

6th Workshop, Random Dynamical Systems Bielefeld, 1.11.2013

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observer

Numerics

attractivit stability

Forward

accuracy stability

Pull-back

transformatio Birkhoff accuracy stability

Outlook

other filter todo summary Accuracy and Stability of the Continuous-Time 3DVAR Filter for 2D Navier-Stokes Equation

Dirk Blömker

joint work with:

Andrew Stuart, Kody Law (Warwick) Konstantinos Zygalakis (Southhampton)

Filtering

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

3DVAR noisy observer

Numerics

attractivity stability

Forward

accuracy stability

Pull-back

transformation Birkhoff accuracy stability

Outlook

other filter todo summary Methods used for high dimensional data assimilation problems (for example in weather forecasting)

Widely applied, but not that well studied in the nonlinear, stochastic & infinite dimensional setting.

Filtering

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up Navier-Stokes 3DVAR

Numerics

attractivity stability

Forward

stability

Pull-back

transformatio Birkhoff accuracy stability

Outlook

other filter todo summary Methods used for high dimensional data assimilation problems (for example in weather forecasting)

Widely applied, but not that well studied in the nonlinear, stochastic & infinite dimensional setting.

Basic Idea of Filtering

- estimate time-evolution of a trajectory based on partial observation & knowledge of the model
- use model to predict next step
- use data to correct prediction

Problem:

only partial and noisy observations/data

Our Approach:

3DVAR for 2D-NS

Dirk Blömker

Introduction

- Set-Up Navier-Stokes 3DVAR
- Numerics attractivity
- stability

Forward

accuracy stability

Pull-back

transformatio Birkhoff accuracy stability

Outlook

other filter todo summary

- As starting point simple 3DVAR-filter (in this talk: not many details about filter)
- Example for the underlying dynamical system:
 - deterministic 2D-Navier-Stokes equation
- Limit of high frequency noisy observations yields stochastic PDE (continuous time filters/noisy observer)
- \blacksquare Study Accuracy & Stability \Longrightarrow Stochastic Dyn. Syst.

3DVAR	fo
2D-N	S

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observer

Numerics

attractivity stability

Forward

accuracy stability

Pull-back

transformation Birkhoff accuracy stability

Outlook

other filter todo summary

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observer

Numerics

attractivity stability

Forward

accuracy stability

Pull-back

transformation Birkhoff accuracy stability

Outlook

other filter todo summary

Stability

Trajectories from observer converge towards each other

 \Rightarrow It does not matter where to initiate the filter

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up Navier-Stoke 3DVAR

noisy observe

Numerics

stability

Forward accuracy

stability

Pull-back

transformati Birkhoff accuracy stability

Outlook

other filter todo summary

Stability

Trajectories from observer converge towards each other

 \Rightarrow It does not matter where to initiate the filter

Accuracy

Trajectories from observer get close to the true trajectory (on the order of observational noise)

\Rightarrow Filter gives the true answer

(recover unknown solution from partial noisy observations)

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes

3DVAR noisy observer

Numerics

attractivity stability

Forward

accuracy stability

Pull-back

transformation Birkhoff accuracy stability

Outlook

other filter todo summary

For simplicity: In this talk only an ODE instead of 2D Navier Stokes.

Thus $\mathcal{H} = \mathbb{R}^n$, $n \gg 1$ very large.

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes

advak noisy observer

Numerics

attractivi stability

Forward

accuracy stability

Pull-back

transformation Birkhoff accuracy stability

Outlook

other filter todo summary

For simplicity:

In this talk only an ODE instead of 2D Navier Stokes. Thus $\mathcal{H} = \mathbb{R}^n$, $n \gg 1$ very large.

Let $u : \mathbb{R} \mapsto \mathcal{H}$ be any bounded solution of

$$\partial_t u = -\delta \mathcal{A}u + \mathcal{B}(u, u) + f$$

Universität Augsburg University

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR

Numerics attractivity

stability Forward

accuracy stability

Pull-back

transformatic Birkhoff accuracy stability

Outlook

other filter todo summary

For simplicity:

In this talk only an ODE instead of 2D Navier Stokes. Thus $\mathcal{H} = \mathbb{R}^n$, $n \gg 1$ very large.

Let $u : \mathbb{R} \mapsto \mathcal{H}$ be any bounded solution of

$$\partial_t u = -\delta \mathcal{A}u + \mathcal{B}(u, u) + f$$

- \mathcal{A} diagonal operator, $\mathcal{A} \ge 1$, $\delta > 0$,
- $\mathcal{B}: \mathcal{H} \times \mathcal{H} \to \mathcal{H}$ symmetric bilinear map
- f deterministic forcing (could be time dependent)

Universität Augsburg University

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR

Numerics attractivity

Forward accuracy stability

Pull-back

transformatic Birkhoff accuracy stability

Outlook

other filter todo summary

For simplicity: In this talk only an ODE instead of 2D Navier Stokes. Thus $\mathcal{H} = \mathbb{R}^n$, $n \gg 1$ very large.

Let $u : \mathbb{R} \mapsto \mathcal{H}$ be any bounded solution of

$$\partial_t u = -\delta \mathcal{A}u + \mathcal{B}(u, u) + f$$

- \mathcal{A} diagonal operator, $\mathcal{A} \ge 1$, $\delta > 0$,
- $\mathcal{B}: \mathcal{H} \times \mathcal{H} \to \mathcal{H}$ symmetric bilinear map
- f deterministic forcing (could be time dependent)

trajectory u is the unknown we want to observe

Existence & Uniqueness (well known)

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR

Numerics attractivity stability

Forward

stability

Pull-back

transformatic Birkhoff accuracy stability

Outlook

other filte todo summary For 2D-Navier-Stokes see [Temam 95, 97], [Robinson 01].

Theorem

Suppose $\langle \mathcal{B}(u, u), u \rangle \leq 0$ and f is bounded.

Then for all initial conditions u(0) there exists a global solution in $C^1([0,\infty),\mathcal{H})$.

Furthermore there is a global attractor in $B_R(0) \subset \mathcal{H}$ containing all bounded solutions.

Very brief description of 3DVAR [Harvey 91,]

3DVAR for 2D-NS

Dirk Blömker

- Introduction
- Set-Up
- Navier-Stokes 3DVAR noisy observer
- Numerics
- attractivity stability
- Forward
- accuracy stability

Pull-back

transformation Birkhoff accuracy stability

Outlook

other filter todo summary

Consider

- S_h one step in the model (of time h > 0)
- $u_j = u(jh) = S_h(u_{j-1})$ unknown true trajectory
- $y_j = Pu_j + \mathcal{N}(0, \Gamma)$ observation (noisy & partial)
- $\blacksquare P \text{projection}$
- \hat{m}_j estimation

Very brief description of 3DVAR [Harvey 91,]

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observer

Numerics

stability

Forward

accuracy stability

Pull-back

transformatic Birkhoff accuracy stability

Outlook

other filter todo summary

Consider

- S_h one step in the model (of time h > 0)
- $u_j = u(jh) = S_h(u_{j-1})$ unknown true trajectory
- $y_j = Pu_j + \mathcal{N}(0, \Gamma)$ observation (noisy & partial)
- $\blacksquare P \text{projection}$
- \hat{m}_j estimation

Prediction: $m_{j+1} = S_h(\hat{m}_j)$

Very brief description of 3DVAR [Harvey 91,]

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observe

Numerics attractivity

Forward

accuracy stability

Pull-back

transformatic Birkhoff accuracy stability

Outlook

other filter todo summary

Consider

- S_h one step in the model (of time h > 0)
- $u_j = u(jh) = S_h(u_{j-1})$ unknown true trajectory
- $y_j = Pu_j + \mathcal{N}(0, \Gamma)$ observation (noisy & partial)
- $\blacksquare P \text{projection}$
- \hat{m}_j estimation

Prediction: $m_{j+1} = S_h(\hat{m}_j)$ Assume Gaussianity: $\begin{array}{c} u_j | y_1 \dots y_j \sim \mathcal{N}(\hat{m}_j, C) \\ u_{j+1} | y_1 \dots y_j \sim \mathcal{N}(m_{j+1}, C) \end{array}$

Kalman mean update

(Bayes' rule + some work)

 $\hat{m}_{j+1} = m_{j+1} + CP(\Gamma + PCP)^{-1}(y_{j+1} - Pm_{j+1})$

High Frequency Observation Limit

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up Navier-Stokes 3DVAR noisy observer

Numerics attractivity stability

Forward accuracy stability

Pull-back

transformatio Birkhoff accuracy stability

Outlook

other filter todo summary Limit $(h \downarrow 0)$ of high frequency noisy observations for 3DVAR yields for sufficiently large observational noise a stochastic equation (noisy observer/continuous time filter)

Key Point:

The discrete time filter can be written as an Euler-Maruyama discretization of the observer

The formal limit is true in a much more general setting and for several filter (no rigorous result yet)

Discrete time case for 2D-Navier Stokes: [Law, Stuart, et. al. 11]

Noisy observer

Universität Augsburg University

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up Navier-Stokes 3DVAR noisy observer

Numerics attractivity stability

Forward

accuracy stability

Pull-back

transformatic Birkhoff accuracy stability

Outlook

other filter todo summary $\partial_t \hat{m} = -\delta \mathcal{A} \hat{m} + \mathcal{B}(\hat{m}, \hat{m}) + f + \omega \mathcal{A}^{-2\alpha} P_{\lambda} [u - \hat{m} + \sigma \mathcal{A}^{-\beta} \partial_t W]$

- P_λ proj. onto the observed low modes

 (for 2D Navier-Stokes approximately λ² many)

 Assume: Γ = ¹/_hσ²A^{-2β}P_λ covariance of the (given)
 observational noise
 (think of β = 0)
- $C = \omega \sigma^2 \mathcal{A}^{-2(\alpha+\beta)}$ how to weight data or the model
- W standard cylindrical Wiener process (space-time white noise)

 λ and ω are free parameters of the filter (also C and $\alpha)$

Generation of SDS

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up Navier-Stokes 3DVAR noisy observer

Numerics attractivity stability

accuracy stability

Pull-back

transformation Birkhoff accuracy stability

Outlook

other filter todo summary

Stochastic Dynamical System:	(not all details)
$S(t, s, W)\hat{m}_0$ solution of observer	
• at time $t > 0$	
• given path $\{W(t)\}$	$\}_{t \ge s}$
■ given initial cond	ition $\hat{m}(s) = \hat{m}_0$
Flow Property: $S(t, r, W)S(r, s, W) =$	S(t, s, W)

Theorem:(by standard methods, details later)The noisy observer generates a SDS in \mathcal{H} .

Remark: No Random Dynamical System is generated as the observer is non-autonomous due to u and possibly f.

Numerical Results

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observer

Numerics

attractivity stability

Forward

stability

Pull-back

transformatic Birkhoff accuracy stability

Outlook

other filter todo summary

$$\partial_t \hat{m} = -\delta \mathcal{A} \hat{m} + \mathcal{B}(\hat{m}, \hat{m}) + f + \omega \mathcal{A}^{-2\alpha} P_{\lambda} [u - \hat{m} + \sigma \mathcal{A}^{-\beta} \partial_t W]$$

Parameter: λ large $\alpha = 1/2$ $\omega = 100$ $\beta = 0$ $\sigma = 0.005$

Spit step method

Pseudospectral method for Navier Stokes equation, using higher order method in time

Euler-Maruyama discretization for the OU-process (linear equation with noise)

Attractivity of the observer 3 Fourier modes & relative error

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observer

Numerics

attractivity

stability

Forward

accuracy stability

Pull-back

transformati Birkhoff accuracy stability

Outlook

other filter todo summary

Stability of the observer 3 Fourier modes & relative error

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observer

Numerics

attractivity

stability

Forward accuracy stability

Pull-back

transformati Birkhoff accuracy stability

Outlook

other filter todo summary

Stability of the observer

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisv observer

Numerics

attractivity

stability

Forward

accuracy

Pull-back

transformation Birkhoff accuracy stability

Outlook

other filter todo summary

Relative error of an ensemble of trajectories.

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observer

Numerics

attractivity stability

Forward

accuracy stability

Pull-back

transformation Birkhoff accuracy stability

Outlook

other filter todo summary

Results forward in time mean square & in probability

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observer

Numerics

attractivity stability

Forward

accuracy

stability

Pull-back

transformation Birkhoff accuracy stability

Outlook

other filter todo summary

Only in mean square – no almost sure results expected

$$\mathbb{E}|u(t) - \hat{m}(t)|^2 = \mathcal{O}(\text{noise-strength}^2) \quad \text{for } t \to \infty$$

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observer

Numerics

attractivity stability

Forward

accuracy

stability

Pull-back

transformatic Birkhoff accuracy stability

Outlook

other filter todo summary Only in mean square – no almost sure results expected

$$\mathbb{E}|u(t) - \hat{m}(t)|^2 = \mathcal{O}(\text{noise-strength}^2) \quad \text{for } t \to \infty$$

Conjectures:

 $\liminf_{t\to\infty} \ \mathbb{P} \big(\hat{m}(t) \in B \big) > 0$

and

$$\mathbb{P}\big(\exists t > 0 : \hat{m}(t) \in B\big) = 1$$

for all open $B \subset \mathcal{H}$

Well known for stochastic Navier-Stokes [Hairer, Mattingly 06].

3DVAR for 2D-NS

Dirk Blömker

Assumption on γ :

 $\gamma |h|^2 \leq 2\omega |\mathcal{A}^{-\alpha} P_{\lambda} h|^2 + \delta |\mathcal{A}^{1/2} h|^2 \quad \forall h.$

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observer

Numerics

attractivity stability

Forward

accuracy

stability

Pull-back

transformation Birkhoff accuracy stability

Outlook

other filter todo summary

[BLSZ12]

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observer

Numerics

attractivity stability

Forward accuracy

stability

Pull-back

transformatio Birkhoff accuracy stability

Outlook

other filter todo summary

Assumption on γ :

$$\gamma |h|^2 \le 2\omega |\mathcal{A}^{-\alpha} P_{\lambda} h|^2 + \delta |\mathcal{A}^{1/2} h|^2 \quad \forall h.$$

Theorem

Suppose
$$\gamma = KR\delta^{-1} + \gamma_0$$
 for some $\gamma_0 > 0$,

where K is a constant defined by \mathcal{B} and the bound on u. Then

$$\mathbb{E}|\hat{m}(t)-u(t)|^2 \leq \mathrm{e}^{-\gamma_0 t}|\hat{m}(0)-u(0)|^2 + \omega^2 \sigma^2 \frac{1}{\gamma_0} \cdot \mathrm{tr} \left(\mathcal{A}^{-4\alpha-2\beta} P_{\lambda} \right).$$

Consequence: $\limsup_{t\to\infty} \mathbb{E}|\hat{m}(t) - u(t)|^2 = \mathcal{O}(\sigma^2).$

[BLSZ12]

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observer

Numerics

attractivity stability

Forward accuracy

stability

Pull-back

transformatio Birkhoff accuracy stability

Outlook

other filter todo summary

Assumption on γ :

$$\gamma |h|^2 \leq 2\omega |\mathcal{A}^{-\alpha} P_{\lambda} h|^2 + \delta |\mathcal{A}^{1/2} h|^2 \quad \forall h.$$

Theorem

ç

Suppose
$$\gamma = KR\delta^{-1} + \gamma_0$$
 for some $\gamma_0 > 0$,

where K is a constant defined by \mathcal{B} and the bound on u. Then

$$\mathbb{E}|\hat{m}(t)-u(t)|^2 \leq \mathrm{e}^{-\gamma_0 t}|\hat{m}(0)-u(0)|^2 + \omega^2 \sigma^2 \frac{1}{\gamma_0} \cdot \mathrm{tr} \left(\mathcal{A}^{-4\alpha-2\beta} P_{\lambda} \right).$$

Consequence: $\limsup_{t\to\infty} \mathbb{E}|\hat{m}(t) - u(t)|^2 = \mathcal{O}(\sigma^2).$ **Proof** based on Itô-formula – SPDE for the error $\mathbf{e} = u - \hat{m}$

Forward Stability

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observer

Numerics attractivity

Forward accuracy stability

Pull-back

transformatio Birkhoff accuracy stability

Outlook

other filter todo summary

Assume
$$R' = \sup_{t \in \mathbb{R}} |f + \omega \mathcal{A}^{-2\alpha} P_{\lambda} u|_{\mathcal{H}^{-1}}^2 < \infty$$

and define
$$R'' = \frac{K}{\delta^2} R' + \frac{K}{\delta} \omega^2 \sigma^2 \operatorname{tr} \left(\mathcal{A}^{-4\alpha - 2\beta} P_{\lambda} \right) < \infty$$

Theorem

 $\hat{m}_i \text{ trajectories of observer; initial condition } \hat{m}(0) = \hat{m}_i(0).$ Suppose $\gamma = R'' + \gamma_0$ for some $\gamma_0 > 0.$ Then for all $\eta \in (0, \gamma_0)$ $|\hat{m}_1(t) - \hat{m}_2(t)| e^{\eta t} \to 0$ in probability as $t \to \infty$.

Universität

[BLSZ12]

Key: $\mathbb{P}(\frac{1}{t}\int_0^t \|\hat{m}_i(s)\|^2 ds \leq R'') \to 1 \text{ for } t \to \infty$.

Pull-Back Convergence

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observer

Numerics

attractivity stability

Forward

accuracy stability

Pull-back

transformation Birkhoff accuracy stability

Outlook

other filter todo summary

sending initial time to $-\infty$

almost sure and pathwise results

Transformation to a random PDE

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observer

Numerics

attractivity stability

Forward

accuracy stability

Pull-back

transformation

Birkhoff accuracy stability

Outlook

other filter todo summary

Define for
$$\Phi > 0$$
 and $\mathcal{W} = \omega \sigma \mathcal{A}^{-2\alpha - \beta} P_{\lambda} W$

$$Z_{\Phi}(W) = \int_{-\infty}^{0} e^{s(-\delta \mathcal{A} + \Phi)} d\mathcal{W}(s) \; .$$

The stationary OU-process

$$Z(t) = Z_{\Phi}(\vartheta_t W) = \int_{-\infty}^t e^{(t-s)(-\delta \mathcal{A} + \Phi)} d\mathcal{W}(s)$$

with measure preserving ergodic shift

$$\vartheta_t W = W(t+\cdot) - W(t)$$

solving
$$dZ = (-\delta \mathcal{A} + \Phi)Z dt + d\mathcal{W}$$

Transformation to a random PDE e.g. [Crauel, Debussche, Flandoli, 97]

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observer

Numerics

attractivity stability

Forward

stability

Pull-back

transformation

Birkhoff accuracy stability

Outlook

other filte todo summary

Define
$$v(t) = S(t, s, W)\hat{m}_0 - Z(t)$$
, which solves

$$\partial_t v = -\delta \mathcal{A}v + \mathcal{B}(v, v) + f +2\mathcal{B}(v, Z) + \mathcal{B}(Z, Z) + \omega \mathcal{A}^{-2\alpha}(u - v - Z) - \phi Z$$

Existence & Uniqueness of solutions is standard using pathwise PDE-results (needed for generation of SDS)

Bounds on v using standard energy type methods & Gronwalls inequality

Birkhoff's ergodic theorem

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observer

Numerics

attractivity stability

Forward

accuracy stability

Pull-back

transformation Birkhoff accuracy stability

Outlook

other filter todo summary For bounds on v we need bounds on integrals over $Z(t) = Z_{\Phi}(\vartheta_t W)$ inside exponentials.

Theorem

$$\frac{1}{t-s} \int_{s}^{t} \|Z_{\Phi}(\vartheta_{\tau}W)\|^{2} d\tau \to \mathbb{E} \|Z_{\Phi}\|^{2} \quad \text{as} \quad s \to -\infty$$

where
$$\mathbb{E} \| Z_{\Phi} \|^2 \to 0$$
 for $\Phi \to \infty$

Accuracy

[BLSZ12]

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observer

Numerics

attractivity stability

Forward accuracy

stability

Pull-back

transformation Birkhoff

accuracy stability

Outlook

other filte todo summary Assume $K\delta^{-1}(17\mathbb{E}||Z_{\phi}||^2 + 16R) < \gamma$. (not optimal)

Theorem (Pull-Back Accuracy)

There is a random radius r(W) > 0 such that for all \hat{m}_0

$$\limsup_{s \to -\infty} |S(t, s, W)\hat{m}_0 - u(t) - Z_{\phi}(\vartheta_t W)|^2 \le r(\vartheta_t W) .$$

with an almost surely finite constant

Accuracy

[BLSZ12]

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observer

Numerics

attractivity stability

Forward accuracy stability

Pull-back

transformatior Birkhoff

accuracy stability

Outlook

other filte todo summary Assume $K\delta^{-1}(17\mathbb{E}||Z_{\phi}||^2 + 16R) < \gamma$. (not optimal)

Theorem (Pull-Back Accuracy)

There is a random radius r(W) > 0 such that for all \hat{m}_0

$$\limsup_{s \to -\infty} |S(t, s, W)\hat{m}_0 - u(t) - Z_{\phi}(\vartheta_t W)|^2 \le r(\vartheta_t W) .$$

with an almost surely finite constant (due to Birkhoff)

$$r(W) = \frac{4}{\delta} \int_{-\infty}^{0} \exp\left(\int_{\tau}^{0} \left(16K\delta^{-1}(\|Z\|^{2} + R) - \gamma\right) d\eta\right) \mathcal{T}^{2} d\tau ,$$

where $\mathcal{T} := K \|Z\| (\|Z\| + 2R^{1/2}) + \phi |Z| + \omega |\mathcal{A}^{-2\alpha} P_{\lambda} Z|.$

Idea of Proof: Bounds on v - u using the PDEs.

Conclusion

3DVAR for 2D-NS

Dirk Blömker

Introduction

Navier-Stokes 3DVAR noisy observer

Numerics

attractivity stability

Forward

accuracy stability

Pull-back

transformation Birkhoff

accuracy stability

Outlook

other filter todo summary

As
$$r(W) \approx \mathcal{O}(||Z||^2) \approx \mathcal{O}(\sigma^2)$$
:

$$S(t, s, W)\hat{m}_0 - u(t) = v(t) - u(t) + Z_{\phi}(\vartheta_t W)$$
$$= \mathcal{O}(||Z||^2) + Z_{\phi}(\vartheta_t W)$$
$$= \mathcal{O}(\sigma)$$

Thus we verified accuracy for the observer.

Birkhoff bounds

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observer

Numerics

attractivit stability

Forward

accuracy stability

Pull-back

transformatio Birkhoff accuracy stability

Outlook

other filter todo summary

For stability we assume:

 $\gamma>0$ is sufficiently large that for some $\eta>0$

$$\limsup_{s \to -\infty} \frac{1}{t-s} \int_s^t \|S(\tau, s, W) \hat{m}_0^{(1)}\|^2 d\tau < \frac{\gamma - 2\eta}{4K} \delta$$

Not proved. Should be possible, by varying $\Phi = \Phi(W)$ [Stannat, Es-Sahir 11], [Flandoli, Gatarek 95] Also method in [Chueshov, Duan, Schmalfuss 03] might work. Technical Problem:

r(W) does not satisfy Birkhoff-theorem $(\mathbb{E}r=\infty)$

Stability

[BLSZ12]

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observer

Numerics

attractivity stability

Forward

accuracy stability

Pull-back

transformatic Birkhoff accuracy stability

Outlook

other filter todo summary

Theorem (Pull-Back Accuracy) Assume one initial condition $\hat{m}_0^{(1)} \in \mathcal{H}$ satisfies Birkhoff-bounds. Let $\hat{m}_0^{(2)} \in \mathcal{H}$ be any other initial condition. Then

$$\lim_{s \to -\infty} |S(t, s, W)\hat{m}_0^{(1)} - S(t, s, W)\hat{m}_0^{(2)}| \cdot e^{\eta(t-s)} = 0.$$

Stability

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observer

Numerics

attractivity stability

Forward

accuracy stability

Pull-back

transformation Birkhoff accuracy stability

Outlook

other filter todo summary

Theorem (Pull-Back Accuracy) [BLSZ12] Assume one initial condition $\hat{m}_0^{(1)} \in \mathcal{H}$ satisfies Birkhoff-bounds. Let $\hat{m}_0^{(2)} \in \mathcal{H}$ be any other initial condition. Then $\lim_{s \to -\infty} |S(t, s, W) \hat{m}_0^{(1)} - S(t, s, W) \hat{m}_0^{(2)}| \cdot e^{\eta(t-s)} = 0.$

Idea of proof: random PDE for $e = \hat{m}^{(1)} - \hat{m}^{(2)}$ energy type estimates – Gronwall's Lemma – Birkhoff bounds for integrals on Z and $\hat{m}^{(1)}$ in the exponential....

Generalized Observer I

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observer

Numerics

attractivi stability

Forward

accuracy stability

Pull-back

transformation Birkhoff accuracy stability

Outlook

other filter todo

summary

Other filter lead in the limit of high frequency observations to

$$\partial_t \hat{m} = -\delta \mathcal{A} \hat{m} + \mathcal{B}(\hat{m}, \hat{m}) + CP\Gamma^{-1}P(u - \hat{m}) + CP\Gamma^{-\frac{1}{2}}\partial_t W$$

$$\partial_t C = LC + CL^* - CP\Gamma^{-1}PC$$

- **Γ** operator determined by observational noise
- \blacksquare linear operators L determined as part of the filter
- P projects onto the observed modes
- \blacksquare C is a covariance operator (symmetric, trace-class)

Generalized Observer I

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observer

Numerics

attractivit stability

Forward

accuracy stability

Pull-back

transformati Birkhoff accuracy stability

Outlook

other filter todo summary

Other filter lead in the limit of high frequency observations to

$$\partial_t \hat{m} = -\delta \mathcal{A} \hat{m} + \mathcal{B}(\hat{m}, \hat{m}) + CP\Gamma^{-1}P(u - \hat{m}) + CP\Gamma^{-\frac{1}{2}}\partial_t W$$

$$\partial_t C = LC + CL^* - CP\Gamma^{-1}PC$$

- **Γ** operator determined by observational noise
- \blacksquare linear operators L determined as part of the filter
- *P* projects onto the observed modes
- C is a covariance operator (symmetric, trace-class)

Observation: If the Ricatti-type equation has an attracting stable steady state for C, then this algorithm simply converges to 3DVAR algorithm.

Generalized Observer II

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up Navier-Stokes

3DVAR noisy observer

Numerics

attractivity stability

Forward

accuracy stability

Pull-back

transformatic Birkhoff accuracy stability

Outlook

other filter todo

$$\partial_t \hat{m} = -\delta \mathcal{A} \hat{m} + \mathcal{B}(\hat{m}, \hat{m}) + CP\Gamma^{-1}P(u - \hat{m}) + CP\Gamma^{-\frac{1}{2}}\partial_t W$$

$$\partial_t C = LC + CL^* - CP\Gamma^{-1}PC$$

Problem:

For filters like the extended Kalman Filter we have

$$L = -\delta \mathcal{A} + 2\mathcal{B}(\hat{m}, \cdot)$$

and thus coupled equations.

Remarks

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observer

Numerics

attractivit stability

Forward

accuracy stability

Pull-back

transformati Birkhoff accuracy stability

Outlook

other filter todo summary

- Proof of the high frequency limit? Convergence of the Euler-Maruyama scheme!?
- General solutions u, non-autonomous f? We only needs boundedness of u for $t \to \infty$ (or $s \to -\infty$)
- Other types of equations/models?
 Proofs use only local and one-sided Lipschitz conditions.
- Birkhoff bounds ???
- stability & accuracy for generalized observer ??? only partial ideas – work in progress

Summary

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observer

Numerics

attractivit stability

Forward

accuracy stability

Pull-back

transformation Birkhoff accuracy stability

Outlook

other filter todo summary

- Study Filter in the high frequency limit
- Stability & Accuracy via continuous time filter/observer
- 2D Navier-Stokes & 3DVAR as first example

Summary

3DVAR for 2D-NS

Dirk Blömker

Introduction

Set-Up

Navier-Stokes 3DVAR noisy observe

Numerics

attractivit stability

Forward

accuracy stability

Pull-back

transformatio Birkhoff accuracy stability

Outlook

other filter todo summary

- Study Filter in the high frequency limit
- Stability & Accuracy via continuous time filter/observer
- 2D Navier-Stokes & 3DVAR as first example

Thank you very much for you attention!