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Exit times of diffusions with incompressible drifts

Transition from long-time Homogenization to strong-flow Freidlin-Wentzel
Averaging,

with Gautam Iyer, Tomasz Komorowski, and Lenya Ryzhik.

Do incompressible drifts enhance transport?
with Gautam Iyer, Lenya Ryzhik, Andrej Zlatos.

dXx
t = Au(Xx

t )dt +
√

2dWt, X
x
0 = x, ∇ · u(x) = 0.

Behavior of Xx
t , when Péclet number A� 1, and t� 1.

Behavior of
τ (x) = E (Xx

σx) , σx = inf
t>0

(Xx
t ∈ ∂Ω) ,

with |Ω| → ∞.



Cellular vs. cat’s-eye incompressible flows

u(x) = ∇⊥H(x) =

(
− ∂

∂x2
H(x),

∂

∂x1
H(x)

)
, x = (x1, x2).



Dissipation rate a.k.a. effective diffusivity.

dXx
t = Au(Xx

t )dt +
√

2dWt, A is fixed, t→∞.

lim
t→∞

E (Xx
t ×Xx

t )

DA
= I.

Then Xx
t ∼ Y x

t , dY x
t = DAdW̃t.

Let H = sinπx1 sin πx2. PDE methods:

DA ∼ C
√
A, S.Childress ’79.

lim
A→0

DA

√
A

= C > 0, A.Fannjiang & G.Papanicolaou’94.

Probabilistic methods: L.Koralov’01.



Averaging. Diffusion on graphs
(after M. Freidlin & A.Wentzel ’78)

dXx
t = Au(Xx

t )dt +
√

2dWt.

Time t is fixed, A→∞

Small Random Perturbation

of Hamiltonian System

Ẋx
t = Au(Xx

t )

Figure taken from M.Freidlin, Reaction-Diffusion in Incompressible Fluid: Asymptotic Problems, 2002.



Boundary layer theory. Cellular flows
Probability to exit through top,

Péclet number is 30.

∆φ− Au · ∇φ = 0,

u = ∇⊥H,
H = sinπx1 sin πx2,

φ(x1 = −1, x2) = 0,
φ(x1 = 1, x2) = 1,
∂
∂n
φ(x1, x2 = ±1) = 0.

· Level-set H(x) = 0 separates fluid motion into 4 eddies.
· Large gradients near separatrices, boundary layers
· Inside cells temperature is constant.



Boundary Layer Approximation

Numerical simulation for cellular flows H = sinx1 sinx2, A = 103.



From Homogenization to Averaging in Cellular
Flows

• Let H(x) =
1

π
sin(πx1) sin(πx2).

• Let u(x) = ∇⊥H =

(
−∂2H

∂1H

)
.

• Let Ω = (0, 1)2 ⊂ R2.

•

{
−4τ +

A

ε
v
(x
ε

)
· ∇τ = 1 in Ω,

τ = 0 on ∂Ω

• Here A and ε = 1/L are two non-dimensional parameters.

. A is the strength of stirring (the Péclet number).

. ε is the cell size.



Contour plots of τ

(a) A ‘small’ compared to L = 1/ε. (b) A ‘large’ compared to L = 1/ε.



Particle’s behaviour dXt = u(Xt) dt +
√

2 dWt

(c) A ‘small’ compared to L. (d) A ‘large’ compared to L.



Homogenization vs. Averaging

• Large amplitude. (Freidlin-Wentzel Averaging)

. For fixed cell size ε, and amplitude A→∞.

. τ is nearly constant on stream lines of u.

. Forces τ to be almost identical in each cell. Separatrices are highways.

. M.Friedlin, A.Wentzell; Yu.Kifer; H.Berestycki, F.Hamel, N.Nadirashvili.

• Small amplitude. (Homogenization)

. For fixed amplitude A, and cell size ε→ 0.

. τ converges to the solution of an ‘effective’ enhanced diffusion equation.

. No difference whether you start near or away from separatrices.

. S.Childress; A.Fannjiang; G.Papanicolaou; L. Koralov.



Large amplitude, and a large number of cells.

With T.Komorowski, G.Iyer, L.Ryzhik’13
Send both A→∞, ε→ 0. Let τ = τA,ε as before.
Theorem. (Homogenization; A� 1/ε4)
• Suppose α > 0, and A ≈ 1/ε4−α.

• If Ω = B(0, 1), then τ (x) ≈ τeff(x) =
1− |x|2

2Deff(A)
≈ 1− |x|2

c
√
A

.

• If Ω = (0, 1)2, only have
1

c
√
A

6 τ (x) 6
c√
A

on the interior of Ω.

Theorem. (Averaging; A� 1/ε4)

• Suppose lim
A→∞

ε2
√
A

logA log(1/ε)
=∞.

• Oscillation of τ along streamlines tends to 0.

• On cell boundaries τ (x) 6
logA log(1/ε)√

A
→ 0.



Let ϕ = ϕε,A be the (positive) principal eigenfunction:{
−4ϕ +

A

ε
v
(x
ε

)
· ∇ϕ = λϕ in Ω = (0, 1)2,

ϕ = 0 on ∂Ω.

Theorem. There exists c1, c2 independent of L and A such that.

(A) If A� (logA)2(log(1/ε))2

ε4
, then λ ≈ λavg.

(H) If A ≈ 1

ε4−α , then λ ≈ λeff .

• λavg =
c0

ε2
, for some explicitly computable c0.

• λeff = λ0(∇ ·Deff(A)∇) ≈ c1

√
A, for explicitly computable c1.



Asymptotics of the transition.

• The transition should occur when τavg ≈ τeff .

• Freidlin-Wentzel Averaging τavg = τone cell ∼ ε2.

• Homogenization Xx
t ∼ Y x

t =
√
AW̃t τeff ∼ 1/

√
A.

• Transition should occur for
√
A ≈ 1

ε2
, or A ≈ 1

ε4
.



Three scales of diffusion in cellular flows

dXx
t = Au(Xx

t )dt +
√

2dWt, X
x
0 = x.

• tavg � trw � teff

• Freidlin-Wentzell averaging time tavg.

• Random walk on separatrices time trw.

• Effective diffusion teff



Three scales of diffusion in cellular flows

(e) A ‘small’ compared to L. (f) A ‘large’ compared to L.



Universality of diffusion in periodic fluid flows

dXt = u(Xt)dt + dVt, X0 = 0.

• tavg � trw � teff

• Time of Vt.

• Random walk time trw.

• Effective diffusion teff

Theorem (T.Komorowski, A.N., L.Ryzhik, ’13) If Vt is a fractional Brownian
motion with H < 1/2, u(x) is shear u = (u1(x2), 0) then

εXt/ε2 → Wt, as ε→ 0.



Do incompressible flows improve mixing?

Suppose λu is the principal eigenvalue of Lu = −∆ + u · ∇.

If
∂tφ + Luφ = 0, φ|∂Ω = 0

then ||φ||L2 ∼ e−λ
ut as t→∞.

If ∇ · u = 0, principal eigenvalue of Lu = −∆ + u · ∇ (with φ|∂Ω = 0)
is larger than that of L0 = −∆.



Incompressible flows improve mixing in L2-sense

Suppose φ ∈ H1
0(Ω) and Luφ = λuφ, with ||φ||2L2 =

∫
Ω φ

2 = 1 then

λu
∫

Ω
φ2 =

∫
Ω
φLuφ =

∫
Ω
|∇φ|2.

On the other hand the Raleigh quotient characterizes the principal eigen-
value of L0:

λ0 = inf
||ψ||L2=1

∫
Ω
|∇ψ|2 6

∫
Ω
|∇φ|2 = λu.



Exit time problem

(with G.Iyer, L.Ryzhik & A.Zlatos’10)

For any incompressible u

−∆τ u + u · ∇τ u = 1, τ u|∂Ω = 0.

τ u(x) = E(Xx
σx) is the expected exit time from Ω of the diffusion:

dXx
t = u(Xx

t ) dt +
√

2 dWt, σ
x = inf

t>0
(Xx

t ∈ ∂Ω).

Theorem 1 Let Ω ⊂ R2 be a bounded, simply connected and Lipschitz
domain. Then u ≡ 0 maximizes ||τ u||L∞(Ω) if and only if Ω is a disk.

Theorem 2 Let D ⊂ Rn be a ball. Then ||τ u||Lp(D) 6 ||τ 0||Lp(D) for all
incompressible u, and all 1 6 p 6∞.



The 2-dimensional case. General domain

The stream function H for the “worst” flow u = ∇⊥H solves

−2∆H = 1 + |∇H|2
(∫

∂Ωh

|∇H| dσ
)−1( ∫

∂Ωh

dσ

|∇H|

)
,

where Ωh = {x ∈ Ω, H(x) > h}.



Streamfunction H for the “worst” flow, and T0



Streamfunction H for the “worst” flow, and T0



Remarks

• If ∇ · u = 0 is dropped, the problem is trivial (a flow with a sink).

• Recall that presence of incompressible flow always improves mixing in
the sense of increasing the first eigenvalue.

• Using fast flows, we can always make T u arbitrarily small.

• A more general question:

{
−∆τ u + u · ∇τ u = f in Ω ⊂ Rn,

τ u = 0 on ∂Ω
Then

there is an Lp → L∞ bound:

||τ u||L∞ 6 C||f ||Lp, p > n/2,

where C = C(n, p,Ω), but C is independent of u (see Berestycki,
Kiselev, Novikov, Ryzhik ’09). Find an optimal C.
Theorem (A.N.’13) If Ω is a disk, then optimal C arises when f =
g(|x|, p, n), and g is a certain optimal non-increasing function.



Exit times in a ball.

Proposition. Let Ω ⊂ Rn be bounded, simply connected and Lipschitz
domain, and u be any divergence free vector field which is tangential on
∂Ω. Then

||τ u||Lp(Ω) 6 ||τ 0,D||Lp(D)

where D ⊂ Rn is a ball with |D| = |Ω|, and τ 0,D is the expected exit time
from D with 0 drift.



Proof of Proposition

• Given any τ = τ u, consider its symmetric rearrangement τ ∗:

– D is a ball with |D| = |Ω|, and τ ∗ : D → R+ is radial.

– For all h, |{τ > h}| = |{τ ∗ > h}|.
– ||τ ||Lp(Ω) = ||τ ∗||Lp(D) for all p.

• Denote Ωh = {τ > h}, Ω∗h = {τ ∗ > h}.



Proof of Proposition

∫
∂Ω∗h

|∇τ ∗| dσ
∫
∂Ω∗h

1

|∇τ ∗|
dσ = |∂Ω∗h|2 6 |∂Ωh|2 6∫

∂Ωh

|∇τ | dσ
∫
∂Ωh

1

|∇τ |
dσ.

• Integrating the equation on Ωh we obtain
∫
∂Ωh
|∇τ | dσ = |Ωh|.

• Co-area implies
∫
∂Ωh

1
|∇τ | dσ = − d

dh
|Ωh| = − d

dh
|Ω∗h| =

∫
∂Ω∗h

1
|∇τ∗| dσ

• So
∫
∂Ω∗h
|∇τ ∗| dσ 6

∫
∂Ωh
|∇τ | dσ = |Ωh| = |Ω∗h|.

• Using τ ∗ is radial and
∫
∂Ω∗h
|∇τ ∗| dσ 6 |Ω∗h| we conclude that τ ∗ 6 τ 0,D

point-wise, where τ 0,D is a solution of the exit time problem in the ball
D with no flow.



Summary

• Interplay between size of the domain and large convection.

• Open question: Three scales in convection enhanced diffusion.

• Open question: Universality of effective diffusion.

• Does incompressible stirring improve mixing? It depends on your defi-
nition of mixing.

• Open question: Relaxation Enhancement and its quantitative charac-
terization. Can (fluid-temperature) coupling may significantly improve
mixing?


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

