A new non-Markovian approach to weak convergence for SPDEs

Adam Andersson
Joint work with
Raphael Kruse and Stig Larsson

Mathematical Sciences
Chalmers University of Technology
Göteborg, Sweden

Sixth Workshop on Random Dynamical Systems, Bielefeld
2 Nov, 2013

Outline

- Stochastic integration in Hilbert space,

Outline

- Stochastic integration in Hilbert space,
- Malliavin calculus,

Outline

- Stochastic integration in Hilbert space,
- Malliavin calculus,
- Weak convergence,

Outline

- Stochastic integration in Hilbert space,
- Malliavin calculus,
- Weak convergence,
- Strong convergence in a dual Watanabe-Sobolev norm.

Cylindrical Q-Wiener process

H, separable Hilbert space $\left(H=L_{2}(\mathrm{D}), \mathrm{D} \subset \mathbf{R}^{d}\right)$,

Cylindrical Q-Wiener process

H, separable Hilbert space $\left(H=L_{2}(\mathrm{D}), \mathrm{D} \subset \mathbf{R}^{d}\right)$,
$Q \in \mathcal{L}(H)$ self-adjoint and positive semi-definite covariance operator,

Cylindrical Q-Wiener process

H, separable Hilbert space $\left(H=L_{2}(\mathrm{D}), \mathrm{D} \subset \mathbf{R}^{d}\right)$,
$Q \in \mathcal{L}(H)$ self-adjoint and positive semi-definite covariance operator, $U_{0}=Q^{\frac{1}{2}}(H)$, Hilbert space with $\langle u, v\rangle_{0}=\left\langle Q^{-\frac{1}{2}} u, Q^{-\frac{1}{2}} v\right\rangle_{H}, u, v \in U_{0}$,

Cylindrical Q-Wiener process

H, separable Hilbert space $\left(H=L_{2}(\mathrm{D}), \mathrm{D} \subset \mathbf{R}^{d}\right)$,
$Q \in \mathcal{L}(H)$ self-adjoint and positive semi-definite covariance operator, $U_{0}=Q^{\frac{1}{2}}(H)$, Hilbert space with $\langle u, v\rangle_{0}=\left\langle Q^{-\frac{1}{2}} u, Q^{-\frac{1}{2}} v\right\rangle_{H}, u, v \in U_{0}$,

An operator I: $L_{2}\left([0, T], U_{0}\right) \rightarrow L_{2}(\Omega)$ is said to be an isonormal process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, if

Cylindrical Q-Wiener process

H, separable Hilbert space $\left(H=L_{2}(\mathrm{D}), \mathrm{D} \subset \mathbf{R}^{d}\right)$,
$Q \in \mathcal{L}(H)$ self-adjoint and positive semi-definite covariance operator, $U_{0}=Q^{\frac{1}{2}}(H)$, Hilbert space with $\langle u, v\rangle_{0}=\left\langle Q^{-\frac{1}{2}} u, Q^{-\frac{1}{2}} v\right\rangle_{H}, u, v \in U_{0}$,

An operator I: $L_{2}\left([0, T], U_{0}\right) \rightarrow L_{2}(\Omega)$ is said to be an isonormal process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, if

- $I(\phi) \sim N\left(0,\|\phi\|_{L_{2}\left([0, T], U_{0}\right)}\right), \quad \forall \phi \in L_{2}\left([0, T], U_{0}\right)$,

Cylindrical Q-Wiener process

H, separable Hilbert space $\left(H=L_{2}(\mathrm{D}), \mathrm{D} \subset \mathbf{R}^{d}\right)$,
$Q \in \mathcal{L}(H)$ self-adjoint and positive semi-definite covariance operator, $U_{0}=Q^{\frac{1}{2}}(H)$, Hilbert space with $\langle u, v\rangle_{0}=\left\langle Q^{-\frac{1}{2}} u, Q^{-\frac{1}{2}} v\right\rangle_{H}, u, v \in U_{0}$,

An operator I: $L_{2}\left([0, T], U_{0}\right) \rightarrow L_{2}(\Omega)$ is said to be an isonormal process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, if

- $I(\phi) \sim N\left(0,\|\phi\|_{L_{2}\left([0, T], U_{0}\right)}\right), \quad \forall \phi \in L_{2}\left([0, T], U_{0}\right)$,
- $\mathbf{E}[I(\phi) I(\psi)]=\langle\phi, \psi\rangle_{L_{2}\left([0, T], U_{0}\right)}, \quad \forall \phi, \psi \in L_{2}\left([0, T], U_{0}\right)$.

Cylindrical Q-Wiener process

H, separable Hilbert space $\left(H=L_{2}(\mathrm{D}), \mathrm{D} \subset \mathbf{R}^{d}\right)$,
$Q \in \mathcal{L}(H)$ self-adjoint and positive semi-definite covariance operator, $U_{0}=Q^{\frac{1}{2}}(H)$, Hilbert space with $\langle u, v\rangle_{0}=\left\langle Q^{-\frac{1}{2}} u, Q^{-\frac{1}{2}} v\right\rangle_{H}, u, v \in U_{0}$,

An operator I: $L_{2}\left([0, T], U_{0}\right) \rightarrow L_{2}(\Omega)$ is said to be an isonormal process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, if

- $I(\phi) \sim N\left(0,\|\phi\|_{L_{2}\left([0, T], U_{0}\right)}\right), \quad \forall \phi \in L_{2}\left([0, T], U_{0}\right)$,
- $\mathbf{E}[I(\phi) I(\psi)]=\langle\phi, \psi\rangle_{L_{2}\left([0, T], U_{0}\right)}, \quad \forall \phi, \psi \in L_{2}\left([0, T], U_{0}\right)$.

Cylindrical Q-Wiener process

H, separable Hilbert space $\left(H=L_{2}(\mathrm{D}), \mathrm{D} \subset \mathbf{R}^{d}\right)$,
$Q \in \mathcal{L}(H)$ self-adjoint and positive semi-definite covariance operator,
$U_{0}=Q^{\frac{1}{2}}(H)$, Hilbert space with $\langle u, v\rangle_{0}=\left\langle Q^{-\frac{1}{2}} u, Q^{-\frac{1}{2}} v\right\rangle_{H}, u, v \in U_{0}$,
An operator I: $L_{2}\left([0, T], U_{0}\right) \rightarrow L_{2}(\Omega)$ is said to be an isonormal process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, if

- $I(\phi) \sim N\left(0,\|\phi\|_{L_{2}\left([0, T], U_{0}\right)}\right), \quad \forall \phi \in L_{2}\left([0, T], U_{0}\right)$,
- $\mathbf{E}[I(\phi) I(\psi)]=\langle\phi, \psi\rangle_{L_{2}\left([0, T], U_{0}\right)}, \quad \forall \phi, \psi \in L_{2}\left([0, T], U_{0}\right)$.
$W:[0, T] \times U_{0} \rightarrow L_{2}(\Omega)$ cylindrical Q-Wiener process:

$$
W(t) u:=I\left(\chi_{[0, t]} \otimes u\right)=\sum_{i=1}^{\infty}\left\langle u, u_{i}\right\rangle_{0} \beta_{i}(t),
$$

where $\left(u_{i}\right)_{i \in \mathbf{N}} \subset U_{0}$ is an ON -basis and $\left(\beta_{i}\right)_{i \in \mathbf{N}}$ are independent standard Brownian motions.

The H-valued Wiener integral

Wiener integral for simple integrands:

$$
\int_{0}^{T} \chi_{[s, t]} \otimes(h \otimes u) \mathrm{d} W=[(W(t)-W(s)) u] \otimes h \in L_{2}(\Omega) \otimes H=L_{2}(\Omega, H)
$$

Extends directly to linear combinations.

The H-valued Wiener integral

Wiener integral for simple integrands:

$$
\int_{0}^{T} \chi_{[s, t]} \otimes(h \otimes u) \mathrm{d} W=[(W(t)-W(s)) u] \otimes h \in L_{2}(\Omega) \otimes H=L_{2}(\Omega, H)
$$

Extends directly to linear combinations.
Wiener's isometry:

$$
\mathbf{E}\left\|\int_{0}^{T} \phi \mathrm{~d} W\right\|_{H}^{2}=\int_{0}^{T}\|\phi\|_{\mathcal{L}_{2}^{0}}^{2} \mathrm{~d} t
$$

The H-valued Wiener integral

Wiener integral for simple integrands:
$\int_{0}^{T} \chi_{[s, t]} \otimes(h \otimes u) \mathrm{d} W=[(W(t)-W(s)) u] \otimes h \in L_{2}(\Omega) \otimes H=L_{2}(\Omega, H)$
Extends directly to linear combinations.
Wiener's isometry:

$$
\mathbf{E}\left\|\int_{0}^{T} \phi \mathrm{~d} W\right\|_{H}^{2}=\int_{0}^{T}\|\phi\|_{\mathcal{L}_{2}^{0}}^{2} \mathrm{~d} t
$$

By density the integral extends to all of $L_{2}\left([0, T], \mathcal{L}_{2}^{0}\right)$. For stochastic equations driven by additive noise this definition of the integral suffices.

Malliavin calculus

Let $C_{p}^{\infty}\left(\mathbf{R}^{n}\right)$ denote the space of all C^{∞}-functions over \mathbf{R}^{n} with polynomial growth. Define

$$
\begin{aligned}
& \mathcal{S}=\left\{X=f\left(I\left(\phi_{1}\right), \ldots, I\left(\phi_{n}\right)\right): f \in C_{\mathrm{p}}^{\infty}\left(\mathbf{R}^{n}\right)\right. \\
& \\
& \left.\phi_{1}, \ldots, \phi_{n} \in L_{2}\left([0, T], U_{0}\right), n \geq 1\right\}
\end{aligned}
$$

and

$$
\mathcal{S}(H)=\left\{F=\sum_{k=1}^{n} X_{k} \otimes h_{k}: X_{1}, \ldots, X_{n} \in \mathcal{S}, h_{1}, \ldots, h_{n} \in H, n \geq 1\right\}
$$

Malliavin calculus

Let $C_{p}^{\infty}\left(\mathbf{R}^{n}\right)$ denote the space of all C^{∞}-functions over \mathbf{R}^{n} with polynomial growth. Define

$$
\begin{aligned}
& \mathcal{S}=\left\{X=f\left(I\left(\phi_{1}\right), \ldots, I\left(\phi_{n}\right)\right): f \in C_{\mathrm{p}}^{\infty}\left(\mathbf{R}^{n}\right)\right. \\
& \\
& \left.\phi_{1}, \ldots, \phi_{n} \in L_{2}\left([0, T], U_{0}\right), n \geq 1\right\}
\end{aligned}
$$

and

$$
\mathcal{S}(H)=\left\{F=\sum_{k=1}^{n} X_{k} \otimes h_{k}: X_{1}, \ldots, X_{n} \in \mathcal{S}, h_{1}, \ldots, h_{n} \in H, n \geq 1\right\}
$$

We define the Malliavin derivative of $F \in \mathcal{S}(H)$ as the process

$$
D_{t} F=\sum_{k=1}^{m} \sum_{i=1}^{n} \partial_{i} f_{k}\left(I\left(\phi_{1}\right), \ldots, I\left(\phi_{n}\right)\right) \otimes\left(h_{k} \otimes \phi_{i}(t)\right)
$$

and let, for $v \in U_{0}$,

$$
D_{t}^{v} F=D_{t} F v=\sum_{k=1}^{m} \sum_{i=1}^{n} \partial_{i} f_{k}\left(I\left(\phi_{1}\right), \ldots, I\left(\phi_{n}\right)\right) \otimes\left\langle\phi_{i}(t), v\right\rangle_{0} \otimes h_{k}
$$

Malliavin calculus: integration by parts

For all $F \in \mathcal{S}(H)$ and $\Phi \in L_{2}\left([0, T], \mathcal{L}_{2}^{0}\right)$,

$$
\langle D F, \Phi\rangle_{L_{2}\left([0, T] \times \Omega, \mathcal{L}_{2}^{0}\right)}=\left\langle F, \int_{0}^{T} \Phi(t) \mathrm{d} W(t)\right\rangle_{L_{2}(\Omega, H)} .
$$

Malliavin calculus: integration by parts

For all $F \in \mathcal{S}(H)$ and $\Phi \in L_{2}\left([0, T], \mathcal{L}_{2}^{0}\right)$,

$$
\langle D F, \Phi\rangle_{L_{2}\left([0, T] \times \Omega, \mathcal{L}_{2}^{0}\right)}=\left\langle F, \int_{0}^{T} \Phi(t) \mathrm{d} W(t)\right\rangle_{L_{2}(\Omega, H)}
$$

Let $\mathbf{D}^{1, p}(H)$ be the closure of $\mathcal{S}(H)$ with respect to the norm

$$
\|F\|_{\mathbf{D}^{1, p}(H)}=\left(\mathbf{E}\left[\|F\|_{H}^{p}\right]+\mathbf{E}\left[\int_{0}^{T}\left\|D_{t} F\right\|_{\mathcal{L}_{2}^{0}}^{p} \mathrm{~d} t\right]\right)^{\frac{1}{p}} .
$$

Malliavin calculus: integration by parts

For all $F \in \mathcal{S}(H)$ and $\Phi \in L_{2}\left([0, T], \mathcal{L}_{2}^{0}\right)$,

$$
\langle D F, \Phi\rangle_{L_{2}\left([0, T] \times \Omega, \mathcal{L}_{2}^{0}\right)}=\left\langle F, \int_{0}^{T} \Phi(t) \mathrm{d} W(t)\right\rangle_{L_{2}(\Omega, H)} .
$$

Let $\mathbf{D}^{1, p}(H)$ be the closure of $\mathcal{S}(H)$ with respect to the norm

$$
\|F\|_{\mathbf{D}^{1, p}(H)}=\left(\mathbf{E}\left[\|F\|_{H}^{p}\right]+\mathbf{E}\left[\int_{0}^{T}\left\|D_{t} F\right\|_{\mathcal{L}_{2}^{0}}^{p} \mathrm{~d} t\right]\right)^{\frac{1}{p}} .
$$

Let $(\delta, \mathcal{D}(\delta))$ be the adjoint of $D: L_{2}(\Omega, H) \rightarrow L_{2}\left([0, T] \times \Omega, \mathcal{L}_{2}^{0}\right)$.

$$
\langle D F, \Phi\rangle_{L_{2}\left([0, T] \times \Omega, \mathcal{L}_{2}^{0}\right)}=\langle F, \delta \Phi\rangle_{L_{2}(\Omega, H)} .
$$

Malliavin calculus: integration by parts

For all $F \in \mathcal{S}(H)$ and $\Phi \in L_{2}\left([0, T], \mathcal{L}_{2}^{0}\right)$,

$$
\langle D F, \Phi\rangle_{L_{2}\left([0, T] \times \Omega, \mathcal{L}_{2}^{0}\right)}=\left\langle F, \int_{0}^{T} \Phi(t) \mathrm{d} W(t)\right\rangle_{L_{2}(\Omega, H)}
$$

Let $\mathbf{D}^{1, p}(H)$ be the closure of $\mathcal{S}(H)$ with respect to the norm

$$
\|F\|_{\mathbf{D}^{1, p}(H)}=\left(\mathbf{E}\left[\|F\|_{H}^{p}\right]+\mathbf{E}\left[\int_{0}^{T}\left\|D_{t} F\right\|_{\mathcal{L}_{2}^{0}}^{p} \mathrm{~d} t\right]\right)^{\frac{1}{p}}
$$

Let $(\delta, \mathcal{D}(\delta))$ be the adjoint of $D: L_{2}(\Omega, H) \rightarrow L_{2}\left([0, T] \times \Omega, \mathcal{L}_{2}^{0}\right)$.

$$
\langle D F, \Phi\rangle_{L_{2}\left([0, T] \times \Omega, \mathcal{L}_{2}^{0}\right)}=\langle F, \delta \Phi\rangle_{L_{2}(\Omega, H)} .
$$

$\mathcal{D}(\delta) \subset L_{2}\left([0, T] \times \Omega, \mathcal{L}_{2}^{0}\right)$ is large and contains in particular all predictable \mathcal{L}_{2}^{0}-valued processes. In this case $\delta(\Phi)=\int_{0}^{T} \Phi(t) \mathrm{d} W(t)$.

The stochastic equation

An easy equation for a difficult problem:

$$
\begin{aligned}
& \mathrm{d} X(t)+A X(t) \mathrm{d} t=F(X(t)) \mathrm{d} t+\mathrm{d} W(t), \quad t \in(0, T], \\
& X(0)=X_{0}
\end{aligned}
$$

The stochastic equation

An easy equation for a difficult problem:

$$
\begin{aligned}
& \mathrm{d} X(t)+A X(t) \mathrm{d} t=F(X(t)) \mathrm{d} t+\mathrm{d} W(t), \quad t \in(0, T] \\
& X(0)=X_{0}
\end{aligned}
$$

- $H=L_{2}(\mathrm{D})$, where D is a bounded, convex and polygonal domain of $\mathbf{R}^{d}, \boldsymbol{d}=1,2,3$.

The stochastic equation

An easy equation for a difficult problem:

$$
\begin{aligned}
& \mathrm{d} X(t)+A X(t) \mathrm{d} t=F(X(t)) \mathrm{d} t+\mathrm{d} W(t), \quad t \in(0, T] \\
& X(0)=X_{0}
\end{aligned}
$$

- $H=L_{2}(\mathrm{D})$, where D is a bounded, convex and polygonal domain of $\mathbf{R}^{d}, d=1,2,3$.
- $(A, \mathcal{D}(A))$ selfadjoint with compact inverse, $-A$ the generator of an analytic semigroup $(S(t))_{t \geq 0}$.

The stochastic equation

An easy equation for a difficult problem:

$$
\begin{aligned}
& \mathrm{d} X(t)+A X(t) \mathrm{d} t=F(X(t)) \mathrm{d} t+\mathrm{d} W(t), \quad t \in(0, T] \\
& X(0)=X_{0}
\end{aligned}
$$

- $H=L_{2}(\mathrm{D})$, where D is a bounded, convex and polygonal domain of $\mathbf{R}^{d}, d=1,2,3$.
- $(A, \mathcal{D}(A))$ selfadjoint with compact inverse, $-A$ the generator of an analytic semigroup $(S(t))_{t \geq 0}$.
- $Q \in \mathcal{L}(H)$, positive semidefinite and selfadjoint with $\left\|A^{\frac{\beta-1}{2}} Q^{\frac{1}{2}}\right\|_{\mathcal{L}_{2}}<\infty$ for some $\beta \in[0,1]$.

The stochastic equation

An easy equation for a difficult problem:

$$
\begin{aligned}
& \mathrm{d} X(t)+A X(t) \mathrm{d} t=F(X(t)) \mathrm{d} t+\mathrm{d} W(t), \quad t \in(0, T] \\
& X(0)=X_{0}
\end{aligned}
$$

- $H=L_{2}(\mathrm{D})$, where D is a bounded, convex and polygonal domain of $\mathbf{R}^{d}, d=1,2,3$.
- $(A, \mathcal{D}(A))$ selfadjoint with compact inverse, $-A$ the generator of an analytic semigroup $(S(t))_{t \geq 0}$.
- $Q \in \mathcal{L}(H)$, positive semidefinite and selfadjoint with $\left\|A^{\frac{\beta-1}{2}} Q^{\frac{1}{2}}\right\|_{\mathcal{L}_{2}}<\infty$ for some $\beta \in[0,1]$.
- $(W(t))_{t \in[0, T]}$ cylindrical Q-Wiener-process.

The stochastic equation

An easy equation for a difficult problem:

$$
\begin{aligned}
& \mathrm{d} X(t)+A X(t) \mathrm{d} t=F(X(t)) \mathrm{d} t+\mathrm{d} W(t), \quad t \in(0, T] \\
& X(0)=X_{0}
\end{aligned}
$$

- $H=L_{2}(\mathrm{D})$, where D is a bounded, convex and polygonal domain of $\mathbf{R}^{d}, d=1,2,3$.
- $(A, \mathcal{D}(A))$ selfadjoint with compact inverse, $-A$ the generator of an analytic semigroup $(S(t))_{t \geq 0}$.
- $Q \in \mathcal{L}(H)$, positive semidefinite and selfadjoint with $\left\|A^{\frac{\beta-1}{2}} Q^{\frac{1}{2}}\right\|_{\mathcal{L}_{2}}<\infty$ for some $\beta \in[0,1]$.
- $(W(t))_{t \in[0, T]}$ cylindrical Q-Wiener-process.
- $F \in \mathcal{C}_{\mathrm{b}}^{2}(H, H)$.

The stochastic equation

An easy equation for a difficult problem:

$$
\begin{aligned}
& \mathrm{d} X(t)+A X(t) \mathrm{d} t=F(X(t)) \mathrm{d} t+\mathrm{d} W(t), \quad t \in(0, T] \\
& X(0)=X_{0}
\end{aligned}
$$

- $H=L_{2}(\mathrm{D})$, where D is a bounded, convex and polygonal domain of $\mathbf{R}^{d}, d=1,2,3$.
- $(A, \mathcal{D}(A))$ selfadjoint with compact inverse, $-A$ the generator of an analytic semigroup $(S(t))_{t \geq 0}$.
- $Q \in \mathcal{L}(H)$, positive semidefinite and selfadjoint with $\left\|A^{\frac{\beta-1}{2}} Q^{\frac{1}{2}}\right\|_{\mathcal{L}_{2}}<\infty$ for some $\beta \in[0,1]$.
- $(W(t))_{t \in[0, T]}$ cylindrical Q-Wiener-process.
- $F \in \mathcal{C}_{\mathrm{b}}^{2}(H, H)$.
- $X_{0} \in H$.

The stochastic equation

There exist for every $p \geq 2$ a unique solution $X \in \mathcal{C}\left([0, T], L_{p}(\Omega, H)\right)$ satisfying the integral equation

$$
\begin{aligned}
X(t)= & S(t) X_{0}+\int_{0}^{t} S(t-s) F(X(s)) \mathrm{d} s \\
& +\int_{0}^{t} S(t-s) \mathrm{d} W(s), \quad t \in[0, T]
\end{aligned}
$$

The stochastic equation

There exist for every $p \geq 2$ a unique solution $X \in \mathcal{C}\left([0, T], L_{p}(\Omega, H)\right)$ satisfying the integral equation

$$
\begin{aligned}
X(t)= & S(t) X_{0}+\int_{0}^{t} S(t-s) F(X(s)) \mathrm{d} s \\
& +\int_{0}^{t} S(t-s) \mathrm{d} W(s), \quad t \in[0, T]
\end{aligned}
$$

Spatial regularity [Kruse, Larsson]:

$$
X(t) \in \mathcal{D}\left(A^{\frac{\beta}{2}}\right), \quad \text { a.s. for all } t \in(0, T] .
$$

The stochastic equation

There exist for every $p \geq 2$ a unique solution $X \in \mathcal{C}\left([0, T], L_{p}(\Omega, H)\right)$ satisfying the integral equation

$$
\begin{aligned}
X(t)= & S(t) X_{0}+\int_{0}^{t} S(t-s) F(X(s)) \mathrm{d} s \\
& +\int_{0}^{t} S(t-s) \mathrm{d} W(s), \quad t \in[0, T]
\end{aligned}
$$

Spatial regularity [Kruse, Larsson]:

$$
X(t) \in \mathcal{D}\left(A^{\frac{\beta}{2}}\right), \quad \text { a.s. for all } t \in(0, T] .
$$

Regularity in the Malliavin sense [Fuhrman, Tessitore]:
$X(t) \in \mathbf{D}^{1, p}(H)$ for almost all $t \in[0, T]$ and $p<\frac{2}{1-\beta}$.

Approximation by the finite element method

A discretized equation:

$$
\left\{\begin{array}{l}
\mathrm{d} X_{h}(t)+\left[A_{h} X_{h}(t)-P_{h} F\left(X_{h}(t)\right)\right] \mathrm{d} t=P_{h} \mathrm{~d} W(t), \quad t \in(0, T] \\
X_{h}(0)=P_{h} X_{0} .
\end{array}\right.
$$

Finite element spaces $\left(V_{h}\right)_{h \in(0,1]}$ of continuous piecewise linear functions corresponding to a quasi-uniform family of triangulations of D .
A_{h} is the discrete Laplacian satisfying

$$
\left\langle A_{h} \psi, \chi\right\rangle_{H}=\langle\nabla \psi, \nabla \chi\rangle_{H}, \quad \forall \psi, \chi \in V_{h} .
$$

$P_{h}: H \rightarrow V_{h}$ orthogonal projection w.r.t. $\langle\cdot, \cdot\rangle_{H}$.

Mild solution of spatially discretized equation

Let $\left(S_{h}(t)\right)_{t \geq 0}$ be the analytic semigroup generated by $-A_{h}$.
For every $h \in(0,1] \exists$! solution $X_{h} \in C\left([0, T], L_{2}\left(\Omega, S_{h}\right)\right)$ to the mild equation

$$
\begin{aligned}
X_{h}(t)= & S_{h}(t) P_{h} X_{0}+\int_{0}^{t} S_{h}(t-s) P_{h} F\left(X_{h}(s)\right) \mathrm{d} s \\
& +\int_{0}^{t} S_{h}(t-s) P_{h} \mathrm{~d} W(s), \quad t \in(0, T]
\end{aligned}
$$

Mild solution of spatially discretized equation

Let $\left(S_{h}(t)\right)_{t \geq 0}$ be the analytic semigroup generated by $-A_{h}$.
For every $h \in(0,1] \exists$! solution $X_{h} \in C\left([0, T], L_{2}\left(\Omega, S_{h}\right)\right)$ to the mild equation

$$
\begin{aligned}
X_{h}(t)= & S_{h}(t) P_{h} X_{0}+\int_{0}^{t} S_{h}(t-s) P_{h} F\left(X_{h}(s)\right) \mathrm{d} s \\
& +\int_{0}^{t} S_{h}(t-s) P_{h} \mathrm{~d} W(s), \quad t \in(0, T]
\end{aligned}
$$

Error estimate for $E_{h}(t)=S(t)-S_{h}(t) P_{h}$:

$$
\left\|E_{h}(t) A^{\frac{\varrho}{2}}\right\|_{\mathcal{L}} \leq C t^{-\frac{\varrho+\theta}{2}} h^{\theta}, \quad 0 \leq \theta \leq 2,0 \leq \varrho \leq 1, \varrho+\theta \leq 2 .
$$

Mild solution of spatially discretized equation

Let $\left(S_{h}(t)\right)_{t \geq 0}$ be the analytic semigroup generated by $-A_{h}$.
For every $h \in(0,1] \exists$! solution $X_{h} \in C\left([0, T], L_{2}\left(\Omega, S_{h}\right)\right)$ to the mild equation

$$
\begin{aligned}
X_{h}(t)= & S_{h}(t) P_{h} X_{0}+\int_{0}^{t} S_{h}(t-s) P_{h} F\left(X_{h}(s)\right) \mathrm{d} s \\
& +\int_{0}^{t} S_{h}(t-s) P_{h} \mathrm{~d} W(s), \quad t \in(0, T]
\end{aligned}
$$

Error estimate for $E_{h}(t)=S(t)-S_{h}(t) P_{h}$:

$$
\left\|E_{h}(t) A^{\frac{\varrho}{2}}\right\|_{\mathcal{L}} \leq C t^{-\frac{\varrho+\theta}{2}} h^{\theta}, \quad 0 \leq \theta \leq 2,0 \leq \varrho \leq 1, \varrho+\theta \leq 2 .
$$

Strong convergence:

$$
\left\|X(T)-X_{h}(T)\right\|_{L_{p}(\Omega, H)} \leq C h^{\beta-\epsilon}, \quad n \in \mathbf{N} .
$$

Weak convergence: Results

Theorem

For every $\gamma \in[0, \beta)$ the following weak convergence holds:

$$
\left|\mathbf{E}\left[\varphi(X(T))-\varphi\left(X_{n}(T)\right)\right]\right| \leq C h^{2 \gamma}, \quad h \in(0,1) .
$$

under either of the following assumptions:

Weak convergence: Results

Theorem

For every $\gamma \in[0, \beta)$ the following weak convergence holds:

$$
\left|\mathbf{E}\left[\varphi(X(T))-\varphi\left(X_{n}(T)\right)\right]\right| \leq C h^{2 \gamma}, \quad h \in(0,1) .
$$

under either of the following assumptions:

- Additive noise, $\beta \in[0,1]$ and $\varphi \in \mathcal{C}_{\mathrm{b}}^{2}(H, \mathbf{R})$ (FEM) [A., Larsson, 2012], on ArXiv.

Weak convergence: Results

Theorem

For every $\gamma \in[0, \beta)$ the following weak convergence holds:

$$
\left|\mathbf{E}\left[\varphi(X(T))-\varphi\left(X_{n}(T)\right)\right]\right| \leq C h^{2 \gamma}, \quad h \in(0,1)
$$

under either of the following assumptions:

- Additive noise, $\beta \in[0,1]$ and $\varphi \in \mathcal{C}_{\mathrm{b}}^{2}(H, \mathbf{R})$ (FEM) [A., Larsson, 2012], on ArXiv.
- Additive noise, $\beta \in[0,1]$ and $\varphi \in \mathcal{C}_{\mathrm{p}}^{2}(H, \mathbf{R})(F E M+$ Spectral) [A., Kruse, Larsson, 2013], soon on Arxiv.

Weak convergence: Results

Theorem

For every $\gamma \in[0, \beta)$ the following weak convergence holds:

$$
\left|\mathbf{E}\left[\varphi(X(T))-\varphi\left(X_{n}(T)\right)\right]\right| \leq C h^{2 \gamma}, \quad h \in(0,1) .
$$

under either of the following assumptions:

- Additive noise, $\beta \in[0,1]$ and $\varphi \in \mathcal{C}_{\mathrm{b}}^{2}(H, \mathbf{R})$ (FEM) [A., Larsson, 2012], on ArXiv.
- Additive noise, $\beta \in[0,1]$ and $\varphi \in \mathcal{C}_{\mathrm{p}}^{2}(H, \mathbf{R})$ (FEM + Spectral) [A., Kruse, Larsson, 2013], soon on Arxiv.
- Linear multiplicative noise, $\beta \in\left[0, \frac{1}{2}\right)$ and $\varphi \in \mathcal{C}_{\mathrm{b}}^{2}(H, \mathbf{R})$ (FEM) [A., Larsson, 2012], on ArXiv.

Weak convergence: Results

Theorem

For every $\gamma \in[0, \beta)$ the following weak convergence holds:

$$
\left|\mathbf{E}\left[\varphi(X(T))-\varphi\left(X_{n}(T)\right)\right]\right| \leq C h^{2 \gamma}, \quad h \in(0,1) .
$$

under either of the following assumptions:

- Additive noise, $\beta \in[0,1]$ and $\varphi \in \mathcal{C}_{\mathrm{b}}^{2}(H, \mathbf{R})$ (FEM) [A., Larsson, 2012], on ArXiv.
- Additive noise, $\beta \in[0,1]$ and $\varphi \in \mathcal{C}_{\mathrm{p}}^{2}(H, \mathbf{R})$ (FEM + Spectral) [A., Kruse, Larsson, 2013], soon on Arxiv.
- Linear multiplicative noise, $\beta \in\left[0, \frac{1}{2}\right)$ and $\varphi \in \mathcal{C}_{\mathrm{b}}^{2}(H, \mathbf{R})$ (FEM) [A., Larsson, 2012], on ArXiv.
- Linear multiplicative noise, $\beta=1$ and $\varphi \in \mathcal{C}_{b}^{2}(H, \mathbf{R})$ (Spectral) [A., Jentzen, Larsson, Schwab, 2014], writing in progress.

Weak convergence: Results

Theorem

For every $\gamma \in[0, \beta)$ the following weak convergence holds:

$$
\left|\mathbf{E}\left[\varphi(X(T))-\varphi\left(X_{n}(T)\right)\right]\right| \leq C h^{2 \gamma}, \quad h \in(0,1) .
$$

under either of the following assumptions:

- Additive noise, $\beta \in[0,1]$ and $\varphi \in \mathcal{C}_{\mathrm{b}}^{2}(H, \mathbf{R})$ (FEM) [A., Larsson, 2012], on ArXiv.
- Additive noise, $\beta \in[0,1]$ and $\varphi \in \mathcal{C}_{\mathrm{p}}^{2}(H, \mathbf{R})(F E M+$ Spectral) [A., Kruse, Larsson, 2013], soon on Arxiv.
- Linear multiplicative noise, $\beta \in\left[0, \frac{1}{2}\right)$ and $\varphi \in \mathcal{C}_{\mathrm{b}}^{2}(H, \mathbf{R})$ (FEM) [A., Larsson, 2012], on ArXiv.
- Linear multiplicative noise, $\beta=1$ and $\varphi \in \mathcal{C}_{\mathrm{b}}^{2}(H, \mathbf{R})$ (Spectral) [A., Jentzen, Larsson, Schwab, 2014], writing in progress.
- Linear multiplicative noise, $\beta=1$ and $\varphi=\|\cdot\|^{2}$ (FEM + Spectral) [A., Kruse, Larsson], theoretical development i progress.

Weak convergence: Results

Theorem

For every $\gamma \in[0, \beta)$ the following weak convergence holds:

$$
\left|\mathbf{E}\left[\varphi(X(T))-\varphi\left(X_{n}(T)\right)\right]\right| \leq C h^{2 \gamma}, \quad h \in(0,1) .
$$

under either of the following assumptions:

- Additive noise, $\beta \in[0,1]$ and $\varphi \in \mathcal{C}_{\mathrm{b}}^{2}(H, \mathbf{R})$ (FEM) [A., Larsson, 2012], on ArXiv.
- Additive noise, $\beta \in[0,1]$ and $\varphi \in \mathcal{C}_{\mathrm{p}}^{2}(H, \mathbf{R})(F E M+$ Spectral) [A., Kruse, Larsson, 2013], soon on Arxiv.
- Linear multiplicative noise, $\beta \in\left[0, \frac{1}{2}\right)$ and $\varphi \in \mathcal{C}_{\mathrm{b}}^{2}(H, \mathbf{R})$ (FEM) [A., Larsson, 2012], on ArXiv.
- Linear multiplicative noise, $\beta=1$ and $\varphi \in \mathcal{C}_{\mathrm{b}}^{2}(H, \mathbf{R})$ (Spectral) [A., Jentzen, Larsson, Schwab, 2014], writing in progress.
- Linear multiplicative noise, $\beta=1$ and $\varphi=\|\cdot\|^{2}$ (FEM + Spectral) [A., Kruse, Larsson], theoretical development i progress.

Weak convergence: Results

Theorem

For every $\gamma \in[0, \beta)$ the following weak convergence holds:

$$
\left|\mathbf{E}\left[\varphi(X(T))-\varphi\left(X_{n}(T)\right)\right]\right| \leq C h^{2 \gamma}, \quad h \in(0,1) .
$$

under either of the following assumptions:

- Additive noise, $\beta \in[0,1]$ and $\varphi \in \mathcal{C}_{\mathrm{b}}^{2}(H, \mathbf{R})$ (FEM) [A., Larsson, 2012], on ArXiv.
- Additive noise, $\beta \in[0,1]$ and $\varphi \in \mathcal{C}_{\mathrm{p}}^{2}(H, \mathbf{R})$ (FEM + Spectral) [A., Kruse, Larsson, 2013], soon on Arxiv.
- Linear multiplicative noise, $\beta \in\left[0, \frac{1}{2}\right)$ and $\varphi \in \mathcal{C}_{\mathrm{b}}^{2}(H, \mathbf{R})$ (FEM) [A., Larsson, 2012], on ArXiv.
- Linear multiplicative noise, $\beta=1$ and $\varphi \in \mathcal{C}_{\mathrm{b}}^{2}(H, \mathbf{R})$ (Spectral) [A., Jentzen, Larsson, Schwab, 2014], writing in progress.
- Linear multiplicative noise, $\beta=1$ and $\varphi=\|\cdot\|^{2}$ (FEM + Spectral) [A., Kruse, Larsson], theoretical development i progress.

Open question: Is the rate of weak convergence the same for all $G \in \mathcal{C}_{b}^{2}\left(H, \mathcal{L}_{2}^{0}\right)$?

Weak convergence: Techniques of proof

We know of three methods to prove weak convergence:

Weak convergence: Techniques of proof

We know of three methods to prove weak convergence:

- By a use of Itô's formula and the Kolmogorov equation.

Weak convergence: Techniques of proof

We know of three methods to prove weak convergence:

- By a use of Itô's formula and the Kolmogorov equation.
- By duality and backward stochastic evolution equations.

Weak convergence: Techniques of proof

We know of three methods to prove weak convergence:

- By a use of Itô's formula and the Kolmogorov equation.
- By duality and backward stochastic evolution equations.
- By strong error estimates in a dual Watanabe-Sobolev norm.

Weak convergence: Techniques of proof

We know of three methods to prove weak convergence:

- By a use of Itô's formula and the Kolmogorov equation.
- By duality and backward stochastic evolution equations.
- By strong error estimates in a dual Watanabe-Sobolev norm.

Weak convergence: Techniques of proof

We know of three methods to prove weak convergence:

- By a use of Itô's formula and the Kolmogorov equation.
- By duality and backward stochastic evolution equations.
- By strong error estimates in a dual Watanabe-Sobolev norm.

Here I present the third method!

Proof: Important spaces

Let $p \geq 2$. We define the space

$$
\mathbf{M}^{1, p}(H)=\mathbf{D}^{1, p}(H) \cap L_{2 p}(\Omega, H)
$$

with norm

$$
\|X\|_{\mathbf{M}^{1, p}(H)}=\max \left(\|X\|_{\mathbf{D}^{1, p}(H)},\|X\|_{L_{2 p}(\Omega, H)}\right)
$$

Proof: Important spaces

Let $p \geq 2$. We define the space

$$
\mathbf{M}^{1, p}(H)=\mathbf{D}^{1, p}(H) \cap L_{2 p}(\Omega, H)
$$

with norm

$$
\|X\|_{\mathbf{M}^{1, p}(H)}=\max \left(\|X\|_{\mathbf{D}^{1, p}(H)},\|X\|_{L_{2 p}(\Omega, H)}\right)
$$

The dual space $\mathbf{M}^{1, p}(H)^{*}$ is equipped with the norm

$$
\|X\|_{\mathbf{M}^{1, p}(H)^{*}}=\sup _{\Upsilon \in B}\langle\Upsilon, X\rangle_{L_{2}(\Omega, H)}
$$

where B denote the unit ball in $\mathbf{M}^{1, p}(H)$.

Proof: Bound of the weak error

Linearization: By a first order Taylor expansion

$$
\begin{aligned}
& \mathbf{E}\left[\varphi(X(T))-\varphi\left(X_{n}(T)\right)\right]=\mathbf{E}\left\langle\varphi^{\prime}(X(T)), X_{n}(T)-X(T)\right\rangle \\
& \quad+\int_{0}^{1}(1-\varrho) \varphi^{\prime \prime}\left(X(T)+\lambda\left(X_{n}(T)-X(T)\right)\right) \cdot\left(X(T)-X_{n}(T)\right)^{2} \mathrm{~d} \varrho .
\end{aligned}
$$

Proof: Bound of the weak error

Linearization: By a first order Taylor expansion

$$
\begin{aligned}
& \mathbf{E}\left[\varphi(X(T))-\varphi\left(X_{n}(T)\right)\right]=\mathbf{E}\left\langle\varphi^{\prime}(X(T)), X_{n}(T)-X(T)\right\rangle \\
& \quad+\int_{0}^{1}(1-\varrho) \varphi^{\prime \prime}\left(X(T)+\lambda\left(X_{n}(T)-X(T)\right)\right) \cdot\left(X(T)-X_{n}(T)\right)^{2} \mathrm{~d} \varrho .
\end{aligned}
$$

For $p<\frac{2}{1-\beta}: R=\left\|\varphi^{\prime}(X(T))\right\|_{\mathbf{M}^{1, p}(H)}<\infty$.

Proof: Bound of the weak error

Linearization: By a first order Taylor expansion

$$
\begin{aligned}
& \mathbf{E}\left[\varphi(X(T))-\varphi\left(X_{n}(T)\right)\right]=\mathbf{E}\left\langle\varphi^{\prime}(X(T)), X_{n}(T)-X(T)\right\rangle \\
& \quad+\int_{0}^{1}(1-\varrho) \varphi^{\prime \prime}\left(X(T)+\lambda\left(X_{n}(T)-X(T)\right)\right) \cdot\left(X(T)-X_{n}(T)\right)^{2} \mathrm{~d} \varrho .
\end{aligned}
$$

For $p<\frac{2}{1-\beta}: R=\left\|\varphi^{\prime}(X(T))\right\|_{\mathbf{M}^{1, p}(H)}<\infty$.

Therefore

$$
\begin{aligned}
\mid \mathbf{E}[& \left.\varphi(X(T))-\varphi\left(X_{n}(T)\right)\right]|\leq R| \mathbf{E}\left\langle R^{-1} \varphi^{\prime}(X(T)), X_{n}(T)-X(T)\right\rangle \mid \\
& \left.+\left\|\varphi^{\prime \prime}(X(T))\right\|_{L_{2}\left(\Omega, \mathcal{L}^{[2]}(H, R)\right)}\right) \mid X(T)-X_{n}(T) \|_{L_{4}(\Omega, H)}^{2} \\
& \leq R \sup _{\Upsilon \in B} \mathbf{E}\left\langle\Upsilon, X_{n}(T)-X(T)\right\rangle \mid+C\left\|X(T)-X_{n}(T)\right\|_{L_{4}(\Omega, H)}^{2} .
\end{aligned}
$$

Proof: Bound of the weak error

Linearization: By a first order Taylor expansion

$$
\begin{aligned}
& \mathbf{E}\left[\varphi(X(T))-\varphi\left(X_{n}(T)\right)\right]=\mathbf{E}\left\langle\varphi^{\prime}(X(T)), X_{n}(T)-X(T)\right\rangle \\
& \quad+\int_{0}^{1}(1-\varrho) \varphi^{\prime \prime}\left(X(T)+\lambda\left(X_{n}(T)-X(T)\right)\right) \cdot\left(X(T)-X_{n}(T)\right)^{2} \mathrm{~d} \varrho .
\end{aligned}
$$

For $p<\frac{2}{1-\beta}: R=\left\|\varphi^{\prime}(X(T))\right\|_{\mathbf{M}^{1, p}(H)}<\infty$.

Therefore

$$
\begin{aligned}
\mid \mathbf{E}[& \left.\varphi(X(T))-\varphi\left(X_{n}(T)\right)\right]|\leq R| \mathbf{E}\left\langle R^{-1} \varphi^{\prime}(X(T)), X_{n}(T)-X(T)\right\rangle \mid \\
& \left.+\left\|\varphi^{\prime \prime}(X(T))\right\|_{L_{2}\left(\Omega, \mathcal{L}^{[2]}(H, R)\right)}\right) \mid X(T)-X_{n}(T) \|_{L_{4}(\Omega, H)}^{2} \\
\leq & R \sup _{\Upsilon \in B} \mathbf{E}\left\langle\Upsilon, X_{n}(T)-X(T)\right\rangle \mid+C\left\|X(T)-X_{n}(T)\right\|_{L_{4}(\Omega, H)}^{2} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \mid \mathbf{E}\left[\varphi(X(T))-\varphi\left(X_{n}(T)\right)\right] \\
& \quad \lesssim\left\|X_{n}(T)-X(T)\right\|_{M^{1, p}(H)^{*}}+\left\|X(T)-X_{n}(T)\right\|_{L_{4}(\Omega, H)}^{2} .
\end{aligned}
$$

Proof: Key Lemma

Lemma

Let $p, p^{\prime} \in(1, \infty)$ satisfy $\frac{1}{p}+\frac{1}{p^{\prime}}=1$.
(i) For random variables $Z: \Omega \rightarrow H$, we have

$$
\|Z\|_{\mathbf{M}^{1, p}(H)^{*}} \leq\|Z\|_{L_{2}(\Omega, H)} .
$$

(ii) If for $\Phi:[0, T] \times \Omega \rightarrow \mathcal{L}$ the map $\Upsilon \mapsto \Phi(t)^{*} \Upsilon$ is bounded in $\mathbf{M}^{1, p}(H)$ uniformly in t, then under mild assumptions on ψ

$$
\left\|\int_{0}^{T} \Phi(t, \phi(t)) \psi(t) \mathrm{d} t\right\|_{\mathbf{M}^{1, p}(H)^{*}} \leq R \int_{0}^{T}\|\psi(t)\|_{\mathbf{M}^{1, p}(H)^{*}} \mathrm{~d} t
$$

(iii) If $\Phi \in L_{2}\left([0, T] \times \Omega, \mathcal{L}_{2}^{0}\right)$ is predictable, then

$$
\left\|\int_{0}^{T} \Phi(t) \mathrm{d} W(t)\right\|_{\mathbf{M}^{1, p}(H)^{*}} \leq C\|\Phi\|_{L_{\rho^{\prime}}\left([0, T] \times \Omega, \mathcal{L}_{2}^{0}\right)} .
$$

Proof: Strong convergence in the $\mathbf{M}^{1, p}(H)^{*}$-norm

After a first order Taylor expansion the difference satisfy the equation:

$$
\begin{aligned}
X(T) & -X_{h}(T) \\
= & E_{h}(t) X_{0}+\int_{0}^{T} E_{h}(T-s) F(X(t)) \mathrm{d} t \\
& \left.+\int_{0}^{T} S_{h}(T-t) P_{h} F^{\prime}(X(t))\left(X(t)-X_{h}(t)\right)\right) \mathrm{d} t \\
& +\int_{0}^{T} S_{h}(T-t) P_{h} \\
& \quad \times \int_{0}^{1}(1-\varrho) F^{\prime \prime}\left(X(t)+\varrho\left(X_{h}(t)-X(t)\right)\right) \cdot\left(X(t)-X_{h}(t)\right)^{2} \mathrm{~d} \varrho \mathrm{~d} t \\
& +\int_{0}^{T} E_{h}(T-t) \mathrm{d} W(t) .
\end{aligned}
$$

Proof: Strong convergence in the $\mathbf{M}^{1, p}(H)^{*}$-norm

By the Key Lemma (i) and (iii)

$$
\begin{aligned}
\| X(T) & -X_{h}(T) \|_{\left.\mathbf{M}^{1, p}(H)\right)^{*}}^{T} \\
\leq & \left\|E_{h}(t) X_{0}\right\|+\int_{0}^{T}\left\|E_{h}(T-s) F(X(t))\right\|_{L_{2}(\Omega, H)} \mathrm{d} t \\
& +\left\|\int_{0}^{T} S_{h}(T-t) P_{h} F^{\prime}(X(t))\left(X(t)-X_{h}(t)\right) \mathrm{d} t\right\|_{\mathbf{M}^{1, p}(H)^{*}} \\
& +\int_{0}^{T}\left\|X(t)-X_{h}(t)\right\|_{L_{2}(\Omega, H)}^{2} \mathrm{~d} t \\
& +\left(\int_{0}^{T}\left\|E_{h}(T-t)\right\|_{\mathcal{L}_{2}^{0}}^{\|^{\prime}} \mathrm{d} t\right)^{\frac{1}{p^{\prime}}} .
\end{aligned}
$$

Proof: Strong convergence in the $\mathbf{M}^{1, p}(H)^{*}$-norm

By the Key Lemma (i) and (iii)

$$
\begin{aligned}
\| X(T) & -X_{h}(T) \|_{\left.\mathbf{M}^{1, p}(H)\right)^{*}}^{T} \\
\leq & \left\|E_{h}(t) X_{0}\right\|+\int_{0}^{T}\left\|E_{h}(T-s) F(X(t))\right\|_{L_{2}(\Omega, H)} \mathrm{d} t \\
& +\left\|\int_{0}^{T} S_{h}(T-t) P_{h} F^{\prime}(X(t))\left(X(t)-X_{h}(t)\right) \mathrm{d} t\right\|_{\mathbf{M}^{1, p}(H)^{*}} \\
& +\int_{0}^{T}\left\|X(t)-X_{h}(t)\right\|_{L_{2}(\Omega, H)}^{2} \mathrm{~d} t \\
& +\left(\int_{0}^{T}\left\|E_{h}(T-t)\right\|_{\mathcal{L}_{2}^{0}}^{\|^{\prime}} \mathrm{d} t\right)^{\frac{1}{p^{\prime}}}
\end{aligned}
$$

To apply Key Lemma (ii) we need to check that

$$
\Upsilon \mapsto F^{\prime}(X(t))^{*} S_{h}(T-t) P_{h} \Upsilon, \quad \text { bounded in } \mathbf{M}^{1, p}(H) .
$$

Proof: Strong convergence in the $\mathbf{M}^{1, p}(H)^{*}$-norm

Clearly $\left(F^{\prime}(X(t))\right)^{*} S_{h}(T-t) \Upsilon \in L_{2 p}(\Omega, H)$.

Proof: Strong convergence in the $\mathbf{M}^{1, p}(H)^{*}$-norm

Clearly $\left(F^{\prime}(X(t))\right)^{*} S_{h}(T-t) \Upsilon \in L_{2 p}(\Omega, H)$.
Remains to prove

$$
\begin{aligned}
&\left\|\left(F^{\prime}(X(t))\right)^{*} S_{h}(T-t) \Upsilon\right\|_{\mathbf{D}^{1, p}(H)}^{p} \lesssim\left\|\left(F^{\prime}(X(t))\right)^{*} S_{h}(T-t) \Upsilon\right\|_{L_{p}(\Omega, H)}^{p} \\
&+\int_{0}^{T}\left\|\left(F^{\prime}(X(t))\right)^{*} S_{h}(T-t) D_{s} \Upsilon\right\|_{L_{p}\left(\Omega, \mathcal{L}_{2}^{0}\right)}^{p} \mathrm{~d} s \\
& \quad+\int_{0}^{T} \mathbf{E}\left[\left(\sum_{k \in \mathbf{N}}\left\|\left(F^{\prime \prime}(X(t)) D_{s}^{u_{k}} X(t)\right)^{*} S_{h}(T-t) \Upsilon\right\|^{2}\right)^{\frac{p}{2}}\right] \mathrm{d} s \\
& \leq|F|_{\mathcal{C}_{b}^{1}(H, H)}^{p}\left(\|\Upsilon\|_{L_{p}(\Omega, H)}^{p}+\int_{0}^{T}\left\|D_{s} \Upsilon\right\|_{L_{p}(\Omega, H)}^{p} \mathrm{~d} s\right) \\
&+|F|_{\mathcal{C}_{b}^{2}(H, H)}^{p} \int_{0}^{T} \mathbf{E}\left(\sum_{k \in \mathbf{N}}\left\|D_{s}^{u_{k}} X(t)\right\|_{H}^{2}\right)^{\frac{p}{2}}\|\Upsilon\|^{p} \mathrm{~d} s \\
& \lesssim\|\Upsilon\|_{\mathbf{D}^{1, p}(H)}^{p}+\|\Upsilon\|_{L_{2 p}(\Omega, H)}^{2} \sup _{t \in[0, T]}\|X(t)\|_{\mathbf{D}^{1,2 p}(H)}^{2}<\infty .
\end{aligned}
$$

Proof: Strong convergence in the $\mathbf{M}^{1, p}(H)^{*}$-norm

Using Key Lemma (ii) we get

$$
\begin{aligned}
& \left\|X(T)-X_{h}(T)\right\|_{\mathbf{M}^{1, p}(H)^{*}} \leq\left\|E_{h}(t) X_{0}\right\| \\
& \quad+\int_{0}^{T}\left\|E_{h}(T-s) F(X(t))\right\|_{L_{2}(\Omega, H)} \mathrm{d} t \\
& \quad+\int_{0}^{T}\left\|X(t)-X_{h}(t)\right\|_{L_{2}(\Omega, H)}^{2} \mathrm{~d} t+\left(\int_{0}^{T}\left\|E_{h}(T-t)\right\|_{\mathcal{L}_{2}^{0}}^{p^{\prime}} \mathrm{d} t\right)^{\frac{1}{p^{\prime}}} \\
& \quad+\int_{0}^{T}\left\|X(t)-X_{h}(t)\right\|_{\mathbf{M}^{1, p}(H)^{*}} \mathrm{~d} t .
\end{aligned}
$$

If we fix $\gamma \in[0, \beta)$ and let $p=2 /(1-\gamma)$, then one can show that

$$
\begin{gathered}
\left\|X(T)-X_{h}(T)\right\|_{\mathbf{M}^{1, p}(H)^{*}} \leq\left(t^{-\gamma}+1\right) h^{2 \gamma} \\
\quad+\int_{0}^{T}\left\|X(t)-X_{h}(t)\right\|_{\mathbf{M}^{1, p}(H)^{*}} \mathrm{~d} t .
\end{gathered}
$$

Proof: Strong convergence in the $\mathbf{M}^{1, p}(H)^{*}$-norm

Using Key Lemma (ii) we get

$$
\begin{aligned}
& \left\|X(T)-X_{h}(T)\right\|_{\mathbf{M}^{1, p}(H)^{*}} \leq\left\|E_{h}(t) X_{0}\right\| \\
& \quad+\int_{0}^{T}\left\|E_{h}(T-s) F(X(t))\right\|_{L_{2}(\Omega, H)} \mathrm{d} t \\
& \quad+\int_{0}^{T}\left\|X(t)-X_{h}(t)\right\|_{L_{2}(\Omega, H)}^{2} \mathrm{~d} t+\left(\int_{0}^{T}\left\|E_{h}(T-t)\right\|_{\mathcal{L}_{2}^{0}}^{p^{\prime}} \mathrm{d} t\right)^{\frac{1}{p^{\prime}}} \\
& \quad+\int_{0}^{T}\left\|X(t)-X_{h}(t)\right\|_{\mathbf{M}^{1, p}(H)^{*}} \mathrm{~d} t .
\end{aligned}
$$

If we fix $\gamma \in[0, \beta)$ and let $p=2 /(1-\gamma)$, then one can show that

$$
\begin{gathered}
\left\|X(T)-X_{h}(T)\right\|_{\mathbf{M}^{1, p}(H)^{*}} \leq\left(t^{-\gamma}+1\right) h^{2 \gamma} \\
\quad+\int_{0}^{T}\left\|X(t)-X_{h}(t)\right\|_{\mathbf{M}^{1, p}(H)^{*}} \mathrm{~d} t .
\end{gathered}
$$

Gronwall's Lemma applies and we are done!

Path dependent test functions

Let μ be a Borel measure on $[0, T]$ satisfying

$$
\int_{0}^{T} t^{-\gamma} \mathrm{d} \mu(t)<\infty, \quad \forall \gamma \in[0, \beta) .
$$

Path dependent test functions

Let μ be a Borel measure on $[0, T$] satisfying

$$
\int_{0}^{T} t^{-\gamma} \mathrm{d} \mu(t)<\infty, \quad \forall \gamma \in[0, \beta) .
$$

Then, for $\varphi \in \mathcal{C}_{\mathrm{b}}^{2}(H, \mathbf{R})$ we compute

$$
\begin{aligned}
\mid \mathbf{E} & {\left[\varphi\left(\int_{0}^{T} X(t) \mathrm{d} \mu(t)\right)-\varphi\left(\int_{0}^{T} X_{h}(t) \mathrm{d} \mu(t)\right)\right] \mid } \\
& \leq\left|\mathbf{E}\left\langle\varphi^{\prime}\left(\int_{0}^{T} X(s) \mathrm{d} \mu(s)\right), \int_{0}^{T} X(t)-X_{h}(t) \mathrm{d} \mu(t)\right\rangle\right|+\text { remainder } \\
& \leq \int_{0}^{T} \mathbf{E}\left|\left\langle\varphi^{\prime}\left(\int_{0}^{T} X(s) \mathrm{d} \mu(s)\right), X(t)-X_{h}(t)\right\rangle\right| \mathrm{d} \mu(t)+h^{2 \gamma} \\
& \lesssim \int_{0}^{T} \sup _{\Upsilon \in B} \mathbf{E}\left\langle\Upsilon, X(t)-X_{h}(t)\right\rangle \mathrm{d} \mu(t)+h^{2 \gamma} \\
& \lesssim h^{2 \gamma} \int_{0}^{T} t^{-\gamma} \mathrm{d} \mu(t)+h^{2 \gamma} \lesssim h^{2 \gamma} .
\end{aligned}
$$

Future work:

- Stochastic semilinear Volterra equation (non-Markovian), (joint work with Kovács and Larsson)

Future work:

- Stochastic semilinear Volterra equation (non-Markovian), (joint work with Kovács and Larsson)
- More general multiplicative noise.

Future work:

- Stochastic semilinear Volterra equation (non-Markovian), (joint work with Kovács and Larsson)
- More general multiplicative noise.
- Boundary control for SPDEs.

Future work:

- Stochastic semilinear Volterra equation (non-Markovian), (joint work with Kovács and Larsson)
- More general multiplicative noise.
- Boundary control for SPDEs.
- Non-Gaussian noise.

Thank you for your attention!

