Finite time extinction for stochastic sign fast diffusion and self-organized criticality.

Benjamin Gess

Fakultät für Mathematik
Universität Bielefeld
Sixth Workshop on Random Dynamical Systems, Bielefeld, October 2013
preprint:[arXiv:1310.6971].

Outline

(1) Self-organized criticality
(2) Derivation of the BTW model from a cellular automaton
(3) Finite time extinction and self-organized criticality

4 Finite time extinction for stochastic BTW

Self-organized criticality

Self-organized criticality

Self-organized criticality

- Many (complex) systems in nature exhibit power law scaling: The number of an event $N(s)$ scales with the event size s as

$$
N(s) \sim s^{-\alpha}
$$

- For example:

earthquakes	50 largest cities in the USA

Self-organized criticality

- Many (complex) systems in nature exhibit power law scaling: The number of an event $N(s)$ scales with the event size s as

$$
N(s) \sim s^{-\alpha}
$$

- For example:

earthquakes	50 largest cities in the USA

Self-organized criticality

- Phase-transitions: The Ising model, ferromagnetism
- Critical temperature $T=T_{c}$:
- strongly correlated: small perturbations can have global effects
- no specific length scale (complex system, criticality)
- Observe: For $T=T_{c}$, power-law scaling for $N(s)$ being the number of +1 clusters of size s.

Self-organized criticality

- Phase-transitions: The Ising model, ferromagnetism
- Critical temperature $T=T_{c}$:
- strongly correlated: small perturbations can have global effects
- no specific length scale (complex system, criticality)
- Observe: For $T=T_{c}$, power-law scaling for $N(s)$ being the number of +1 clusters of size s.

Self-organized criticality

- Phase-transitions: The Ising model, ferromagnetism
- Critical temperature $T=T_{c}$:
- strongly correlated: small perturbations can have global effects
- no specific length scale (complex system, criticality)
- Observe: For $T=T_{c}$, power-law scaling for $N(s)$ being the number of +1 clusters of size s.

Self-organized criticality

- Ising model needs precise tuning $T=T_{c}$ to display power law scaling
- How can this occur in nature?
- Idea of self-organized criticality: [Bantay, lanosi; Physica A, 1992]
"Criticality" refers to the power-law behavior of the spatial and temporal distributions, characteristic of critical phenomena. "Self-organized" refers to the fact that these systems naturally evolve into a critical state without any tuning of the external parameters, i.e. the critical state is an attractor of the dynamics.
- Bak, Tang, Wiesenfeld: Sandpile as a toy model of self-organized criticality

Self-organized criticality

- Ising model needs precise tuning $T=T_{c}$ to display power law scaling
- How can this occur in nature?
- Idea of self-organized criticality: [Bantay, lanosi; Physica A, 1992] "Criticality" refers to the power-law behavior of the spatial and temporal distributions, characteristic of critical phenomena. "Self-organized" refers to the fact that these systems naturally evolve into a critical state without any tuning of the external parameters, i.e. the critical state is an attractor of the dynamics.
- Bak, Tang, Wiesenfeld: Sandpile as a toy model of self-organized criticality

Self-organized criticality

- Ising model needs precise tuning $T=T_{c}$ to display power law scaling
- How can this occur in nature?
- Idea of self-organized criticality: [Bantay, lanosi; Physica A, 1992]
"Criticality" refers to the power-law behavior of the spatial and temporal distributions, characteristic of critical phenomena.
"Self-organized" refers to the fact that these systems naturally evolve into a critical state without any tuning of the external parameters, i.e. the critical state is an attractor of the dynamics.

Self-organized criticality

- Ising model needs precise tuning $T=T_{c}$ to display power law scaling
- How can this occur in nature?
- Idea of self-organized criticality: [Bantay, lanosi; Physica A, 1992]
"Criticality" refers to the power-law behavior of the spatial and temporal distributions, characteristic of critical phenomena. "Self-organized" refers to the fact that these systems naturally evolve into a critical state without any tuning of the external parameters, i.e. the critical state is an attractor of the dynamics.
- Bak, Tang, Wiesenfeld: Sandpile as a toy model of self-organized criticality

Sandpiles

- Two scales: Slow energy injection (adding sand), fast energy diffusion (avalanches)
- Criticality: No typical avalanche size, local perturbation may have global effects
- Pomer law scaling: $N(s)$ is the number of valances of size s.

Number of Sites Involved in Avalanche

Sandpiles

- Two scales: Slow energy injection (adding sand), fast energy diffusion (avalanches)
- Criticality: No typical avalanche size, local perturbation may have global effects
- Power law scaling: $N(s)$ is the number of valances of size s.

Number of Sites Involved in Avalanche

Sandpiles

- Two scales: Slow energy injection (adding sand), fast energy diffusion (avalanches)
- Criticality: No typical avalanche size, local perturbation may have global effects
- Power law scaling: $N(s)$ is the number of valances of size s.

Derivation of the BTW model from a cellular automaton

Derivation of the BTW model from a cellular automaton

Cellular automata model

- The following model goes back to [Bantay, lanosi; Physica A, 1992].
- Aim: Define a cellular automaton displaying SOC.
- Consider an $N \times N$ square lattice, representing a discrete region $\mathscr{O}=\{(i, j)\}_{i, j=1}^{N}$
- At each site (i, j) the height of the sandpile at time t is $h_{i j}^{t}$.
- The system is perturbed externally until the height h exceeds a threshold (critical) value h^{c}

Cellular automata model

- The following model goes back to [Bantay, lanosi; Physica A, 1992].
- Aim: Define a cellular automaton displaying SOC.
- Consider an $N \times N$ square lattice, representing a discrete region $\mathscr{O}=\{(i, j)\}_{i, j=1}^{N}$
- At each site (i, j) the height of the sandpile at time t is $h_{i j}^{t}$.
- The system is perturbed externally until the height h exceeds a threshold (critical) value h^{c}.

Cellular automata model

- The following model goes back to [Bantay, lanosi; Physica A, 1992].
- Aim: Define a cellular automaton displaying SOC.
- Consider an $N \times N$ square lattice, representing a discrete region $\mathscr{O}=\{(i, j)\}_{i, j=1}^{N}$.
- At each site (i, j) the height of the sandpile at time t is $h_{i j}^{\mathrm{t}}$.
- The system is perturbed externally until the height h exceeds a threshold (critical) value h^{c}.

Cellular automata model

- The following model goes back to [Bantay, lanosi; Physica A, 1992].
- Aim: Define a cellular automaton displaying SOC.
- Consider an $N \times N$ square lattice, representing a discrete region $\mathscr{O}=\{(i, j)\}_{i, j=1}^{N}$.
- At each site (i, j) the height of the sandpile at time t is $h_{i j}^{t}$.

Cellular automata model

- The following model goes back to [Bantay, lanosi; Physica A, 1992].
- Aim: Define a cellular automaton displaying SOC.
- Consider an $N \times N$ square lattice, representing a discrete region $\mathscr{O}=\{(i, j)\}_{i, j=1}^{N}$.
- At each site (i, j) the height of the sandpile at time t is $h_{i j}^{t}$.
- The system is perturbed externally until the height h exceeds a threshold (critical) value h^{c}.

Cellular automata model

- The following model goes back to [Bantay, lanosi; Physica A, 1992].
- Aim: Define a cellular automaton displaying SOC.
- Consider an $N \times N$ square lattice, representing a discrete region $\mathscr{O}=\{(i, j)\}_{i, j=1}^{N}$.
- At each site (i, j) the height of the sandpile at time t is $h_{i j}^{t}$.
- The system is perturbed externally until the height h exceeds a threshold (critical) value h^{c}.

Cellular automata model

- Then, a toppling (avalanche) event occurs: The toppling at any 'activated' site (k, l) is described by:

$$
h_{i j}^{t+1} \rightarrow h_{i j}^{t}-M_{i j}^{k l}, \quad \forall(i, j) \in \mathscr{O}
$$

where

$$
M_{i j}^{k l}= \begin{cases}4 & (k, l)=(i, j) \\ -1 & (k, l) \sim(i, j) \\ 0 & \text { otherwise }\end{cases}
$$

- Rewrite as:

where H is the Heaviside function.
- The avalanches are continued until no site exceeds the threshold (which obviously happens after finitely many steps)

Cellular automata model

- Then, a toppling (avalanche) event occurs: The toppling at any 'activated' site (k, l) is described by:

$$
h_{i j}^{t+1} \rightarrow h_{i j}^{t}-M_{i j}^{k l}, \quad \forall(i, j) \in \mathscr{O}
$$

where

$$
M_{i j}^{k \prime}= \begin{cases}4 & (k, l)=(i, j) \\ -1 & (k, l) \sim(i, j) \\ 0 & \text { otherwise } .\end{cases}
$$

- Rewrite as:

$$
h_{i j}^{t+1}-h_{i j}^{t}=-M_{i j}^{k l} H\left(h_{i j}^{t}-h_{i j}^{c}\right), \quad \forall(i, j) \in \mathscr{O},
$$

where H is the Heaviside function.

- The avalanches are continued until no site exceeds the threshold (which obviously happens after finitely many steps).

Cellular automata model

- Then, a toppling (avalanche) event occurs: The toppling at any 'activated' site (k, l) is described by:

$$
h_{i j}^{t+1} \rightarrow h_{i j}^{t}-M_{i j}^{k l}, \quad \forall(i, j) \in \mathscr{O}
$$

where

$$
M_{i j}^{k \prime}= \begin{cases}4 & (k, l)=(i, j) \\ -1 & (k, l) \sim(i, j) \\ 0 & \text { otherwise } .\end{cases}
$$

- Rewrite as:

$$
h_{i j}^{t+1}-h_{i j}^{t}=-M_{i j}^{k l} H\left(h_{i j}^{t}-h_{i j}^{c}\right), \quad \forall(i, j) \in \mathscr{O},
$$

where H is the Heaviside function.

- The avalanches are continued until no site exceeds the threshold (which obviously happens after finitely many steps).

Cellular automata model

- As an example:

0	3		3	8
3	3	3	9	
。	3	3	3	3
8	$\stackrel{ }{ }$	3	3	\cdots
	3	3	。	3

$$
K<\Delta \Delta \ggg \mid-\cdots+
$$

Continuum limit

- Passing to a continuum limit in

$$
h_{i j}^{t+1}-h_{i j}^{t}=-M_{i j}^{k l} H\left(h_{i j}^{t}-h_{i j}^{c}\right), \quad \forall(i, j) \in \mathscr{O},
$$

gives (informally)

$$
\frac{\partial}{\partial t} X(t, \xi)=\Delta H\left(X(t, \xi)-X^{c}(\xi)\right),
$$

where X is the continuous height-density function.

- In addition we impose zero Dirichlet boundary conditions:

$$
H\left(X(t, \xi)-X^{c}(\xi)\right)=0, \quad \text { on } \partial \mathscr{O} .
$$

- Note: Only the relaxation/diffusion part modeled here. For full SOC-model we would have to include the external, random energy input.

Continuum limit

- Passing to a continuum limit in

$$
h_{i j}^{t+1}-h_{i j}^{t}=-M_{i j}^{k l} H\left(h_{i j}^{t}-h_{i j}^{c}\right), \quad \forall(i, j) \in \mathscr{O},
$$

gives (informally)

$$
\frac{\partial}{\partial t} X(t, \xi)=\Delta H\left(X(t, \xi)-X^{c}(\xi)\right)
$$

where X is the continuous height-density function.

- In addition we impose zero Dirichlet boundary conditions:

$$
H\left(X(t, \xi)-X^{c}(\xi)\right)=0, \quad \text { on } \partial \mathscr{O} .
$$

- Note: Only the relaxation/diffusion part modeled here. we would have to include the external, random energy input.

Continuum limit

- Passing to a continuum limit in

$$
h_{i j}^{t+1}-h_{i j}^{t}=-M_{i j}^{k l} H\left(h_{i j}^{t}-h_{i j}^{c}\right), \quad \forall(i, j) \in \mathscr{O},
$$

gives (informally)

$$
\frac{\partial}{\partial t} X(t, \xi)=\Delta H\left(X(t, \xi)-X^{c}(\xi)\right)
$$

where X is the continuous height-density function.

- In addition we impose zero Dirichlet boundary conditions:

$$
H\left(X(t, \xi)-X^{c}(\xi)\right)=0, \quad \text { on } \partial \mathscr{O}
$$

- Note: Only the relaxation/diffusion part modeled here. For full SOC-model we would have to include the external, random energy input.

Finite time extinction and SOC

Finite time extinction and self-organized criticality

Finite time extinction and SOC

- Question: Do avalanches end in finite time?
- Recall:

$$
\frac{\partial}{\partial t} X(t, \xi)=\Delta H\left(X(t, \xi)-X^{c}(\xi)\right)
$$

- We will restrict to the supercritical case, i.e. supposing $x_{0} \geq X^{c}$
- Substituting $X \rightarrow X-X^{c}$ and using $X \geq 0$ yields

$$
\begin{aligned}
\frac{\partial}{\partial t} X(t, \xi) & =\Delta \operatorname{sgn}(X(t, \xi)) \\
X(0, \xi) & =x_{0}(\xi)
\end{aligned}
$$

with $x_{0} \geq 0$ and zero Dirichlet boundary conditions:

$$
\operatorname{sgn}(x(t, \xi))=0, \quad \text { on } \partial \mathscr{O}
$$

- Informally:

- Avalanches end in finite time $=$ Finite time extinction,

Finite time extinction and SOC

- Question: Do avalanches end in finite time?
- Recall:

$$
\frac{\partial}{\partial t} X(t, \xi)=\Delta H\left(X(t, \xi)-X^{c}(\xi)\right)
$$

- We will restrict to the supercritical case, i.e. supposing $x_{0} \geq X^{c}$
- Substituting $X \rightarrow X-X^{c}$ and using $X \geq 0$ yields

$$
\begin{aligned}
\frac{\partial}{\partial t} X(t, \xi) & =\Delta \operatorname{sgn}(X(t, \xi)), \\
X(0, \xi) & =x_{0}(\xi)
\end{aligned}
$$

with $x_{0} \geq 0$ and zero Dirichlet boundary conditions:

$$
\operatorname{sgn}(X(t, \xi))=0 \quad \text { on } \partial \mathscr{O} \text {. }
$$

- Informally:

Finite time extinction and SOC

- Question: Do avalanches end in finite time?
- Recall:

$$
\frac{\partial}{\partial t} X(t, \xi)=\Delta H\left(X(t, \xi)-X^{c}(\xi)\right)
$$

- We will restrict to the supercritical case, i.e. supposing $x_{0} \geq X^{c}$.
- Substituting
and using $X \geq 0$ yields

$X(0, \xi)=x_{0}(\xi)$
with $x_{0} \geq 0$ and zero Dirichlet boundary conditions:

- Informally:

Finite time extinction and SOC

- Question: Do avalanches end in finite time?
- Recall:

$$
\frac{\partial}{\partial t} X(t, \xi)=\Delta H\left(X(t, \xi)-X^{c}(\xi)\right)
$$

- We will restrict to the supercritical case, i.e. supposing $x_{0} \geq X^{c}$.
- Substituting $X \rightarrow X-X^{c}$ and using $X \geq 0$ yields

$$
\begin{aligned}
\frac{\partial}{\partial t} X(t, \xi) & =\Delta \operatorname{sgn}(X(t, \xi)) \\
X(0, \xi) & =x_{0}(\xi)
\end{aligned}
$$

with $x_{0} \geq 0$ and zero Dirichlet boundary conditions:

$$
\operatorname{sgn}(X(t, \xi))=0, \quad \text { on } \partial \mathscr{O} .
$$

- Informally:

Finite time extinction and SOC

- Question: Do avalanches end in finite time?
- Recall:

$$
\frac{\partial}{\partial t} X(t, \xi)=\Delta H\left(X(t, \xi)-X^{c}(\xi)\right)
$$

- We will restrict to the supercritical case, i.e. supposing $x_{0} \geq X^{c}$.
- Substituting $X \rightarrow X-X^{c}$ and using $X \geq 0$ yields

$$
\begin{aligned}
\frac{\partial}{\partial t} X(t, \xi) & =\Delta \operatorname{sgn}(X(t, \xi)) \\
X(0, \xi) & =x_{0}(\xi)
\end{aligned}
$$

with $x_{0} \geq 0$ and zero Dirichlet boundary conditions:

$$
\operatorname{sgn}(X(t, \xi))=0, \quad \text { on } \partial \mathscr{O} .
$$

- Informally:

$$
\Delta \operatorname{sgn}(X)=\delta_{0}(X) \Delta X+\operatorname{sgn}^{\prime \prime}(X)|\nabla X|^{2} .
$$

Finite time extinction and SOC

- Question: Do avalanches end in finite time?
- Recall:

$$
\frac{\partial}{\partial t} X(t, \xi)=\Delta H\left(X(t, \xi)-X^{c}(\xi)\right)
$$

- We will restrict to the supercritical case, i.e. supposing $x_{0} \geq X^{c}$.
- Substituting $X \rightarrow X-X^{c}$ and using $X \geq 0$ yields

$$
\begin{aligned}
\frac{\partial}{\partial t} X(t, \xi) & =\Delta \operatorname{sgn}(X(t, \xi)) \\
X(0, \xi) & =x_{0}(\xi)
\end{aligned}
$$

with $x_{0} \geq 0$ and zero Dirichlet boundary conditions:

$$
\operatorname{sgn}(X(t, \xi))=0, \quad \text { on } \partial \mathscr{O} .
$$

- Informally:

$$
\Delta \operatorname{sgn}(X)=\delta_{0}(X) \Delta X+\operatorname{sgn}^{\prime \prime}(X)|\nabla X|^{2}
$$

- Avalanches end in finite time $=$ Finite time extinction.

Finite time extinction for deterministic PDE

Finite time extinction for deterministic PDE

Finite time extinction for singular ODE

- Consider the singular ODE

$$
\dot{f}=-c f^{\alpha}, \quad \alpha \in(0,1), c>0 .
$$

- Then:

- We obtain

$$
f^{1-\alpha}(t)=f^{1-\alpha}(0)-(1-\alpha) c t
$$

which implies finite time extinction.

Finite time extinction for singular ODE

- Consider the singular ODE

$$
\dot{f}=-c f^{\alpha}, \quad \alpha \in(0,1), c>0
$$

- Then:

$$
\left(f^{1-\alpha}\right)^{\prime}=-(1-\alpha)
$$

- We obtain

which implies finite time extinction.

Finite time extinction for singular ODE

- Consider the singular ODE

$$
\dot{f}=-c f^{\alpha}, \quad \alpha \in(0,1), c>0
$$

- Then:

$$
\left(f^{1-\alpha}\right)^{\prime}=-(1-\alpha)
$$

- We obtain

$$
f^{1-\alpha}(t)=f^{1-\alpha}(0)-(1-\alpha) c t
$$

which implies finite time extinction.

Finite time extinction and SOC

- [Diaz, Diaz; CPDE, 1979] finite time extinction (FTE) was first proven for

$$
\frac{\partial}{\partial t} X(t, \xi)=\Delta \operatorname{sgn}(X(t, \xi))
$$

- In [Barbu; MMAS, 2012] another (more robust) approach based on energy methods was introduced.

Finite time extinction and SOC

- Informally the proof boils down to a combination of an L^{1} and an L^{∞} estimate of the solution:
- Informal L^{∞} estimate:

- Informal L^{1}-estimate:

for some (dimension dependent) $p>2$. Note: $\frac{2}{p}<1$.

Finite time extinction and SOC

- Informally the proof boils down to a combination of an L^{1} and an L^{∞} estimate of the solution:
- Informal L^{∞} estimate:

$$
\|X(t)\|_{\infty} \leq\left\|x_{0}\right\|_{\infty}, \quad \forall t \geq 0
$$

- Informal L^{1}-estimate:

for some (dimension dependent) $p>2$. Note: $\frac{2}{p}<1$.

Finite time extinction and SOC

- Informally the proof boils down to a combination of an L^{1} and an L^{∞} estimate of the solution:
- Informal L^{∞} estimate:

$$
\|X(t)\|_{\infty} \leq\left\|x_{0}\right\|_{\infty}, \quad \forall t \geq 0 .
$$

- Informal L^{1}-estimate:

$$
\begin{aligned}
\partial_{t} \int_{\mathscr{O}}|X(t, \xi)| d \xi & =\int_{\mathscr{O}} \operatorname{sgn}(X(t, \xi)) \Delta \operatorname{sgn}(X(t, \xi)) d \xi \\
& =-\int_{\mathscr{O}}|\nabla \operatorname{sgn}(X(t, \xi))|^{2} d \xi \\
& \leq-\left(\int_{\mathscr{O}}|\operatorname{sgn}(X(t, \xi))|^{p} d \xi\right)^{\frac{2}{\rho}} \\
& \leq-(|\{\xi \mid X(t, \xi) \neq 0\}|)^{\frac{2}{p}},
\end{aligned}
$$

for some (dimension dependent) $p>2$. Note: $\frac{2}{p}<1$.

Finite time extinction and SOC

- Observe

$$
\begin{aligned}
\int_{\mathscr{O}}|X(t, \xi)| d \xi & \leq\|X(t)\|_{\infty}|\{\xi \mid X(t, \xi) \neq 0\}| . \\
& \leq\left\|x_{0}\right\|_{\infty}|\{\xi \mid X(t, \xi) \neq 0\}| .
\end{aligned}
$$

- Using this above gives

- We are left with the singular ODE

for which we have seen that finite time extinction holds.

Finite time extinction and SOC

- Observe

$$
\begin{aligned}
\int_{\mathscr{O}}|X(t, \xi)| d \xi & \leq\|X(t)\|_{\infty}|\{\xi \mid X(t, \xi) \neq 0\}| . \\
& \leq\left\|x_{0}\right\|_{\infty}|\{\xi \mid X(t, \xi) \neq 0\}| .
\end{aligned}
$$

- Using this above gives

$$
\partial_{t} \int_{\mathscr{O}}|X(t, \xi)| d \xi \leq-\frac{1}{\left\|x_{0}\right\|_{\infty}^{\frac{2}{\mathscr{D}}}}\left(\int_{\mathscr{O}}|X(t, \xi)| d \xi\right)^{\frac{2}{\mathcal{P}}}
$$

- We are left with the singular ODE

Finite time extinction and SOC

- Observe

$$
\begin{aligned}
\int_{\mathscr{O}}|X(t, \xi)| d \xi & \leq\|X(t)\|_{\infty}|\{\xi \mid X(t, \xi) \neq 0\}| . \\
& \leq\left\|x_{0}\right\|_{\infty}|\{\xi \mid X(t, \xi) \neq 0\}| .
\end{aligned}
$$

- Using this above gives

$$
\partial_{t} \int_{\mathscr{O}}|X(t, \xi)| d \xi \leq-\frac{1}{\left\|x_{0}\right\|_{\infty}^{\frac{2}{P}}}\left(\int_{\mathscr{O}}|X(t, \xi)| d \xi\right)^{\frac{2}{\mathcal{P}}} .
$$

- We are left with the singular ODE

$$
\dot{f}=-c f^{\alpha}, \quad \alpha \in(0,1), c>0
$$

for which we have seen that finite time extinction holds.

Finite time extinction for stochastic BTW

Finite time extinction for stochastic BTW

The stochastic BTW model

- In [Díaz-Guilera; EPL (Europhysics Letters), 1994], [Giacometti, Diaz-Guilera; Phys. Rev. E, 1998], [Díaz-Guilera; Phys. Rev. A, 1992] it was pointed out that it is more realistic to include stochastic perturbations.
- This leads to SPDE of the form

with appropriate diffusion coefficients B
- We study linear multiplicative noise, i.e.

- Question: Do avalanches end in finite time?

The stochastic BTW model

- In [Díaz-Guilera; EPL (Europhysics Letters), 1994], [Giacometti, Diaz-Guilera; Phys. Rev. E, 1998], [Díaz-Guilera; Phys. Rev. A, 1992] it was pointed out that it is more realistic to include stochastic perturbations.
- This leads to SPDE of the form

$$
d X_{t}=\Delta H\left(X_{t}-X^{c}\right)+B\left(X_{t}-X^{c}\right) d W_{t},
$$

with appropriate diffusion coefficients B.

- We study linear multiplicative noise, i.e.

The stochastic BTW model

- In [Díaz-Guilera; EPL (Europhysics Letters), 1994], [Giacometti, Diaz-Guilera; Phys. Rev. E, 1998], [Díaz-Guilera; Phys. Rev. A, 1992] it was pointed out that it is more realistic to include stochastic perturbations.
- This leads to SPDE of the form

$$
d X_{t}=\Delta H\left(X_{t}-X^{c}\right)+B\left(X_{t}-X^{c}\right) d W_{t},
$$

with appropriate diffusion coefficients B.

- We study linear multiplicative noise, i.e.

$$
d X_{t}=\Delta H\left(X_{t}-X^{c}\right)+\sum_{k=1}^{N} f_{k}\left(X_{t}-X^{c}\right) d \beta_{t}^{k} .
$$

- Question: Do avalanches end in finite time?

The stochastic BTW model

- In [Díaz-Guilera; EPL (Europhysics Letters), 1994], [Giacometti, Diaz-Guilera; Phys. Rev. E, 1998], [Díaz-Guilera; Phys. Rev. A, 1992] it was pointed out that it is more realistic to include stochastic perturbations.
- This leads to SPDE of the form

$$
d X_{t}=\Delta H\left(X_{t}-X^{c}\right)+B\left(X_{t}-X^{c}\right) d W_{t},
$$

with appropriate diffusion coefficients B.

- We study linear multiplicative noise, i.e.

$$
d X_{t}=\Delta H\left(X_{t}-X^{c}\right)+\sum_{k=1}^{N} f_{k}\left(X_{t}-X^{c}\right) d \beta_{t}^{k}
$$

- Question: Do avalanches end in finite time?

The stochastic BTW model

- Recall:

$$
d X_{t}=\Delta \operatorname{sgn}\left(X_{t}\right)+\sum_{k=1}^{N} f_{k} X_{t} d \beta_{t}^{k},
$$

with zero Dirichlet boundary conditions.

- Finite time extinction can be reformulated in terms of the extinction time

$$
\tau_{0}(\omega):=\inf \left\{t \geq 0 \mid X_{t}(\omega)=0, \text { a.e. in } \mathscr{O}\right\}
$$

We distinguish the following concepts:
(F1) Extinction with positive probability for small initial conditions: $\mathbb{P}\left[\tau_{0}<\infty\right]>0$, for small $X_{0}=x_{0}$.
(F2) Extinction with positive probability: $\mathbb{P}\left[\tau_{0}<\infty\right]>0$, for all $X_{0}=x_{0}$. (F3) Finite time extinction: $\mathbb{P}\left[\tau_{0}<\infty\right]=1$, for all $X_{0}=x_{0}$

The stochastic BTW model

- Recall:

$$
d X_{t}=\Delta \operatorname{sgn}\left(X_{t}\right)+\sum_{k=1}^{N} f_{k} X_{t} d \beta_{t}^{k}
$$

with zero Dirichlet boundary conditions.

- Finite time extinction can be reformulated in terms of the extinction time

$$
\tau_{0}(\omega):=\inf \left\{t \geq 0 \mid X_{t}(\omega)=0, \text { a.e. in } \mathscr{O}\right\} .
$$

We distinguish the following concepts:
(F1) Extinction with positive probability for small initial conditions: $\mathbb{P}\left[\tau_{0}<\infty\right]>0$, for small $X_{0}=x_{0}$.
(F2) Extinction with positive probability: $\mathbb{P}\left[\tau_{0}<\infty\right]>0$, for all $X_{0}=x_{0}$. (F3) Finite time extinction: $\mathbb{P}\left[\tau_{0}<\infty\right]=1$, for all $X_{0}=x_{0}$.

The stochastic BTW model

- Recall:

$$
d X_{t}=\Delta \operatorname{sgn}\left(X_{t}\right)+\sum_{k=1}^{N} f_{k} X_{t} d \beta_{t}^{k}
$$

with zero Dirichlet boundary conditions.

- Finite time extinction can be reformulated in terms of the extinction time

$$
\tau_{0}(\omega):=\inf \left\{t \geq 0 \mid X_{t}(\omega)=0, \text { a.e. in } \mathscr{O}\right\} .
$$

We distinguish the following concepts:
(F1) Extinction with positive probability for small initial conditions: $\mathbb{P}\left[\tau_{0}<\infty\right]>0$, for small $X_{0}=x_{0}$.

The stochastic BTW model

- Recall:

$$
d X_{t}=\Delta \operatorname{sgn}\left(X_{t}\right)+\sum_{k=1}^{N} f_{k} X_{t} d \beta_{t}^{k}
$$

with zero Dirichlet boundary conditions.

- Finite time extinction can be reformulated in terms of the extinction time

$$
\tau_{0}(\omega):=\inf \left\{t \geq 0 \mid X_{t}(\omega)=0, \text { a.e. in } \mathscr{O}\right\} .
$$

We distinguish the following concepts:
(F1) Extinction with positive probability for small initial conditions:

$$
\mathbb{P}\left[\tau_{0}<\infty\right]>0, \text { for small } X_{0}=x_{0} .
$$

(F2) Extinction with positive probability: $\mathbb{P}\left[\tau_{0}<\infty\right]>0$, for all $X_{0}=x_{0}$.

The stochastic BTW model

- Recall:

$$
d X_{t}=\Delta \operatorname{sgn}\left(X_{t}\right)+\sum_{k=1}^{N} f_{k} X_{t} d \beta_{t}^{k}
$$

with zero Dirichlet boundary conditions.

- Finite time extinction can be reformulated in terms of the extinction time

$$
\tau_{0}(\omega):=\inf \left\{t \geq 0 \mid X_{t}(\omega)=0, \text { a.e. in } \mathscr{O}\right\} .
$$

We distinguish the following concepts:
(F1) Extinction with positive probability for small initial conditions:

$$
\mathbb{P}\left[\tau_{0}<\infty\right]>0, \text { for small } X_{0}=x_{0} .
$$

(F2) Extinction with positive probability: $\mathbb{P}\left[\tau_{0}<\infty\right]>0$, for all $X_{0}=x_{0}$.
(F3) Finite time extinction: $\mathbb{P}\left[\tau_{0}<\infty\right]=1$, for all $X_{0}=x_{0}$.

Some known results

- Existence and uniqueness of solutions to

$$
d X_{t} \in \Delta \phi\left(X_{t}\right) d t+\sum_{k=1}^{N} f_{k} X_{t} d \beta_{t}^{k}
$$

with ϕ being possibly multi-valued goes back to [Barbu, Da Prato, Röckner; CMP, 2009].

```
- In the same paper (F1) for the Zhang model is shown for d=1
- In [Barbu, Da Prato, Röckner; JMAA, 2012] this was extended to prove (F1)
for the BTW model for d=1
- In the recent work [Röckner, Wang; JLMS, 2013] finite time extinction for the
Zhang model has been solved.
```

- In case of additive noise

ergodicity has been shown for $d=1$ in [Gess, Tölle; JMPA, to appear].
- In [Barbu, Röckner; ARMA, 2013] (F1) has been shown for the related stochastic total variation flow for $d \leq 3$.

Some known results

- Existence and uniqueness of solutions to

$$
d X_{t} \in \Delta \phi\left(X_{t}\right) d t+\sum_{k=1}^{N} f_{k} X_{t} d \beta_{t}^{k}
$$

with ϕ being possibly multi-valued goes back to [Barbu, Da Prato, Röckner; CMP, 2009].

- In the same paper (F1) for the Zhang model is shown for $d=1$.
- In [Barbu, Da Prato, Röckner; JMAA, 2012] this was extended to prove (F1)
for the BTW model for $d=1$.
- In the recent work [Röckner, Wang; JLMS, 2013] finite time extinction for the
Zhang model has been solved.
- In case of additive noise

ergodicity has been shown for $d=1$ in [Gess, Tölle; JMPA, to appear].
- In [Barbu, Röckner: ARMA, 2013] (F1) has been shown for the related stochastic total variation flow for $d \leq 3$.

Some known results

- Existence and uniqueness of solutions to

$$
d X_{t} \in \Delta \phi\left(X_{t}\right) d t+\sum_{k=1}^{N} f_{k} X_{t} d \beta_{t}^{k}
$$

with ϕ being possibly multi-valued goes back to [Barbu, Da Prato, Röckner; CMP, 2009].

- In the same paper (F1) for the Zhang model is shown for $d=1$.
- In [Barbu, Da Prato, Röckner; JMAA, 2012] this was extended to prove (F1) for the BTW model for $d=1$.
- In case of additive noise

> ergodicity has been shown for $d=1$ in [Gess, Tölle; JMPA, to appear].
> - In [Barbu, Röckner; ARMA, 2013] (F1) has been shown for the related stochas-

Some known results

- Existence and uniqueness of solutions to

$$
d X_{t} \in \Delta \phi\left(X_{t}\right) d t+\sum_{k=1}^{N} f_{k} X_{t} d \beta_{t}^{k}
$$

with ϕ being possibly multi-valued goes back to [Barbu, Da Prato, Röckner; CMP, 2009].

- In the same paper (F1) for the Zhang model is shown for $d=1$.
- In [Barbu, Da Prato, Röckner; JMAA, 2012] this was extended to prove (F1) for the BTW model for $d=1$.
- In the recent work [Röckner, Wang; JLMS, 2013] finite time extinction for the Zhang model has been solved.
- In case of additive noise

Some known results

- Existence and uniqueness of solutions to

$$
d X_{t} \in \Delta \phi\left(X_{t}\right) d t+\sum_{k=1}^{N} f_{k} X_{t} d \beta_{t}^{k}
$$

with ϕ being possibly multi-valued goes back to [Barbu, Da Prato, Röckner; CMP, 2009].

- In the same paper (F1) for the Zhang model is shown for $d=1$.
- In [Barbu, Da Prato, Röckner; JMAA, 2012] this was extended to prove (F1) for the BTW model for $d=1$.
- In the recent work [Röckner, Wang; JLMS, 2013] finite time extinction for the Zhang model has been solved.
- In case of additive noise

$$
d X_{t} \in \Delta \operatorname{sgn}\left(X_{t}\right) d t+d W_{t}
$$

ergodicity has been shown for $d=1$ in [Gess, Tölle; JMPA, to appear].

Some known results

- Existence and uniqueness of solutions to

$$
d X_{t} \in \Delta \phi\left(X_{t}\right) d t+\sum_{k=1}^{N} f_{k} X_{t} d \beta_{t}^{k}
$$

with ϕ being possibly multi-valued goes back to [Barbu, Da Prato, Röckner; CMP, 2009].

- In the same paper (F1) for the Zhang model is shown for $d=1$.
- In [Barbu, Da Prato, Röckner; JMAA, 2012] this was extended to prove (F1) for the BTW model for $d=1$.
- In the recent work [Röckner, Wang; JLMS, 2013] finite time extinction for the Zhang model has been solved.
- In case of additive noise

$$
d X_{t} \in \Delta \operatorname{sgn}\left(X_{t}\right) d t+d W_{t}
$$

ergodicity has been shown for $d=1$ in [Gess, Tölle; JMPA, to appear].

- In [Barbu, Röckner; ARMA, 2013] (F1) has been shown for the related stochastic total variation flow for $d \leq 3$.

Main result

Theorem (Main result)
Let $x_{0} \in L^{\infty}(\mathscr{O}), X$ be the unique variational solution to $B T W$ and let

$$
\tau_{0}(\omega):=\inf \left\{t \geq 0 \mid X_{t}(\omega)=0, \text { for a.e. } \xi \in \mathscr{O}\right\} .
$$

Then finite time extinction holds, i.e.

$$
\mathbb{P}\left[\tau_{0}<\infty\right]=1
$$

Main result

Theorem (Main result)
Let $x_{0} \in L^{\infty}(\mathscr{O}), X$ be the unique variational solution to $B T W$ and let

$$
\tau_{0}(\omega):=\inf \left\{t \geq 0 \mid X_{t}(\omega)=0, \text { for a.e. } \xi \in \mathscr{O}\right\} .
$$

Then finite time extinction holds, i.e.

$$
\mathbb{P}\left[\tau_{0}<\infty\right]=1
$$

For every $p>\frac{d}{2} \vee 1$, the extinction time $\tau_{0}(\omega)$ may be chosen uniformly for x_{0} bounded in $L^{p}(\mathscr{O})$.

Transformation

- Recall:

$$
d X_{t}=\Delta \operatorname{sgn}\left(X_{t}\right)+\sum_{k=1}^{N} f_{k} X_{t} d \beta_{t}^{k},
$$

- Our approach to FTE will be based on considering the following transformation: Set $\mu_{t}:=\sum_{k=1}^{N} f_{k} \beta_{t}^{k}, \tilde{\mu}:=\sum_{k=1}^{N} f_{k}^{2}$ and $Y_{t}:=e^{-\mu_{t}} X_{t}$. An informal calculation shows

$$
\partial Y_{t} \in e^{\mu_{t}} \Delta \operatorname{sgn}\left(Y_{t}\right)-\tilde{\mu} Y_{t} .
$$

- Compare the deterministic setting:

$$
\partial Y_{t} \in \Delta \operatorname{sgn}\left(Y_{t}\right) .
$$

Transformation

- Recall:

$$
d X_{t}=\Delta \operatorname{sgn}\left(X_{t}\right)+\sum_{k=1}^{N} f_{k} X_{t} d \beta_{t}^{k}
$$

- Our approach to FTE will be based on considering the following transformation: Set $\mu_{t}:=\sum_{k=1}^{N} f_{k} \beta_{t}^{k}, \tilde{\mu}:=\sum_{k=1}^{N} f_{k}^{2}$ and $Y_{t}:=e^{-\mu_{t}} X_{t}$. An informal calculation shows

$$
\begin{equation*}
\partial Y_{t} \in e^{\mu_{t}} \Delta \operatorname{sgn}\left(Y_{t}\right)-\tilde{\mu} Y_{t} \tag{*}
\end{equation*}
$$

- Compare the deterministic setting:

Transformation

- Recall:

$$
d X_{t}=\Delta \operatorname{sgn}\left(X_{t}\right)+\sum_{k=1}^{N} f_{k} X_{t} d \beta_{t}^{k}
$$

- Our approach to FTE will be based on considering the following transformation: Set $\mu_{t}:=\sum_{k=1}^{N} f_{k} \beta_{t}^{k}, \tilde{\mu}:=\sum_{k=1}^{N} f_{k}^{2}$ and $Y_{t}:=e^{-\mu_{t}} X_{t}$. An informal calculation shows

$$
\begin{equation*}
\partial Y_{t} \in e^{\mu_{t}} \Delta \operatorname{sgn}\left(Y_{t}\right)-\tilde{\mu} Y_{t} \tag{*}
\end{equation*}
$$

- Compare the deterministic setting:

$$
\partial Y_{t} \in \Delta \operatorname{sgn}\left(Y_{t}\right)
$$

Outline of the proof

- There are two main ingredients of the proof:
(1) A uniform control on $\left\|X_{t}\right\|_{p}$ for all $p \geq 1$.
(2) An energy inequality for a weighted L^{1}-norm.
- On an intuitive level the arguments become clear by approximating

To make these arguments rigorous, in fact a different (non-singular, nondegenerate) approximation of sgn is used.

- In the following let Y_{t} be a solution to

Outline of the proof

- There are two main ingredients of the proof:
(1) A uniform control on $\left\|X_{t}\right\|_{p}$ for all $p \geq 1$.
(2) An energy inequality for a weighted L^{1}-norm.
- On an intuitive level the arguments become clear by approximating

$$
r^{[m]}:=|r|^{m-1} r \rightarrow \text { sgn, } \quad \text { for } m \downarrow 0
$$

To make these arguments rigorous, in fact a different (non-singular, nondegenerate) approximation of sgn is used.

- In the following let Y_{t} be a solution to

Outline of the proof

- There are two main ingredients of the proof:
(1) A uniform control on $\left\|X_{t}\right\|_{p}$ for all $p \geq 1$.
(2) An energy inequality for a weighted L^{1}-norm.
- On an intuitive level the arguments become clear by approximating

$$
r^{[m]}:=|r|^{m-1} r \rightarrow \text { sgn, } \quad \text { for } m \downarrow 0
$$

To make these arguments rigorous, in fact a different (non-singular, nondegenerate) approximation of sgn is used.

- In the following let Y_{t} be a solution to

$$
\partial_{t} Y_{t} \in e^{\mu_{t}} \Delta Y_{t}^{[m]}-\tilde{\mu} Y_{t}
$$

Step 1: Informal L^{p} bound

- Step 1: A uniform control on $\left\|X_{t}\right\|_{p}$ for all $p \geq 1$.
- We may informally compute for all $p \geq 1$:

- Taking $p>1$ and then $m \rightarrow 0$ we may "deduce" from this

Step 1: Informal L^{p} bound

- Step 1: A uniform control on $\left\|X_{t}\right\|_{p}$ for all $p \geq 1$.
- We may informally compute for all $p \geq 1$:

$$
\begin{aligned}
\partial_{t} \int_{\mathscr{O}}\left|Y_{t}\right|^{p} d \xi= & p \int_{\mathscr{O}} Y_{t}^{[p-1]} e^{\mu_{t}} \Delta Y_{t}^{[m]} d \xi \\
= & -\frac{4(p-1) m p}{(p+m-1)^{2}} \int_{\mathscr{O}} e^{\mu_{t}}\left(\nabla\left|Y_{t}\right|^{\frac{p+m-1}{2}}\right)^{2} d \xi \\
& +\frac{p m}{p+m-1} \int_{\mathscr{O}}\left|Y_{t}\right|^{p+m-1} \Delta e^{\mu_{t}} d \xi
\end{aligned}
$$

- Taking $p>1$ and then $m \rightarrow 0$ we may "deduce" from this

Step 1: Informal L^{p} bound

- Step 1: A uniform control on $\left\|X_{t}\right\|_{p}$ for all $p \geq 1$.
- We may informally compute for all $p \geq 1$:

$$
\begin{aligned}
\partial_{t} \int_{\mathscr{O}}\left|Y_{t}\right|^{p} d \xi= & p \int_{\mathscr{O}} Y_{t}^{[p-1]} e^{\mu_{t}} \Delta Y_{t}^{[m]} d \xi \\
= & -\frac{4(p-1) m p}{(p+m-1)^{2}} \int_{\mathscr{O}} e^{\mu_{t}}\left(\nabla\left|Y_{t}\right|^{\frac{p+m-1}{2}}\right)^{2} d \xi \\
& +\frac{p m}{p+m-1} \int_{\mathscr{O}}\left|Y_{t}\right|^{p+m-1} \Delta e^{\mu_{t}} d \xi
\end{aligned}
$$

- Taking $p>1$ and then $m \rightarrow 0$ we may "deduce" from this

$$
\partial_{t} \int_{\mathscr{O}}\left|Y_{t}\right|^{p} d \xi \leq 0 .
$$

Step 2: Informal " L" bound

- Step 2: An energy inequality for a weighted L^{1}-norm.

$$
\begin{aligned}
\partial_{t} \int_{\mathscr{O}}\left|Y_{t}\right|^{p} d \xi & =-\frac{4(p-1) m p}{(p+m-1)^{2}} \int_{\mathscr{O}} e^{\mu_{t}}\left(\nabla\left|Y_{t}\right|^{\frac{p+m-1}{2}}\right)^{2} d \xi \\
& +\frac{p m}{p+m-1} \int_{\mathscr{O}}\left|Y_{t}\right|^{p+m-1} \Delta e^{\mu_{t}} d \xi, p \geq 1 .
\end{aligned}
$$

- Choose $p=m+1$ and let $m \rightarrow 0$. We obtain

- Recall: deterministic case

Step 2: Informal " L" bound

- Step 2: An energy inequality for a weighted L^{1}-norm.

$$
\begin{aligned}
\partial_{t} \int_{\mathscr{O}}\left|Y_{t}\right|^{p} d \xi & =-\frac{4(p-1) m p}{(p+m-1)^{2}} \int_{\mathscr{O}} e^{\mu_{t}}\left(\nabla\left|Y_{t}\right|^{\frac{p+m-1}{2}}\right)^{2} d \xi \\
& +\frac{p m}{p+m-1} \int_{\mathscr{O}}\left|Y_{t}\right|^{p+m-1} \Delta e^{\mu_{t}} d \xi, p \geq 1 .
\end{aligned}
$$

- Choose $p=m+1$ and let $m \rightarrow 0$. We obtain

- Recall: deterministic case

Step 2: Informal "L"" bound

- Step 2: An energy inequality for a weighted L^{1}-norm.

$$
\begin{aligned}
\partial_{t} \int_{\mathscr{O}}\left|Y_{t}\right|^{p} d \xi & =-\frac{4(p-1) m p}{(p+m-1)^{2}} \int_{\mathscr{O}} e^{\mu_{t}}\left(\nabla\left|Y_{t}\right|^{\frac{p+m-1}{2}}\right)^{2} d \xi \\
& +\frac{p m}{p+m-1} \int_{\mathscr{O}}\left|Y_{t}\right|^{p+m-1} \Delta e^{\mu_{t}} d \xi, p \geq 1 .
\end{aligned}
$$

- Choose $p=m+1$ and let $m \rightarrow 0$. We obtain

$$
\partial_{t} \int_{\mathscr{O}}\left|Y_{t}\right| d \xi=-\int_{\mathscr{O}} e^{\mu_{t}}\left(\nabla \operatorname{sgn}\left(Y_{t}\right)\right)^{2} d \xi+\frac{1}{2} \int_{\mathscr{O}} \Delta e^{\mu_{t}} d \xi
$$

- Recall: deterministic case

Step 2: Informal " L"" bound

- Step 2: An energy inequality for a weighted L^{1}-norm.

$$
\begin{aligned}
\partial_{t} \int_{\mathscr{O}}\left|Y_{t}\right|^{p} d \xi & =-\frac{4(p-1) m p}{(p+m-1)^{2}} \int_{\mathscr{O}} e^{\mu_{t}}\left(\nabla\left|Y_{t}\right|^{\frac{p+m-1}{2}}\right)^{2} d \xi \\
& +\frac{p m}{p+m-1} \int_{\mathscr{O}}\left|Y_{t}\right|^{p+m-1} \Delta e^{\mu_{t}} d \xi, p \geq 1
\end{aligned}
$$

- Choose $p=m+1$ and let $m \rightarrow 0$. We obtain

$$
\partial_{t} \int_{\mathscr{O}}\left|Y_{t}\right| d \xi=-\int_{\mathscr{O}} e^{\mu_{t}}\left(\nabla \operatorname{sgn}\left(Y_{t}\right)\right)^{2} d \xi+\frac{1}{2} \int_{\mathscr{O}} \Delta e^{\mu_{t}} d \xi
$$

- Recall: deterministic case

$$
\partial_{t} \int_{\mathscr{O}}\left|Y_{t}\right| d \xi=-\int_{\mathscr{O}}\left|\nabla \operatorname{sgn}\left(Y_{t}\right)\right|^{2} d \xi .
$$

Step 2: Informal " $L^{1 "}$ bound
Key trick: Use a weighted L^{1}-norm

- Let φ be the classical solution to

$$
\begin{aligned}
\Delta \varphi & =-1, \quad \text { on } \mathscr{O} \\
\varphi & =1, \quad \text { on } \partial \mathscr{O} .
\end{aligned}
$$

Note $1 \leq \varphi \leq\|\varphi\|_{\infty}=: C_{\varphi}$.

- We informally compute

- Note
$\Delta\left(\varphi e^{\mu_{t}}\right)=-e^{\mu_{t}}+2 \nabla \varphi \cdot \nabla e^{\mu_{t}}+\varphi \Delta e^{\mu_{t}}$
has a negative sign for small times $\left(e^{\mu_{t}} \approx 1\right)$!
- Shift the initial time

Step 2: Informal " $L^{1 "}$ bound
Key trick: Use a weighted L^{1}-norm

- Let φ be the classical solution to

$$
\begin{aligned}
\Delta \varphi & =-1, \quad \text { on } \mathscr{O} \\
\varphi & =1, \quad \text { on } \partial \mathscr{O} .
\end{aligned}
$$

Note $1 \leq \varphi \leq\|\varphi\|_{\infty}=: C_{\varphi}$.

- We informally compute

$$
\partial_{t} \int_{\mathscr{O}} \varphi\left|Y_{t}\right| d \xi=-\int_{\mathscr{O}} \varphi e^{\mu_{t}}\left(\nabla \operatorname{sgn}\left(Y_{t}\right)\right)^{2} d \xi+\frac{1}{2} \int_{\mathscr{O}} \Delta\left(\varphi e^{\mu_{t}}\right) d \xi .
$$

- Note
$\Delta\left(\varphi e^{\mu_{t}}\right)=-e^{\mu_{t}}+2 \nabla \varphi \cdot \nabla e^{\mu_{t}}+\varphi \Delta e^{\mu_{t}}$
has a negative sign for small times $\left(e^{\mu_{t}} \approx 1\right)$!
- Shift the initial time

Step 2: Informal " $L^{1 "}$ bound
Key trick: Use a weighted L^{1}-norm

- Let φ be the classical solution to

$$
\begin{aligned}
\Delta \varphi & =-1, \quad \text { on } \mathscr{O} \\
\varphi & =1, \quad \text { on } \partial \mathscr{O} .
\end{aligned}
$$

Note $1 \leq \varphi \leq\|\varphi\|_{\infty}=: C_{\varphi}$.

- We informally compute

$$
\partial_{t} \int_{\mathscr{O}} \varphi\left|Y_{t}\right| d \xi=-\int_{\mathscr{O}} \varphi e^{\mu_{t}}\left(\nabla \operatorname{sgn}\left(Y_{t}\right)\right)^{2} d \xi+\frac{1}{2} \int_{\mathscr{O}} \Delta\left(\varphi e^{\mu_{t}}\right) d \xi
$$

- Note

$$
\Delta\left(\varphi e^{\mu_{t}}\right)=-e^{\mu_{t}}+2 \nabla \varphi \cdot \nabla e^{\mu_{t}}+\varphi \Delta e^{\mu_{t}}
$$

has a negative sign for small times $\left(e^{\mu_{t}} \approx 1\right)$!

- Shift the initial time

Step 2: Informal " L" bound

Key trick: Use a weighted L^{1}-norm

- Let φ be the classical solution to

$$
\begin{aligned}
\Delta \varphi & =-1, \quad \text { on } \mathscr{O} \\
\varphi & =1, \quad \text { on } \partial \mathscr{O} .
\end{aligned}
$$

Note $1 \leq \varphi \leq\|\varphi\|_{\infty}=: C_{\varphi}$.

- We informally compute

$$
\partial_{t} \int_{\mathscr{O}} \varphi\left|Y_{t}\right| d \xi=-\int_{\mathscr{O}} \varphi e^{\mu_{t}}\left(\nabla \operatorname{sgn}\left(Y_{t}\right)\right)^{2} d \xi+\frac{1}{2} \int_{\mathscr{O}} \Delta\left(\varphi e^{\mu_{t}}\right) d \xi .
$$

- Note

$$
\Delta\left(\varphi e^{\mu_{t}}\right)=-e^{\mu_{t}}+2 \nabla \varphi \cdot \nabla e^{\mu_{t}}+\varphi \Delta e^{\mu_{t}}
$$

has a negative sign for small times $\left(e^{\mu_{t}} \approx 1\right)$!

- Shift the initial time
$\partial_{t} \int_{\mathscr{O}} e^{-\mu_{s}} \varphi\left|Y_{t}\right| d \xi=-\int_{\mathscr{O}} e^{\mu_{t}-\mu_{s}} \varphi\left(\nabla \operatorname{sgn}\left(Y_{t}\right)\right)^{2} d \xi+\frac{1}{2} \int_{\mathscr{O}} \operatorname{sgn}\left(Y_{t}\right)^{2} \Delta e^{\mu_{t}-\mu_{s}} \varphi d \xi$

Thanks

Thanks!

