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Strongly degenerate time inhomogeneous SDEs: densities and
support properties. Application to a Hodgkin-Huxley system with
periodic input. arXiv:1410.0341

Ergodicity for a stochastic Hodgkin-Huxley model driven by
Ornstein-Uhlenbeck type input. arXiv:1311.3458v3, AIHP

A general scheme for ergodicity in strongly degenerate stochastic
systems. Ongoing work.
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I: strongly degenerate stochastic systems – main result

for m < d , consider d-dim diffusion driven by m-dim Brownian motion

dXt = b(t,Xt) dt + σ(Xt) dWt , t ≥ 0

with coefficients

b(t, x) =


b1(t, x)

...

bd(t, x)

 , σ(x) =


σ1,1(x) . . . σ1,m(x)

...
...

σd,1(x) . . . σd,m(x)


for t ≥ 0, x ∈ E : state space (E , E) Borel subset of Rd (with some properties)

coefficient smooth, but neither bounded nor globally Lipschitz

assume: unique strong solution exists, has infinite life time in int(E)

aim: ask for Harris properties of (Xt)t≥0 (non homogeneous in time)

when drift is time-periodic and when some Lyapunov function is at hand:
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assumption A

write Ps,t(x , dy) (0 ≤ s < t <∞, x , y ∈ E) for the semigroup of (Xt)t≥0

assumption A: i) the drift is T -periodic in the time argument

b(t, x) = b (iT (t), x) , iT (t) := t modulo T

ii) we have a Lyapunov function:{
V : E → [1,∞) E-measurable, and for some compact K :

P0,TV bounded on K , P0,TV ≤ V − ε on E \ K

T -periodicity of the drift implies that the semigroup is T -periodic

Ps,t(x , dy) = Ps+kT ,t+kT (x , dy) , k ∈ N0 , x , y ∈ E

thus the T -skeleton chain (XkT )k∈N0
is a time homogeneous Markov chain

Lyapunov condition grants that skeleton chain will visit K infinitely often
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assumption B

alternative under assumption A: define torus T := [0,T ], define E := T× E ,

add time as 0-component to the process X :

X t := (iT (t) , Xt) , t ≥ s , X 0 = (s, x)

X is time homogeneous, (1+d)-dim, state space (E , E)

assumption B: i) for some U ⊂ Rd open and containing E , coefficients

(t, x)→ bi (t, x) , x → σi,j(x) , 1 ≤ i ≤ d , 1 ≤ j ≤ m

of SDE are real analytic functions on T := T× U

ii) there exists some x∗ ∈ int(E) with the following two properties:

x∗ is of full weak Hoermander dimension (cf. section IV)

x∗ is attainable in a sense of deterministic control (cf. next slide)



papers I: outline II: HH example III: proof of thm 1, sketch IV: lie brackets V: control VI: proof thm 1 references

def 1

’attainable in a sense of deterministic control’: in view of control arguments,
put SDE in Stratonovich form

dXt = b̃(t,Xt) dt + σ(Xt) ◦ dWt

with Stratonovich drift

b̃i (t, x) = bi (t, x) − 1

2

m∑
`=1

d∑
j=1

σj,`(x)
∂σi,`

∂x j
(x) , 1 ≤ i ≤ d

definition 1: call x∗ ∈ int(E) attainable in a sense of deterministic control

if for every starting point x ∈ E we can find some function ḣ : [0,∞)→ Rm

depending on x and x∗, all components ḣ`(·) in L2
loc, 1 ≤ ` ≤ m,

which drives a deterministic control system

ϕ = ϕh,x,x∗ solution to dϕt = b̃(t, ϕt)dt + σ(ϕt) ḣ(t)dt

from x = ϕ0 towards x∗ = lim
t→∞

ϕt

(control theorem: Strook and Varadhan 1972, see Millet and Sanz-Sole 1994)
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thm 1 + cor 1

theorem 1: under assumptions A + B:

i) (d-dim:) the T -skeleton (XkT )k∈N0 is a positive Harris recurrent chain
with invariant probability µ on (E , E)

ii) (1+d-dim:) the process X := ( iT (t) , Xt )t≥0 is positive Harris recurrent

with invariant probability µ on (E , E)

and both invariant measures are related by

µ =
1

T

∫ T

0

ds (εs ⊗ µP0,s) on E = T× E

corollary 1: (SLLN) for functions G : E → R in L1(µ) and F : E → R in L1(µ)

1

n

n∑
k=1

G(XkT ) −→
∫
µ(dy)G(y)

1

t

∫ t

0

F (iT (s),Xs) Λ(ds) −→ 1

T

∫ T

0

Λ(ds)

∫
E

(µP0,s)(dy)F (s, y)

Qx -almost surely as n→∞ or t →∞, for every starting point x ∈ E
on the torus T, we may consider many finite measures Λ(ds), not only uniform
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II: example, a stochastic Hodgkin-Huxley system

V membran potential in a neuron, n, m, h gating variables, ξ dendritic input

autonomous diffusion (ξt)t≥0 modelling dendritic input, analytic coefficients,
carrying T -periodic deterministic signal t → S(t) encoded in its semigroup

describe temporal dynamics of the neuron by a 5d stochastic system (ξHH):

t −→ (Vt , nt ,mt , ht , ξt) =: Xt

5d SDE driven by 1d BM with state space E = R×[0, 1]3×R defined by

dVt = dξt − F (Vt , nt ,mt , ht) dt

dnt = [αn(Vt)(1− nt)− βn(Vt)nt ] dt

dmt = [αm(Vt)(1−mt)− βm(Vt)mt ] dt

dht = [αh(Vt)(1− ht)− βh(Vt)ht ] dt

dξt = (S(t)− ξt) dt + dWt

specific power series F (V , n,m, h), strictly positive analytic fcts αj(V ), βj(V ),
j = n,m, h, see Izhikevich (2007), or Hodgkin and Huxley (1951)
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figure 1

trajectories may look like this (except that simulation here uses CIR type input)
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stochastic HH with periodic signal:  voltage  v(t)  function of  t ; black dotted line indicating periodicity of the semigroup
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stochastic HH with periodic signal:  gating variables n(t) (violet),  m(t)  (blue), h(t) (grey)  functions of  t
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figure 2

or like this (depending on signal and choice of parameters for process (ξt)t≥0)
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chamaeleon property

classical deterministic HH systems with periodic deterministic signal t → S̃(t):

dVt = S̃(t)dt − F (Vt , nt ,mt , ht) dt

dnt = [αn(Vt)(1− nt)− βn(Vt)nt ] dt

dmt = [αm(Vt)(1−mt)− βm(Vt)mt ] dt

dht = [αh(Vt)(1− ht)− βh(Vt)ht ] dt

may show – depending on S̃(·) – qualitatively quite different behaviour
(spiking or non-spiking; single spikes or spike bursts, periodic or chaotic
solutions; if periodic, periodicity of output may equal ` ≥ 1 periods of input;
see interesting tableau based on numerical solutions in Endler 2012)

proposition 1: ’chamaeleon property’ of (ξHH):

stochastic ξHH system (Xt)0≤t≤T coding deterministic signal t → S(t)

imitates with positive probability over arbitrarily long (but fixed) time intervals

any deterministic HH with smooth and T -periodic signal S̃(·) 6= S(·)

(the proof is a consequence of the control theorem)
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counting spikes

the stochastic Hodgkin-Huxley neuron (ξHH)

Xt = (Vt , nt ,mt , ht , ξt) , t ≥ 0

is a strongly degenerate diffusion with state space E , and we can show

assumptions A + B made above do hold, thus

skeleton chain (XkT )k is positive Harris, invariant probability µ on (E , E)

process X = (iT (t),Xt)t positive Harris, invariant probability µ on (E , E)

Harris recurrence allows to analyze spiking patterns in the neuron via SLLN’s:

A := {x = (v , n,m, h, ζ) : m > h} (’active’, during a spike)

Q := {x = (v , n,m, h, ζ) : m < h} (’quiet’, or: between spikes)

events in E , count spikes as follows: σ0 ≡ 0, then for n = 1, 2, . . .

τn := inf{t > σn−1 : Xt ∈ A} (n-th spike beginning)

σn := inf{t > τn : Xt ∈ Q} (n-th spike ending)
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SLLN’s for HH

using decompositions into iid life periods and SLLN’s (here we use Nummelin
splitting in a sequence of ’accompanying’ Harris processes with artificial atoms)

we can determine asymptotically a ’typical interspike time (ISI)’ for the neuron

in the sense of a distribution function which depends on the signal t → S(t)
and on the parameters of the SDE governing stochastic input dξt

proposition 2: (Glivenko-Cantelli) define empirical distribution functions

F̂n(t) =
1

n

n∑
j=1

1[0,t](τj+1 − τj) , t ≥ 0

then there is a honest distribution function F such that

lim
n→∞

sup
t≥0

∣∣∣F̂n(t)− F (t)
∣∣∣ = 0

view F as the distribution function of ’the typical ISI’ of the ξHH model neuron

(note: there may be single spikes or spike bursts, successive interspike times
have no reason to be independent, geometric spike packets as in Berglund and
Landon 2012 can easily be identified from such a limit distribution function F )
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another SLLN

another (direct) application of cor 1: if for the ξHH model neuron

Pµ (more than one spike in [0,T ]) = 0

we can define a ’typical occurrence time for spikes’ relatively to the periodicity
interval via SLLN: define

F̂n(r) :=
1

n

n∑
j=1

1[0,rT ](iT (τj)) , 0 ≤ r ≤ 1

then for arbitrary choice of a starting point x ∈ E for the process X

F (r) := lim
n→∞

F̂n(r) , 0 ≤ r ≤ 1

exists a.s. and defines a honest distribution function on [0, 1]:

F (r) = Pµ (spike occurs before time rT | there is a spike in [0,T ])

many other applications in this spirit ...
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III: proof of theorem 1, sketch of main arguments

back to setting of section I: d-dim SDE driven by m-dim BM, m < d ,

dXt = b(t,Xt) dt + σ(Xt) dWt , t ≥ 0

under assumptions A + B: drift T -periodic in time, existence of a Lyapunov
function, analytic coefficients, existence of a point x∗ which is of full weak
Hoermander dimension and attainable in a sense of deterministic control

proof of theorem 1 consists of 3 main steps valid under assumptions A + B:

control paths do transport weak Hoermander dimension

all points in the state space are of full weak Hoermander dimension

transition probabilities P0,T (·, ·) locally admit continuous densities

then continue:

rewrite this into a Nummelin minorization condition
for the T -skeleton chain, with ’small set’ some neighbourhood of x∗

do Nummelin splitting (Nummelin 1978) in the skeleton chain (XkT )k
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IV: Lie brackets and weak Hoermander dimension

put SDE for process X = (Xt)t≥0 in Stratonovich form

dXt = b̃(t,Xt) dt + σ(Xt) ◦ dWt

represent the time homogeneous process X = (iT (t),Xt)t≥0 as

dX t = V0(X t) dt +
m∑
`=1

V`(X t) ◦ dW `
t

with W ` the components of driving Brownian motion, 1 ≤ ` ≤ m,
and with vector fields V0 , V1, . . . ,Vm : E → R1+d

V0(t, x) :=


1

b̃1(t, x)
...

b̃d(t, x)

 , V`(t, x) :=


0

σ1,`(x)
...

σd,`(x)

 , 1 ≤ ` ≤ m

with 0-component for ’time’; view V0, V1, . . . ,Vm as differential operators

V0 =
∂

∂t
+

d∑
j=1

b̃j(t, x)
∂

∂x j
, V` =

d∑
j=1

σj,`(x)
∂

∂x j
, 1 ≤ ` ≤ m
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def 2

for a vector field L : E → R1+d whose 0-component already equals zero,
Lie brackets [V0, L] and [V`, L], 1 ≤ ` ≤ m, take the form

[V0, L]0 = 0 , [V0, L]i =
∂Li

∂t
+

d∑
j=1

(
V j

0

∂Li

∂x j
− Lj ∂V

i
0

∂x j

)
, i = 1, ..., d

[V`, L]0 = 0 , [V`, L]i =
d∑

j=1

(
V j
`

∂Li

∂x j
− Lj ∂V

i
`

∂x j

)
, i = 1, ..., d

(with superscript ’i ’ for i-th component): here 0-component is always zero

definition 2: for N ≥ 1, define a set L := LN of vector fields E → R1+d by

V1, . . . ,Vm ∈ L

and at most N iteration steps

L ∈ L =⇒ [L,V0], [L,V1], . . . , [L,Vm] ∈ L

take L∗N := closure of LN under Lie brackets, and ∆L∗
N

:= LA(LN)

note that all elements of LN , L∗N , ∆L∗
N

have 0-component ’time’ equal to zero
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def 3 + thm 2

thus d is a trivial upper bound for dim(∆L∗
N

)(s, x) for all (s, x) ∈ E

definition 3: x∗ ∈ E is of full weak Hoermander dimension if for some N

dim(∆L∗
N

)(s, x∗) = d independently of s ∈ T

remark 1: if x∗ ∈ int(E) is of full weak Hoermander dimension, with N as
above, then there exists an open neighbourhood U∗ of x∗ such that

dim(∆L∗
N

)(s, x) = d for all s ∈ T and all x ∈ U∗

theorem 2: for (s, x) ∈ E , dim(∆L∗
N

)(s, x) does not depend on N ≥ 1, and

dim(LA(V0,V1, . . . ,Vm))(s, x) = dim(∆L∗
N

)(s, x) + 1

remark 2: i) the Lie algebra LA(V0,V1, . . . ,Vm) is the relevant one in view of
control arguments: Sussmann (1973), Arnold and Kliemann (1987), cf. sect. V

ii) the Lie algebra ∆L∗
N

= ∆L∗1 is the relevant one for existence of continuous
densities (Kusuoka and Strook 1985; existence locally: de Marco 2011)
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proof thm 2

proof of theorem 2: starts from a construction of LA(V0,V1, . . . ,Vm)
in analogy to the definition of sets LN , L∗N , ∆L∗

N
of vector fields above:

for N ≥ 1, define a set D := DN of vector fields by

V0,V1, . . . ,Vm ∈ D

and at most N iteration steps

(∗) L ∈ D =⇒ [L,V0], [L,V1], . . . , [L,Vm] ∈ D

take D∗N := closure of DN under Lie brackets, ∆D∗
N

the linear hull: then

∆D∗
N

= LA(V0,V1, . . . ,Vm) does not dependend on N

compare LN to DN : DN \ LN consists of V0 and the ’descendence’ of V0 in the
sense of iterated Lie brackets (∗); for these,

[. . . [[V0,V`], L], . . .] = −[. . . [[V`,V0], L], . . .]

belongs to LN up to minus sign: LN ⊂ DN ⊂ {V0,±L : L ∈ LN}

so V0 is the only element of DN which is linearly independent of LN ,
and the only element of D∗N which is linearly independent of L∗N �
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V: control arguments, support theorem

H := Cameron-Martin space of functions h : [0, t0]→ Rm having absolutely
continuous components h`(t) =

∫ t

0
ḣ`(s)ds with ḣ` ∈ L2(0, t0), 1 ≤ ` ≤ m

for x ∈ E and h ∈ H consider the deterministic system ϕ = ϕ(h,x) solution to

dϕt = b̃(t, ϕt) dt + σ(ϕt) ḣ(t) dt , ϕ0 = x

as a control path for X ; call control h admissible if ḣ is piecewise constant
(Arnold and Kliemann 1987)

support theorem for diffusions (Strook and Varadhan 1972, Millet and
Sanz-Sole 1994): for bounded and smooth coefficents, for 0 < t0 <∞:

supp (L( (Xt)0≤t≤t0 |X0 = x )) = cl
(
{ (ϕ

(h,x)
t )0≤t≤t0 : h ∈ H }

)
with closure in C([0, t0],Rd)

under our assumptions A + B, we prove a localized version: control paths
starting from x ∈ E have some strictly positive lifetime in int(E),
’good’ control paths for X have ’enough’ lifetime (i.e. > t0)
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ϕ = ϕ(h,x) a control path for X =⇒ ϕ := (iT (·), ϕ) control path for X :

dϕt = b̃(ϕt) dt + σ(ϕt) ḣ(t) dt , ϕ0 = x

admissible controls h: there is a partition . . . < sr−1 < sr < . . . such that
ḣ` ≡ γ` remains constant between times sr−1 and sr : thus between times
sr−1 and sr , the control path ϕ(h,x) for X moves along the vector field

V0 + γ1V1 + . . .+ γmVm

where V0, V1, . . . ,Vm have been defined in section IV; such control paths are
’piecewise integral curves of LA(V0,V1, . . . ,Vm)’ in the sense of Sussmann 1973

thanks to assumption B (analytic coefficients) and to theorem 2:

lemma 1: along control paths ϕ(h,x) where h is admissible

i) (Sussmann 1973) s → dim(LA(V0,V1, . . . ,Vm))(s, ϕ(h,x)) remains constant

ii) hence also s → dim ∆L∗
N

(s, ϕ(h,x)) remains constant

which proves that ’control paths do transport weak Hoermander dimension’
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VI: finishing the proof of theorem 1

by assumption B, there exists x∗ ∈ int(E) which

is attainable in a sense of deterministic control

is of full weak Hoermander dimension

lemma 2: i) all points x ∈ E are of full weak Hoermander dimension

ii) for small neighbourhoods U∗ of x∗ and all x ∈ E :

Qx(XjT ∈ U∗) > 0 for j large enough

from now on, the steps are more and more classical:

lemma 3: trans. prob. P0,T (x , dy) admit Lebesgue densities p0,T (x , y) s. t.

i) y → p0,T (x , y) is continuous when x ∈ E is fixed

ii) x → p0,T (x , y) is lower semicontinuous when y ∈ E is fixed

lemma 4: for every x ∈ E there is some y = y(x) ∈ E and ε > 0 such that

(+) inf
x′∈Bε(x) , y′∈Bε(y)

p0,T (x ′, y ′) > 0
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for the T -skeleton chain (XjT )j :

condition A (Lyapunov fct): compact K is visited i.o.

cover K with finitely many balls Bεk (xk) for which (+) holds;
then at least one of these Bεk (xk) is visited i.o.,
then (+) is a Nummelin minorization with ’small set’ Bεk (xk)

including x∗ in int(K), there is ε∗ > 0 such that Bε∗(x∗) satisfies (+)

x∗ is attainable in a sense of deterministic control: for every k,
Bεk (xk) leads to Bε∗(x∗), thus Bε∗(x∗) is visited i.o.

thus (+) for Bε∗(x∗) is a Nummelin minorization with ’small set’ Bε∗(x∗):

lemma 5: for x∗ of assumption B there is some y∗ = y∗(x∗) ∈ E and ε∗ > 0
such that Nummelin minorization

(++) P0,T (x , dy) ≥ α 1C∗(x) ν∗(dy)

holds with ’small set’ C∗ := Bε∗(x∗) and ν∗ := the uniform law on Bε∗(y∗)

and Nummelin splitting with (artificial) atom Bε∗(y∗) yields iid life cycles ...
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