green’s function estimate

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

have quantitative results for a toy problem

– application to homogenization error
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– A. Gloria & F. Otto. An optimal variance estimate in

stochastic homogenization of discrete elliptic

equations.

Ann. Probab. 2011

– A. Gloria & F. Otto. An optimal error estimate in

stochastic homogenization of discrete elliptic

equations.

Ann. Appl. Probab. 2012

– A. Gloria, S. N. & F. Otto. work in progress

* Quantification of ergodicity in stochastic

homogenization: optimal bounds via spectral gap

on Glauber dynamics.

* Approximation of effective coefficients by

periodization in stochastic homogenization.
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