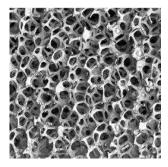
Quantitative estimates in stochastic homogenization

Stefan Neukamm

Max Planck Institute for Mathematics in the Sciences

joint work with Antoine Gloria and Felix Otto

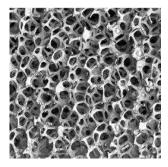
RDS 2012 - Bielefeld



- description by **statistics**
- effective large scale behavior
 - \rightsquigarrow stochastic homogenization
- qualitative theory
 - \rightsquigarrow well-established
 - $\rightsquigarrow~$ formula for effective properties

In practice: Evaluation of formula requires approximation

- only few results; non-optimal estimates for approximation error
- lack of understanding on very basic level



- description by **statistics**
- effective large scale behavior
 - \rightsquigarrow stochastic homogenization
- qualitative theory
 - \rightsquigarrow well-established
 - → formula for effective properties

In practice: Evaluation of formula requires approximation

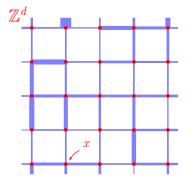
- only few results; non-optimal estimates for approximation error
- lack of understanding on very basic level

Our motivation:

Quantitative methods leading to optimal estimates ...model problem: linear, elliptic, scalar, on \mathbb{Z}^d

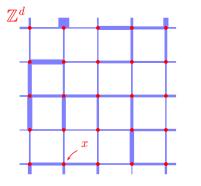
Summary

- Framework: discrete elliptic equation with random coefficients
- Qualitative homogenization
- Homogenization formula and corrector periodic case
- Corrector equation in probality space
- Main results
- A decay estimate for a diffusion semigroup



 $\nabla^* \boldsymbol{a}(x) \nabla u(x) = f(x)$ **Coefficient field** $\boldsymbol{a} : \mathbb{Z}^d \to \mathbb{R}^{d \times d}_{\mathrm{diag},\lambda}$ $0 < \lambda \leqslant \boldsymbol{a}(x) \leqslant 1$

(uniform ellipticity)



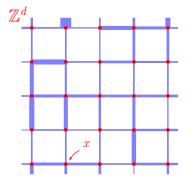
 $\nabla^* \mathbf{a}(x) \nabla u(x) = f(x)$ **Coefficient field** $\mathbf{a} : \mathbb{Z}^d \to \mathbb{R}^{d \times d}_{\mathrm{diag},\lambda}$ $0 < \lambda \leqslant \mathbf{a}(x) \leqslant 1$ (uniform ellipticity)

Lattice \mathbb{Z}^d sites x, y, coord. directions e_1, \ldots, e_d

Gradient ∇

 $\nabla u = (\nabla_1 u, \dots, \nabla_d u), \quad \nabla_i u(x) = u(x+e_i) - u(x)$

(negative) **Divergence** ∇^* (= ℓ^2 -adjoint of ∇) $\nabla^* g = \nabla_1^* g_1 + \ldots + \nabla_d^* g_d$, $\nabla_i^* g_i(x) = g(x - e_i) - g(x)$.



 $\nabla^* \boldsymbol{a}(x) \nabla u(x) = f(x)$

Coefficient field

$$\boldsymbol{a} \, : \, \mathbb{Z}^d o \mathbb{R}^{d imes d}_{\mathrm{diag}, \lambda}$$

 $0 < \lambda \leqslant \boldsymbol{a}(x) \leqslant 1$

(uniform ellipticity)

Random coefficients

$$\Omega := (\mathbb{R}^{d imes d}_{\mathrm{diag}, \lambda})^{(\mathbb{Z}^d)}$$

= space of coefficient fields

- $\left\langle \cdot \right\rangle ~=~ \text{probability measure on } \Omega$
 - = "the ensemble"

Behavior in the large ~> stochastic homogenization

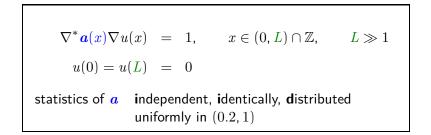
Simplest setting: $\{a(x)\}_{x \in \mathbb{Z}^d}$ are independent and identically distributed according to a random variable A

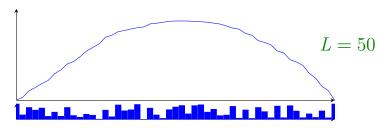
Most general setting: $\langle \cdot \rangle$ is stationary and ergodic **Stationarity:** $\forall z \in \mathbb{Z}^d$: $a(\cdot)$ and $a(\cdot + z)$ have same distribution

Ergodicity: If $\forall z \in \mathbb{Z}^d$ $F(a(\cdot + z)) = F(a)$ then $F = \langle F \rangle$ a. s.

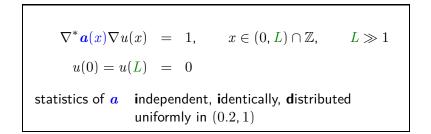
Qualitative homogenization

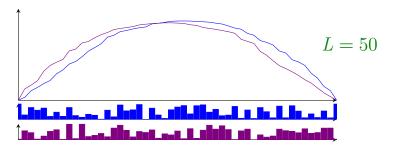
Numerical simulation - 1d, Dirichlet problem



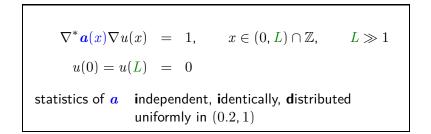


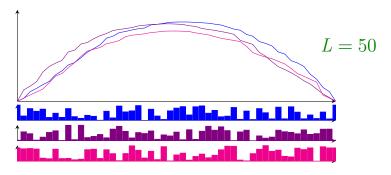
Numerical simulation - 1d, Dirichlet problem

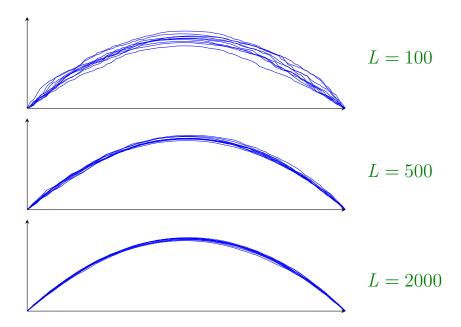


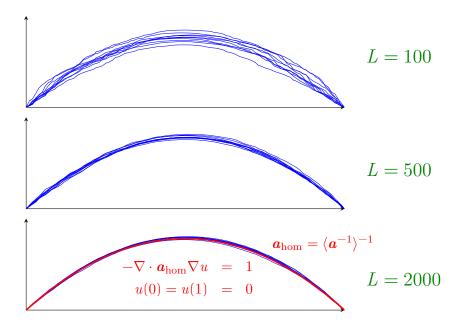


Numerical simulation - 1d, Dirichlet problem









Qualitative homogenization result

Kozlov ['79], Papanicolaou & Varadhan ['79]

Suppose $\langle \cdot \rangle$ is stationary & ergodic. Then: \exists unique $\mathbf{a}_{\text{hom}} \in \mathbb{R}^{d \times d}_{\text{sym}}$ such that: Given $f_0(\hat{x})$ consider right-hand side $f_L(x) = L^{-2} f_0(\frac{x}{L}), x \in \mathbb{Z}^d$

Solve discrete Dirichlet problem : $\begin{cases} \nabla^* a(x) \nabla u_L = f_L & \text{in } x \in ([-0, L) \cap \mathbb{Z})^d \\ u_L = 0 & \text{outside } ([0, L) \cap \mathbb{Z})^d \end{cases}$ Solve continuum Dirichlet problem : $\begin{cases} -\nabla \cdot \boldsymbol{a}_{\text{hom}} \nabla u_0 = f_0 & \text{in } x \in [0, 1)^d \\ u_0 = 0 & \text{outside } [0, 1)^d \end{cases}$

Then $\lim_{L\uparrow\infty} u_L(L\hat{x}) = u_0(\hat{x})$ almost surely.

Motivation of this talk: approximation of a_{hom} requires quantitative estimates for corrector problem

Motivation of this talk: approximation of a_{hom} ...requires quantitative estimates for corrector problem

Related, but different:

- homogenization error, i.e. for $|u_L(L \cdot) u_0(\cdot)|$ (Naddaf et al., Conlon et al., ...)
- correlation function in Euclidean field theory (Naddaf/Spencer, Giacomin/Olla/Spohn,...)

Formula for **a**_{hom}

Formula for a_{hom} — the periodic case —

Let $\langle \cdot \rangle_L$ be stationary and concentrated on *L*-periodic coefficients: $\forall z \in \mathbb{Z}^d \quad a(\cdot + Lz) = a(\cdot)$ a. s. Formula for a_{hom} — the periodic case —

Let $\langle \cdot \rangle_L$ be stationary and concentrated on *L*-periodic coefficients: $\forall z \in \mathbb{Z}^d \quad a(\cdot + Lz) = a(\cdot)$ a. s.

We may think about the *L*-periodic ensemble $\langle \cdot \rangle_L$ as a **periodic approximation** of the stationary and ergodic ensemble $\langle \cdot \rangle$.

Definition of $\mathbf{a}_{\text{hom},L} = \mathbf{a}_{\text{hom},L}(\mathbf{a})$

$$\forall e \in \mathbb{R}^d$$
: $\boldsymbol{a}_{\text{hom},L} e := L^{-d} \sum_{x \in [0,L)^d} \boldsymbol{a}(x) (e + \nabla \varphi(x))$

where $\varphi(\cdot) = \varphi(a, \cdot)$ is the *L*-periodic (mean-free) solution to

$$\nabla^* \boldsymbol{a}(x)(\boldsymbol{e} + \nabla \boldsymbol{\varphi}(x)) = 0 \qquad x \in [0, L)^d$$

Definition of $a_{\text{hom},L} = a_{\text{hom},L}(a)$ $\forall e \in \mathbb{R}^d$: $a_{\text{hom},L}e := L^{-d} \sum_{x \in [0,L)^d} a(x)(e + \nabla \varphi(x))$ where $\varphi(\cdot) = \varphi(a, \cdot)$ is the *L*-periodic (mean-free) solution to $\nabla^* a(x)(e + \nabla \varphi(x)) = 0$ $x \in [0,L)^d$

 ϕ is called the corrector associated with a and e

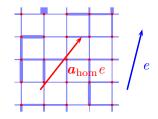
Definition of $\boldsymbol{a}_{\text{hom},L} = \boldsymbol{a}_{\text{hom},L}(\boldsymbol{a})$ $\forall e \in \mathbb{R}^d$: $\boldsymbol{a}_{\text{hom},L}e := L^{-d} \sum_{x \in [0,L)^d} \boldsymbol{a}(x)(e + \nabla \varphi(x))$ where $\varphi(\cdot) = \varphi(\boldsymbol{a}, \cdot)$ is the *L*-periodic (mean-free) solution to $\nabla^* \boldsymbol{a}(x)(e + \nabla \varphi(x)) = 0$ $x \in [0,L)^d$

 ϕ is called the **corrector** associated with ${m a}$ and e

- existence and uniqueness by Poincaré's inequality: $\sum_{x \in [0,L)^d} |\varphi(x)|^2 \lesssim L^2 \sum_{x \in [0,L)^d} |\nabla \varphi(x)|^2$
- ► stationarity: $\varphi(a(\cdot + z), \cdot) = \varphi(a, \cdot + z)$ for all $z \in \mathbb{Z}^d$ a.s.

Intuition of $a_{\text{hom},L}$: Given $e \in \mathbb{R}^d$ and associated φ , consider $u_L(x) := e \cdot x + \varphi(x)$. Then

 $\nabla^* \boldsymbol{a} \nabla u_L = 0$



average gradient =
$$L^{-d} \sum_{x \in [0,L)^d} \nabla u_L(x) = e$$

average flux = $L^{-d} \sum_{x \in [0,L)^d} a(x) \nabla u_L(x) = a_{\text{hom},L} e$

Formal passage $L \uparrow \infty$ yields:

Def. for stationary corrector $\varphi = \varphi(a, x)$ for $\langle \cdot \rangle$ defined by (i) corrector equation $\nabla^* a(x)(e + \nabla \varphi(a, x)) = 0$ for all $x \in \mathbb{Z}^d$ a.e. $a \in \Omega$ (ii) sublinear growth on average $\lim_{L \uparrow \infty} L^{-d} \sum_{[0,L)^d} |L^{-1}\varphi(a, x)|^2 = 0.$ (iii) stationarity Formal passage $L \uparrow \infty$ yields:

Def. for stationary corrector $\varphi = \varphi(a, x)$ for $\langle \cdot \rangle$ defined by corrector equation $\nabla^* \boldsymbol{a}(x)(\boldsymbol{e} + \nabla \boldsymbol{\varphi}(\boldsymbol{a}, x)) = 0$ for all $x \in \mathbb{Z}^d$ a.e. $\boldsymbol{a} \in \Omega$ (ii) sublinear growth on average $\lim_{L \uparrow \infty} L^{-d} \sum_{[0,L)^d} |L^{-1} \varphi(a, x)|^2 = 0.$ (iii) stationarity

Def. for **homogenized coefficient matrix** $\boldsymbol{a}_{\text{hom}} \boldsymbol{e} = \lim_{L \uparrow \infty} L^{-d} \sum_{[0,L)^d} \boldsymbol{a}(\boldsymbol{e} + \nabla \boldsymbol{\varphi}) \stackrel{\text{ergodicity}}{=} \langle \boldsymbol{a}(\boldsymbol{e} + \nabla \boldsymbol{\varphi}) \rangle$ Can we directly get existence of stationary corrector for $\langle \cdot \rangle$ from existence of periodic corrector by limit $L \uparrow \infty$? Can we directly get existence of stationary corrector for $\langle \cdot \rangle$ from existence of periodic corrector by limit $L \uparrow \infty$?

No, since Poincaré's inequality degenerates for $L \uparrow \infty$:

$$\sum_{x \in [0,L)^d} |\varphi(x)|^2 \lesssim L^2 \sum_{x \in [0,L)^d} |\nabla \varphi(x)|^2$$

Can we directly get existence of stationary corrector for $\langle \cdot \rangle$ from existence of periodic corrector by limit $L \uparrow \infty$?

No, since Poincaré's inequality degenerates for $L \uparrow \infty$:

$$\sum_{x \in [0,L)^d} |\varphi(x)|^2 \lesssim L^2 \sum_{x \in [0,L)^d} |\nabla \varphi(x)|^2$$

In fact, for $d \leq 2$ stationary correctors in general do not exist!

The corrector equation in $L^2_{\langle\cdot\rangle}$ $D^* a(0)(e + D \Phi) = 0$. From \mathbb{Z}^d to Ω by stationarity

Def.: A random field f(a, x) is called **stationary**, if

$$\forall x, z, a \quad f(a(\cdot + z), x) = f(a, x + z).$$

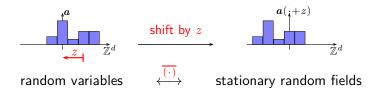
Def.: The stationary extension of a random variable F(a) is defined by $\overline{F}(a, x) := F(a(\cdot + x)).$

From \mathbb{Z}^d to Ω by stationarity

Def.: A random field f(a, x) is called **stationary**, if

$$\forall x, z, a \quad f(a(\cdot + z), x) = f(a, x + z).$$

Def.: The stationary extension of a random variable F(a) is defined by $\overline{F}(a, x) := F(a(\cdot + x)).$

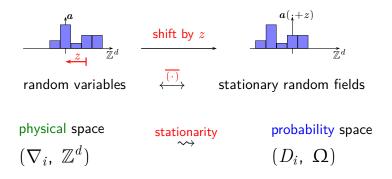


From \mathbb{Z}^d to Ω by stationarity

Def.: A random field f(a, x) is called **stationary**, if

$$\forall x, z, a \quad f(a(\cdot + z), x) = f(a, x + z).$$

Def.: The stationary extension of a random variable F(a) is defined by $\overline{F}(a, x) := F(a(\cdot + x)).$

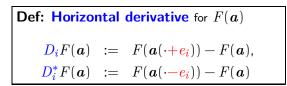


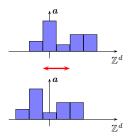
The horizontal derivative

$$\begin{aligned} \nabla_i \overline{F}(\boldsymbol{a}, \boldsymbol{x}) &= \overline{F}(\boldsymbol{a}, \boldsymbol{x} + \boldsymbol{e_i}) - \overline{F}(\boldsymbol{a}, \boldsymbol{x}) \\ &= \overline{F}(\boldsymbol{a}(\cdot + \boldsymbol{e_i}), \boldsymbol{x}) - \overline{F}(\boldsymbol{a}, \boldsymbol{x}) =: \overline{D_i F}(\boldsymbol{a}, \boldsymbol{x}), \end{aligned}$$

The horizontal derivative

$$\begin{split} \nabla_i \overline{F}(\boldsymbol{a}, x) &= \overline{F}(\boldsymbol{a}, x + \boldsymbol{e_i}) - \overline{F}(\boldsymbol{a}, x) \\ &= \overline{F}(\boldsymbol{a}(\cdot + \boldsymbol{e_i}), x) - \overline{F}(\boldsymbol{a}, x) =: \overline{D_i F}(\boldsymbol{a}, x) \end{split}$$





Corrector problem in probability

$$D^*\boldsymbol{a}(0)(e+D\boldsymbol{\phi})=0$$

Corrector problem in probability

$$D^*\boldsymbol{a}(0)(e+D\boldsymbol{\phi})=0$$

Homogenization formula in probability

$$\boldsymbol{a}_{\text{hom}} e = \langle \boldsymbol{a}(0)(e+D\varphi) \rangle$$
$$e \cdot \boldsymbol{a}_{\text{hom}} e = \inf_{F \in L^2(\Omega)} \langle (e+DF) \cdot \boldsymbol{a}(0)(e+DF) \rangle.$$

Does there exists ϕ s.t. $D^* a(0)(e + D\phi) = 0$?

Yes if
$$\exists \rho > 0 \ \forall F \ \langle (F - \langle F \rangle)^2 \rangle \leq \frac{1}{\rho} \langle |DF|^2 \rangle$$

 $SG(\rho)$ for D^*D

Does there exists ϕ s.t. $D^* a(0)(e + D\phi) = 0$?

Yes if
$$\exists \rho > 0 \ \forall F \quad \langle (F - \langle F \rangle)^2 \rangle \leq \frac{1}{\rho} \langle |DF|^2 \rangle$$

 $SG(\rho)$ for D^*D

This is the case for the **periodic ensemble** $\langle \cdot \rangle_L$. However, $SG(\rho_L)$ for D^*D in $L^2_{\langle \cdot \rangle_L}$ degenerates for $L \uparrow \infty$:

$$\rho_L \sim \frac{1}{L^2}$$

Does there exists ϕ s.t. $D^* a(0)(e + D\phi) = 0$?

Yes if
$$\exists \rho > 0 \ \forall F \quad \langle (F - \langle F \rangle)^2 \rangle \leq \frac{1}{\rho} \langle |DF|^2 \rangle$$

 $SG(\rho)$ for D^*D

This is the case for the **periodic ensemble** $\langle \cdot \rangle_L$. However, $SG(\rho_L)$ for D^*D in $L^2_{\langle \cdot \rangle_L}$ degenerates for $L \uparrow \infty$:

$$\rho_L \sim \frac{1}{L^2}$$

Too many variables $\{a(x)\}_{x\in\mathbb{Z}^d}$ — too few derivatives $D_1, \ldots D_d$.

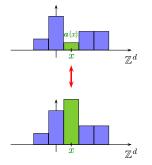
Our main assumption (inspired by Naddaf & Spencer ['97]):

Instead of (SG) for D^*D

$$\langle (F-\langle F\rangle)^2\rangle \lesssim \sum_{i=1}^d \langle (D_iF)^2\rangle$$

assume (SG) for
$$\sum_{x \in \mathbb{Z}^d} \left(\frac{\partial}{\partial x}\right)^2$$

 $\langle (F - \langle F \rangle)^2 \rangle \leqslant \frac{1}{\rho} \sum_{x \in \mathbb{Z}^d} \left\langle \left(\frac{\partial F}{\partial x}\right)^2 \right\rangle$



Def. vertical derivative $\frac{\partial F}{\partial x} := F - \langle F | \{ a(y) \}_{y \neq x} \rangle \sim \frac{\partial F}{\partial a(x)}$...measure how sensitively *F* depends on *a*(*x*).

Basic example

$$\{a(x)\}_{x\in\mathbb{Z}^d}$$
 i. i. d. $\Rightarrow SG(\rho)$ for $\sum_x (\frac{\partial}{\partial x})^2$

Statement of main result

Existence and higher moment bounds

Theorem A [GNO, GO] i) Let d > 2, suppose $SG(\rho)$ for $\sum_{x} (\frac{\partial}{\partial x})^{2}$. Then $\forall q < \infty \quad \langle \Phi^{2q} \rangle^{\frac{1}{2q}} \leqslant C(d, \lambda, \rho, q)$ ii) Let d = 2, consider $\langle \cdot \rangle_{L}$. Suppose $SG(\rho)$ for $\sum_{x} (\frac{\partial}{\partial x})^{2}$. Then $\langle \Phi^{2} \rangle_{L}^{\frac{1}{2}} \leqslant C(d, \lambda, \rho) \ln L$

Optimal variance estimate for periodic ensemble

Consider $\langle \cdot \rangle_L$ periodic ensemble and periodic proxy

$$\boldsymbol{a}_{\text{hom},L}(\boldsymbol{a}) := L^{-d} \sum_{x \in [0,L)^d} \boldsymbol{a}(x)(e + D\varphi(\boldsymbol{a}, x))$$

Theorem B [GNO]. Let $d \ge 2$, suppose $SG(\rho)$ for $\sum_{x \in [0,L)^d} \frac{\partial}{\partial x}$. Then

$$\operatorname{Var}_{\langle \cdot \rangle_L} \left[\boldsymbol{a}_{\operatorname{hom},L} \right] \leqslant C(d,\lambda,\rho) L^{-\boldsymbol{d}}$$

Optimal variance estimate for periodic ensemble

Consider $\langle \cdot \rangle_L$ periodic ensemble and periodic proxy

$$\boldsymbol{a}_{\mathrm{hom},L}(\boldsymbol{a}) := L^{-d} \sum_{x \in [0,L)^d} \boldsymbol{a}(x)(e + D\varphi(\boldsymbol{a}, x))$$

Theorem B [GNO]. Let $d \ge 2$, suppose $SG(\rho)$ for $\sum_{x \in [0,L)^d} \frac{\partial}{\partial x}$. Then

$$\operatorname{Var}_{\langle \cdot \rangle_L} \left[\boldsymbol{a}_{\operatorname{hom},L} \right] \leqslant C(d,\lambda,\rho) L^{-d}$$

Remark: $a_{\text{hom},L}$ is spatial average of correlated r.v. In fact, for $1 - \lambda \ll 1$ and $\{a(x)\}_{x \in [0,L)^d}$ i. i. d. have

$$\begin{split} &\operatorname{Cov}_{\langle\cdot\rangle_L}\left[\,\boldsymbol{a}(x)(\boldsymbol{e}+\nabla\varphi(x)),\,\boldsymbol{a}(z)(\boldsymbol{e}+\nabla\varphi(z))\,\right] \sim \nabla^2 G_L(x-z)\\ &\operatorname{Cov}_{\langle\cdot\rangle_L}\left[\,\varphi(x),\,\,\varphi(z)\,\right] \sim G_L(x-z) \end{split}$$

where G_L is the *L*-periodic Green's function for $\nabla^* \nabla$.

Optimal estimate of systematic error

Let $\langle \cdot \rangle_{\infty}$ be i.i.d. with base measure β , i.e.

$$\langle F \rangle_{\infty} = \int_{\Omega} F(\boldsymbol{a}) \prod_{\boldsymbol{x} \in \mathbb{Z}^d} \beta(d\boldsymbol{a}(\boldsymbol{x})).$$

Let $\langle \cdot \rangle_L$ be *L*-periodic and i. i. d. with base measure β , i.e.

$$\langle F \rangle_L = \int_{\Omega_L} F(\boldsymbol{a}) \prod_{x \in [0,L)^d} \beta(d\boldsymbol{a}(x)).$$

Theorem C [GNO] Let $d \ge 2$. Then

$$|\langle \boldsymbol{a}_{\mathrm{hom},L} \rangle_L - \boldsymbol{a}_{\mathrm{hom}}|^2 \leqslant C(d,\lambda,\rho)L^{-2d}$$

(up to logarithmic corrections for d = 2)

Optimal estimate of systematic error

Let $\langle \cdot \rangle_{\infty}$ be i.i.d. with base measure β , i.e.

$$\langle F \rangle_{\infty} = \int_{\Omega} F(\boldsymbol{a}) \prod_{\boldsymbol{x} \in \mathbb{Z}^d} \beta(d\boldsymbol{a}(\boldsymbol{x})).$$

Let $\langle \cdot \rangle_L$ be *L*-periodic and i. i. d. with base measure β , i.e.

$$\langle F \rangle_L = \int_{\Omega_L} F(\boldsymbol{a}) \prod_{x \in [0,L)^d} \beta(d\boldsymbol{a}(x)).$$

Theorem C [GNO] Let $d \ge 2$. Then

$$|\langle \boldsymbol{a}_{\mathrm{hom},L} \rangle_L - \boldsymbol{a}_{\mathrm{hom}}|^2 \leqslant C(d,\lambda,\rho)L^{-2d}$$

(up to logarithmic corrections for d = 2)

combine with $\langle |\mathbf{a}_{\mathrm{hom},L} - \langle \mathbf{a}_{\mathrm{hom},L} \rangle |^2 \rangle \leqslant C(d,\lambda,\rho)L^{-d}$ to get total $L^2_{\langle \cdot \rangle_L}$ -error.

Common analytic estimate of the proofs: optimal decay estimate for the semigroup $\exp(-D^*a(0)D)$

Semigroup representation of $\boldsymbol{\varphi}$

$$u(t) := \exp(-tD^* a(0)D)f, \qquad f = -D^* a(0)e.$$

then formally $\phi := \int_0^\infty u(t) dt$ solves

$$D^* \boldsymbol{a}(0) D \boldsymbol{\phi} = -D^* \boldsymbol{a}(0) e$$
 in $L^q_{\langle \cdot \rangle}$

Semigroup representation of $\boldsymbol{\varphi}$

$$u(t) := \exp(-tD^*a(0)D)f, \qquad f = -D^*a(0)e.$$

then formally $\phi := \int_0^\infty u(t) dt$ solves

$$D^* a(0) D \phi = -D^* a(0) e$$
 in $L^q_{\langle \cdot \rangle}$

This is rigorous as soon as $\int_0^\infty \langle |u(t)|^q \rangle^{\frac{1}{q}} dt < \infty$!

Standard:

(SG) for $D^*D \Rightarrow$ exponential decay of $\exp(-D^*a(0)D)$

Our estimate:

(SG) for $\sum_{x} (\frac{\partial}{\partial x})^2 \Rightarrow$ algebraic decay of $\exp(-D^* a(0)D)$

(with optimal rate!)

Theorem 1 [GNO]: (optimal decay in t) Let $d \ge 2$, suppose $SG(\rho)$ for $\sum_{x} (\frac{\partial}{\partial x})^2$. Then for $q < \infty$ have $\langle |\exp(-tD^*a(0)D)D^*g|^{2q}\rangle^{\frac{1}{2q}}$ $\leqslant C_{(d,\lambda,\rho,q)}(t+1)^{-(\frac{d}{4}+\frac{1}{2})}\left(\sum_{x\in\mathbb{Z}^d}\langle (\frac{\partial g}{\partial x})^{2q}\rangle^{\frac{1}{2q}}\right)$ We explain a much simpler situation:

- constant coefficient semigroup D^*D instead of $D^*a(0)D$
- initial data f instead of $D^{\ast}g$
- linear exponent p = 2 instead 2q

We explain a much simpler situation:

- constant coefficient semigroup D^*D instead of $D^*a(0)D$
- initial data f instead of $D^{\ast}g$
- linear exponent p = 2 instead 2q

Theorem 2 [GNO]: (optimal decay in *t*) Let $d \ge 2$, suppose $SG(\rho)$ for $\sum_{x} (\frac{\partial}{\partial x})^2$. Then for *f* with $\langle f \rangle =$ have

$$\langle |\exp(-tD^*D)f|^2 \rangle^{\frac{1}{2}} \leqslant \frac{1}{\sqrt{\rho}} \left(\sum_{x \in \mathbb{Z}^d} G^2(t,x) \right)^{\frac{1}{2}} \sum_{x \in \mathbb{Z}^d} \langle (\frac{\partial f}{\partial x})^2 \rangle^{\frac{1}{2}},$$

where G(t, x) denotes the parabolic Green's function for $(\partial_t + \nabla^* \nabla)$.

$$\left(\sum_{x\in\mathbb{Z}^d} G^2(t,x)\right)^{\frac{1}{2}} \sim (1+t)^{-\frac{d}{4}}, \quad \left(\sum_{x\in\mathbb{Z}^d} |\nabla G(t,x)|^2\right)^{\frac{1}{2}} \sim (1+t)^{-(\frac{d}{4}+\frac{1}{2})}$$

Stationary extension \overline{u} characterized by parabolic equation $(\partial_t + \nabla^* \nabla) \overline{u}(t, x) = 0, \qquad \overline{u}(t = 0, x) = \overline{f}(x)$

Stationary extension \overline{u} characterized by parabolic equation $(\partial_t + \nabla^* \nabla) \overline{u}(t, x) = 0, \qquad \overline{u}(t = 0, x) = \overline{f}(x)$

Green's representation for u and $\frac{\partial u}{\partial y}$ $u(t) = \sum_{z \in \mathbb{Z}^d} G(t, z)\overline{f}(z), \qquad \frac{\partial u}{\partial y}(t) = \sum_{z \in \mathbb{Z}^d} G(t, z) \frac{\partial \overline{f}}{\partial y}(z)$

Stationary extension \overline{u} characterized by parabolic equation $(\partial_t + \nabla^* \nabla) \overline{u}(t, x) = 0, \qquad \overline{u}(t = 0, x) = \overline{f}(x)$

Green's representation for u and $\frac{\partial u}{\partial y}$ $u(t) = \sum_{z \in \mathbb{Z}^d} G(t, z)\overline{f}(z), \qquad \frac{\partial u}{\partial y}(t) = \sum_{z \in \mathbb{Z}^d} G(t, z) \frac{\partial \overline{f}}{\partial y}(z)$

Spectral gap estimate

$$\begin{split} \langle u^{2}(t) \rangle^{\frac{1}{2}} &\leqslant \quad \frac{1}{\sqrt{\rho}} \left(\sum_{y \in \mathbb{Z}^{d}} \langle \left(\frac{\partial u}{\partial y}(t) \right)^{2} \rangle \right)^{\frac{1}{2}} \\ &= \quad \frac{1}{\sqrt{\rho}} \left(\sum_{y \in \mathbb{Z}^{d}} \left\langle \left(\sum_{z \in \mathbb{Z}^{d}} G(t, z) \frac{\partial \overline{f}}{\partial y}(z) \right)^{2} \right\rangle \right)^{\frac{1}{2}} \\ &\stackrel{\text{stat.}}{=} \quad \frac{1}{\sqrt{\rho}} \left(\sum_{y \in \mathbb{Z}^{d}} \left\langle \left(\sum_{x \in \mathbb{Z}^{d}} G(t, y - x) \frac{\overline{\partial f}}{\partial x}(y - x) \right)^{2} \right\rangle \right)^{\frac{1}{2}} \end{split}$$

$$\begin{split} & \left(\sum_{y \in \mathbb{Z}^d} \left\langle \left(\sum_{x \in \mathbb{Z}^d} G(t, y - x) \overline{\frac{\partial f}{\partial x}}(y - x)\right)^2 \right\rangle \right)^{\frac{1}{2}} \\ & \stackrel{\text{(b)}}{\stackrel{\text{(b)}}{\stackrel{\text{(c)}}{\stackrel{(c)}}{\stackrel{(c)}}{\stackrel{(c)}}{\stackrel{(c)}}\stackrel{\text{(c)}}{\stackrel{(c)}}{\stackrel{(c)}}{\stackrel{(c)}}{\stackrel{(c)}}{\stackrel{(c)}}\stackrel{(c)}{\stackrel{(c)}}}{\stackrel{(c)}}{\stackrel{(c)}}{\stackrel{(c)}}{\stackrel{(c)}}{\stackrel{(c)}}{\stackrel{(c)}}{\stackrel{(c)}}{\stackrel{(c)}}{\stackrel{(c)}}}{\stackrel{(c)}}{\stackrel{(c)}}{\stackrel{(c)}}{\stackrel{(c)}}{\stackrel{(c)}}{\stackrel{(c)}}}{\stackrel{(c)}}{\stackrel{($$

Source of difficulty for $\exp(-tD^*a(0)D)$ (Theorem 1) Instead of representation $\frac{\partial u}{\partial y}(t) = \sum_{z \in \mathbb{Z}^d} G(t, z) \frac{\partial \overline{f}}{\partial y}(z)$

 \rightsquigarrow Duhamel's formula for divergence form initial data D^*g

$$\begin{aligned} \frac{\partial u(t)}{\partial y} &= \sum_{z \in \mathbb{Z}^d} \nabla_z G(t, \boldsymbol{a}, 0, z) \cdot \frac{\partial \overline{g}}{\partial y}(z) \\ &+ \int_0^t \sum_{z \in \mathbb{Z}^d} \nabla_z G(t - s, \boldsymbol{a}, 0, z) \cdot \frac{\partial a(z)}{\partial y} \nabla_z \overline{u}(s, z) \, ds. \end{aligned}$$

Quantitative analysis requires estimates on

 $|\nabla_x G(t, \mathbf{a}, x, y)|^p$

where $G(t, \mathbf{a}, x, y)$ denotes parabolic, non-constant coefficient Green's function on \mathbb{Z}^d .

need...

- optimal decay in $t \rightsquigarrow (t+1)^{-(\frac{d}{2}+\frac{1}{2})p}$
- deterministic, i. e. uniform in a
- exponent p>2
- ... can only expect
 - averaged in space (with weight)

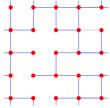
use: discrete elliptic & parabolic regularity theory Caccioppoli estimate, Meyers' estimate, Nash-Aronson, ...

Future directions

from scalar to systems (elasticity)

scalar case relies on testing with nonlinear functions $|u|^{p-2}u$

from uniform ellipticity
 to supercritical percolation
 random geometry of percolation cluster
 → isoperimetric inequality
 → Green's function estimate



have quantitative results for a toy problem

- application to homogenization error

 A. Gloria & F. Otto. An optimal variance estimate in stochastic homogenization of discrete elliptic equations.

Ann. Probab. 2011

 A. Gloria & F. Otto. An optimal error estimate in stochastic homogenization of discrete elliptic equations.

Ann. Appl. Probab. 2012

- A. Gloria, S. N. & F. Otto. work in progress
 - * Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics.
 - * Approximation of effective coefficients by periodization in stochastic homogenization.