Exit times of diffusions with incompressible drift

Alexei Novikov Department of Mathematics Penn State University, USA

Sixth Workshop on Random Dynamical Systems November 1, 2013, Bielefeld, Germany.

Exit times of diffusions with incompressible drifts

Transition from long-time Homogenization to strong-flow Freidlin-Wentzel Averaging, with Gautam Iyer, Tomasz Komorowski, and Lenya Ryzhik.

Do incompressible drifts enhance transport? with Gautam Iyer, Lenya Ryzhik, Andrej Zlatos.

$$dX_t^x = Au(X_t^x)dt + \sqrt{2}dW_t, \ X_0^x = x, \ \nabla \cdot u(x) = 0.$$

Behavior of X_t^x , when Péclet number $A \gg 1$, and $t \gg 1$. Behavior of

$$\tau(x) = \mathbb{E}\left(X_{\sigma^x}^x\right), \ \sigma^x = \inf_{t>0}\left(X_t^x \in \partial\Omega\right),$$

with $|\Omega| \to \infty$.

Cellular vs. cat's-eye incompressible flows

$$u(\mathbf{x}) = \nabla^{\perp} H(\mathbf{x}) = \left(-\frac{\partial}{\partial x_2} H(\mathbf{x}), \frac{\partial}{\partial x_1} H(\mathbf{x}) \right), \ \mathbf{x} = (x_1, x_2).$$

Dissipation rate a.k.a. effective diffusivity.

$$\begin{split} dX_t^x &= Au(X_t^x)dt + \sqrt{2}dW_t, \ A \text{ is fixed, } t \to \infty, \\ \lim_{t \to \infty} \frac{\mathbb{E}\left(X_t^x \times X_t^x\right)}{D^A} = I. \end{split}$$

Then $X_t^x \sim Y_t^x$, $dY_t^x = D^A d\tilde{W}_t$. Let $H = \sin \pi x_1 \sin \pi x_2$. PDE methods:

$$D^A \sim C\sqrt{A}$$
, S.Childress '79.

 $\lim_{A\to 0} \frac{D^A}{\sqrt{A}} = C > 0, \text{ A.Fannjiang & G.Papanicolaou'94.}$

Probabilistic methods: L.Koralov'01.

Averaging. Diffusion on graphs (after M. Freidlin & A.Wentzel '78)

$$dX_t^x = Au(X_t^x)dt + \sqrt{2}dW_t.$$

Time t is fixed, $A \rightarrow \infty$

Small Random Perturbation

of Hamiltonian System

 $\dot{X}_t^x = Au(X_t^x)$

Figure taken from M.Freidlin, Reaction-Diffusion in Incompressible Fluid: Asymptotic Problems, 2002.

- · Level-set $H(\mathbf{x}) = 0$ separates fluid motion into 4 eddies.
- \cdot Large gradients near separatrices, boundary layers
- · Inside cells temperature is constant.

Boundary Layer Approximation

Numerical simulation for cellular flows $H = \sin x_1 \sin x_2$, $A = 10^3$.

From Homogenization to Averaging in Cellular Flows

1

• Let
$$H(x) = \frac{1}{\pi} \sin(\pi x_1) \sin(\pi x_2)$$
.
• Let $u(x) = \nabla^{\perp} H = \begin{pmatrix} -\partial_2 H \\ \partial_1 H \end{pmatrix}$.
• Let $\Omega = (0, 1)^2 \subset \mathbb{R}^2$.
• $\begin{cases} -\Delta \tau + \frac{A}{\varepsilon} v \left(\frac{x}{\varepsilon}\right) \cdot \nabla \tau = 1 & \text{in } \Omega, \\ \tau = 0 & \text{on } \partial \Omega \end{cases}$

Here A and ε = 1/L are two non-dimensional parameters.
▷ A is the strength of stirring (the Péclet number).
▷ ε is the cell size.

Contour plots of $\boldsymbol{\tau}$

(a) A 'small' compared to $L = 1/\varepsilon$.

(b) A 'large' compared to $L = 1/\varepsilon$.

Particle's behaviour
$$dX_{m{t}} = u(X_{m{t}})\,dt + \sqrt{2}\,dW_{m{t}}$$

(c) A 'small' compared to L.

(d) A 'large' compared to L.

Homogenization vs. Averaging

• Large amplitude. (Freidlin-Wentzel Averaging)

- \triangleright For fixed cell size ε , and amplitude $A \rightarrow \infty$.
- $\triangleright \tau$ is nearly constant on stream lines of u.
- \triangleright Forces τ to be almost identical in each cell. Separatrices are highways.
- ▷ M.Friedlin, A.Wentzell; Yu.Kifer; H.Berestycki, F.Hamel, N.Nadirashvili.

• Small amplitude. (Homogenization)

- \triangleright For fixed amplitude A, and cell size $\varepsilon \to 0$.
- \rhd τ converges to the solution of an 'effective' enhanced diffusion equation.
- ▷ No difference whether you start near or away from separatrices.
- ▷ S.Childress; A.Fannjiang; G.Papanicolaou; L. Koralov.

Large amplitude, and a large number of cells.

With T.Komorowski, G.Iyer, L.Ryzhik'13 Send both $A \to \infty$, $\varepsilon \to 0$. Let $\tau = \tau_{A,\varepsilon}$ as before. **Theorem.** (Homogenization; $A \ll 1/\varepsilon^4$) • Suppose $\alpha > 0$, and $A \approx 1/\varepsilon^{4-\alpha}$. • If $\Omega = B(0,1)$, then $\tau(x) \approx \tau_{eff}(x) = \frac{1 - |x|^2}{2D_{eff}(A)} \approx \frac{1 - |x|^2}{c\sqrt{A}}$. • If $\Omega = (0,1)^2$, only have $\frac{1}{c\sqrt{A}} \leqslant \tau(x) \leqslant \frac{c}{\sqrt{A}}$ on the *interior* of Ω . **Theorem.** (Averaging; $A \gg 1/\varepsilon^4$) • Suppose $\lim_{A \to \infty} \frac{\varepsilon^2 \sqrt{A}}{\log A \, \log(1/\varepsilon)} = \infty.$ • Oscillation of τ along streamlines tends to 0. • On cell boundaries $\tau(x) \leq \frac{\log A \, \log(1/\varepsilon)}{\sqrt{A}} \to 0.$

Let $\varphi = \varphi_{\varepsilon,A}$ be the (positive) principal eigenfunction:

$$\begin{cases} -\bigtriangleup \varphi + \frac{A}{\varepsilon} v \left(\frac{x}{\varepsilon} \right) \cdot \nabla \varphi = \lambda \varphi & \text{ in } \Omega = (0,1)^2, \\ \varphi = 0 & \text{ on } \partial \Omega. \end{cases}$$

Theorem. There exists c_1, c_2 independent of L and A such that. (A) If $A \gg \frac{(\log A)^2 (\log(1/\varepsilon))^2}{\varepsilon^4}$, then $\lambda \approx \lambda_{avg}$. (H) If $A \approx \frac{1}{\varepsilon^{4-\alpha}}$, then $\lambda \approx \lambda_{eff}$.

•
$$\lambda_{avg} = \frac{c_0}{c^2}$$
, for some explicitly computable c_0 .

• $\lambda_{eff} = \overset{\varepsilon^-}{\lambda_0} (\nabla \cdot D_{eff}(A) \nabla) \approx c_1 \sqrt{A}$, for explicitly computable c_1 .

Asymptotics of the transition.

- The transition should occur when $\tau_{avg} \approx \tau_{eff}$.
- Freidlin-Wentzel Averaging $\tau_{avg} = \tau_{one cell} \sim \varepsilon^2$.
- Homogenization $X_t^x \sim Y_t^x = \sqrt{A}\tilde{W}_t \ \tau_{eff} \sim 1/\sqrt{A}.$
- Transition should occur for $\sqrt{A} \approx \frac{1}{\varepsilon^2}$, or $A \approx \frac{1}{\varepsilon^4}$.

Three scales of diffusion in cellular flows

$$dX_t^x = Au(X_t^x)dt + \sqrt{2}dW_t, \ X_0^x = x.$$

- $t_{avg} \ll t_{rw} \ll t_{eff}$
- Freidlin-Wentzell averaging time t_{avg} .
- Random walk on separatrices time t_{rw} .
- Effective diffusion t_{eff}

Three scales of diffusion in cellular flows

(e) ${\cal A}$ 'small' compared to L.

(f) A 'large' compared to L.

Universality of diffusion in periodic fluid flows

$$dX_t = u(X_t)dt + dV_t, \ X_0 = 0.$$

- $t_{avg} \ll t_{rw} \ll t_{eff}$
- Time of V_t .
- Random walk time t_{rw} .
- Effective diffusion t_{eff}

Theorem (T.Komorowski, A.N., L.Ryzhik, '13) If V_t is a fractional Brownian motion with H < 1/2, u(x) is shear $u = (u_1(x_2), 0)$ then

$$\varepsilon X_{t/\varepsilon^2} \to W_t$$
, as $\varepsilon \to 0$.

Do incompressible flows improve mixing?

Suppose λ^u is the principal eigenvalue of $L^u = -\Delta + u \cdot \nabla$.

lf

$$\partial_t \phi + L^u \phi = 0, \ \phi|_{\partial\Omega} = 0$$

then $||\phi||_{L^2} \sim e^{-\lambda^u t}$ as $t \to \infty$.

If $\nabla \cdot u = 0$, principal eigenvalue of $L^u = -\Delta + u \cdot \nabla$ (with $\phi|_{\partial\Omega} = 0$) is larger than that of $L^0 = -\Delta$.

Incompressible flows improve mixing in L^2 -sense

Suppose $\phi \in H^1_0(\Omega)$ and $L^u \phi = \lambda^u \phi$, with $||\phi||^2_{L^2} = \int_\Omega \phi^2 = 1$ then

$$\lambda^u \int_{\Omega} \phi^2 = \int_{\Omega} \phi L^u \phi = \int_{\Omega} |\nabla \phi|^2.$$

On the other hand the Raleigh quotient characterizes the principal eigenvalue of L^0 :

$$\lambda^0 = \inf_{\|\psi\|_{L^2}=1} \int_{\Omega} |\nabla \psi|^2 \leqslant \int_{\Omega} |\nabla \phi|^2 = \lambda^u.$$

Exit time problem

(with G.lyer, L.Ryzhik & A.Zlatos'10)

For any incompressible u

$$-\Delta \tau^u + u \cdot \nabla \tau^u = 1, \ \tau^u|_{\partial \Omega} = 0.$$

 $\tau^u(x) = \mathbb{E}(X^x_{\sigma^x})$ is the expected exit time from Ω of the diffusion:

$$dX_t^x = u(X_t^x) dt + \sqrt{2} dW_t, \sigma^x = \inf_{t>0} (X_t^x \in \partial \Omega).$$

Theorem 1 Let $\Omega \subset \mathbb{R}^2$ be a bounded, simply connected and Lipschitz domain. Then $u \equiv 0$ maximizes $||\tau^u||_{L^{\infty}(\Omega)}$ if and only if Ω is a disk.

Theorem 2 Let $D \subset \mathbb{R}^n$ be a ball. Then $||\tau^u||_{L^p(D)} \leq ||\tau^0||_{L^p(D)}$ for all incompressible u, and all $1 \leq p \leq \infty$.

The 2-dimensional case. General domain

The stream function H for the "worst" flow $u=\nabla^\perp H$ solves

$$-2\Delta H = 1 + |\nabla H|^2 \left(\int_{\partial \Omega_h} |\nabla H| \, d\sigma \right)^{-1} \left(\int_{\partial \Omega_h} \frac{d\sigma}{|\nabla H|} \right),$$

where $\Omega_h = \{x \in \Omega, H(x) \ge h\}.$

Streamfunction ${\cal H}$ for the ''worst" flow, and ${\cal T}^0$

Streamfunction ${\cal H}$ for the ''worst" flow, and ${\cal T}^0$

Remarks

- If $\nabla \cdot u = 0$ is dropped, the problem is trivial (a flow with a sink).
- Recall that presence of incompressible flow always improves mixing in the sense of increasing the first eigenvalue.
- Using fast flows, we can always make T^u arbitrarily small.
- A more general question: $\begin{cases} -\Delta \tau^u + u \cdot \nabla \tau^u = f & \text{in } \Omega \subset \mathbb{R}^n, \\ \tau^u = 0 & \text{on } \partial \Omega \end{cases}$ Then there is an $L^p \to L^\infty$ bound:

$$||\tau^{u}||_{L^{\infty}} \leq C||f||_{L^{p}}, \ p > n/2,$$

where $C = C(n, p, \Omega)$, but C is independent of u (see Berestycki, Kiselev, Novikov, Ryzhik '09). Find an optimal C. **Theorem** (A.N.'13) If Ω is a disk, then optimal C arises when f = g(|x|, p, n), and g is a certain optimal non-increasing function.

Exit times in a ball.

Proposition. Let $\Omega \subset \mathbb{R}^n$ be bounded, simply connected and Lipschitz domain, and u be any divergence free vector field which is tangential on $\partial \Omega$. Then

$$||\tau^{u}||_{L^{p}(\Omega)} \leq ||\tau^{0,D}||_{L^{p}(D)}$$

where $D \subset \mathbb{R}^n$ is a ball with $|D| = |\Omega|$, and $\tau^{0,D}$ is the expected exit time from D with 0 drift.

Proof of Proposition

- Given any $\tau = \tau^u$, consider its symmetric rearrangement τ^* :
 - $$\begin{split} &-D \text{ is a ball with } |D| = |\Omega|, \text{ and } \tau^* : D \to \mathbb{R}^+ \text{ is radial.} \\ &-\text{ For all } h, |\{\tau > h\}| = |\{\tau^* > h\}|. \\ &- ||\tau||_{L^p(\Omega)} = ||\tau^*||_{L^p(D)} \text{ for all } p. \end{split}$$
- Denote $\Omega_h = \{\tau > h\}$, $\Omega_h^* = \{\tau^* > h\}$.

Proof of Proposition

$$\begin{split} \int_{\partial\Omega_h^*} |\nabla\tau^*| \, d\sigma \int_{\partial\Omega_h^*} \frac{1}{|\nabla\tau^*|} \, d\sigma &= |\partial\Omega_h^*|^2 \leqslant |\partial\Omega_h|^2 \leqslant \\ \int_{\partial\Omega_h} |\nabla\tau| \, d\sigma \int_{\partial\Omega_h} \frac{1}{|\nabla\tau|} \, d\sigma. \end{split}$$

- Integrating the equation on Ω_h we obtain $\int_{\partial \Omega_h} |\nabla \tau| \, d\sigma = |\Omega_h|$.
- Co-area implies $\int_{\partial\Omega_h} \frac{1}{|\nabla\tau|} d\sigma = -\frac{d}{dh} |\Omega_h| = -\frac{d}{dh} |\Omega_h^*| = \int_{\partial\Omega_h^*} \frac{1}{|\nabla\tau^*|} d\sigma$
- So $\int_{\partial\Omega_h^*} |\nabla \tau^*| \, d\sigma \leq \int_{\partial\Omega_h} |\nabla \tau| \, d\sigma = |\Omega_h| = |\Omega_h^*|.$
- Using τ^* is radial and $\int_{\partial \Omega_h^*} |\nabla \tau^*| \, d\sigma \leq |\Omega_h^*|$ we conclude that $\tau^* \leq \tau^{0,D}$ point-wise, where $\tau^{0,D}$ is a solution of the exit time problem in the ball D with no flow.

Summary

- Interplay between size of the domain and large convection.
- Open question: Three scales in convection enhanced diffusion.
- Open question: Universality of effective diffusion.
- Does incompressible stirring improve mixing? It depends on your definition of mixing.
- Open question: Relaxation Enhancement and its quantitative characterization. Can (fluid-temperature) coupling may significantly improve mixing?