Neural Fields, Finite-Dimensional Approximation,
Large Deviations, and SDE Continuation

Christian Kuehn
Vienna University of Technology



Outline

Part 1: Neural Fields

(joint work with Martin Riedler, Linz/Vienna):
1. Neural Fields - Amari-type
2. Galerkin Approximation
3. Large Deviation Principle(s)

Part 2: SDE Continuation
1. Numerical Continuation
2. Extension to SODEs
3. Calculating Kramers’ Law
4. Extension to SPDEs
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dUs(x) = [—aUt(x)—i-/BW(x,y)f(Ut(y)) dy | dt + = dWi(x).

Ingredients:

» B C R? bounded closed domain. Hilbert space X = L%(B).
(x,t) e Bx[0, T, u=u(x,t) eR, a>0,0<e <1
w : B x B — R kernel, modelling neural connectivity.

v
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v

f : R — (0,400) gain function, modelling neural input.

v

Q : X — X trace-class, non-negative symmetric operator:
eigenvalues )\,2 € R, eigenfunctions v;.

Wi(x) == 3272, \iBivi(x), i iid Brownian motions.

v



Existence and Regularity
Assumptions:
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Lemma (K./Riedler, 2013)
v; Lipschitz with constants L; and for some p € (0,1)

Z)\ vi(x)?| <

= ue ([0, T], C(B)).

sup
xeB

o0, sup ZV L2P|vi(x) 2P| < oo

i=1




Galerkin Approximation

Spectral representation of solution:
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Galerkin Approximation

Spectral representation of solution:
oo
= uj vi(x)
i=1
Take L?-inner product with v; in neural field model

(dUp,vi) = [—a(Us, vi) + (KF(Uy), vi)]dt 4 e(d W, vi),
= duy = [—aup+ (KF)'(uf,uf,...)]dt + e\ dB}.

where

(KFY (a2, o= [ 7 (iw w(x)) ([ wixrpwtray ) ox
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Approximation Accuracy

Theorem (K./Riedler, 2013)
Forall T >0

Jim_supeejo, 7y [l Ur — Uf'liesy =0 as.
If “regularity-lemma” conditions hold and
Up € C(B) such that lim |Up — P Ul ey =0
then

. N B
Jim_supyepo, 11U = U'llcs) =0 ass.

Proof.
Lengthy calculation using a technique by Blomker/Jentzen
(SINUM 2013).



Large Deviations Principle (LDP)

Example: Stochastic ordinary differential equation
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Large Deviations Principle (LDP)

Example: Stochastic ordinary differential equation

dut = g(ut) dt + EG(Ut) d/Bt

where
» u e RV, g : RV 5 RN, G : RN — RV*k,
» B: = (BL,...,B5)T vector of k iid Brownian motions,

» up € DC RN

Goal: Estimate first-exit time

Tp = inf{t > 0: uy = u; ¢ D}.



An Abstract Theorem

> X:=G([0, T],RY) = {¢ € C([0, TL,RY) : $(0) = wo}.
> HN:={¢:[0, T] = RV : ¢ absolutely continuous, ¢' € L2, ¢(0) = 0}.
> Diffusion matrix D(u) := G(u)T G(u) € RVXN positive definite.



An Abstract Theorem

> X:=G([0, T],RY) = {¢ € C([0, TL,RY) : $(0) = wo}.
> HN:={¢:[0, T] = RV : ¢ absolutely continuous, ¢' € L2, ¢(0) = 0}.
> Diffusion matrix D(u) := G(u)T G(u) € RVXN positive definite.

Theorem (Freidlin, Wentzell)
The SODE satisfies an LDP

- iPofl < Iimim‘s2 InP((vf)ecpo,mp €T) <

< limsupé?In P((uf)eco,r] €T) < —infl.
e—0 r
for any measurable set of paths [ C X with rate function

6) = { 510 (0~ £(00))TD(6e) (0} — £(00))dt, 6 € wo+ HY,

+00 otherwise.



Arhennius-Eyring-Kramers’ Formula

» Gradient structure and additive noise
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» Gradient structure and additive noise

dUt = —VV(ut) dt +5|d dﬁt

> V has precisely two local minima u?, single saddle point u}.

» Hessian V2V/(u?) at saddle has eigenvalues

pr(ug) <0 < pa(ug) < - < pn(u;).

Theorem (Kramers' Formula)

Mean first-passage u” to u, obeys:

| det(V2V(U))| o(v(uz)—viur))/e?
Efry: -V )/
(7t} ~ Ip N\ det(V2V(u)) ©



Back to Neural Fields... Kramers' Formula and LDP

Observations (K./Riedler, 2013)
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Back to Neural Fields... Kramers' Formula and LDP

Observations (K./Riedler, 2013)

» From [Laing/Troy03, Enulescu/Bestehorn07] ¢ = 0 = neural
field has energy-structure. Let g := f~1, P(x,t) = f(U(x, t)).

-
g'(P(x, 1))

But, there are problems fore > 0 =
» Change-of-variable = multiplicative noise.
» Space-time dependent factor 1/g'(P(x, t)).
» Trace-class noise.

OtP(x,t) = — VE[P(x,t)].

» LDP follows from evolution equation [daPratoZabczyk92].
» LDP can be approximated using Galerkin method.
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Part 2 SDE Continuation: Motivation

Consider the general differential equation
ou
— = F(u; A
5 = (WA
where A € RP are parameters.

F(u; \) could lead to ODE, DDE, PDE, SDE, SPDE, etc.

Problem: Forward simulation is usually very restrictive!
1. Simulate over initial values wug.
2. Simulate over parameter space u € RP.
3. Simulate over noise realizations w € Q.

Do you really understand the nonlinear dynamics from averages?



Deterministic DEs Standard Method: Continuation
Consider the ODE

x'= f(x; ), f:R"xR—R"
Let (x; 1) =: y. A curve y = 7(s) of equilibria satisfies

f(7(s)) =0.  (note: Df(y(0))7'(0) = 0)

Y1
n
fly)=0
f(y)=0
y1
o :=(0)
(a) Prediction Step (b) Correction Step

Important: Excellent guess from (a) for Newton's Method in (b).
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Consider the stochastic (ordinary) differential equation (SDE)
dxt = g(xe; ) dt + eG(xe; ) dWe,  x € R™,

Wi = (Wi e, War, ..., Wit)T Brownian motion, F(x; ) € R™k;
let D(x; 1) :== G(x; )G (x; )T
» Appproach 1: Forward Monte-Carlo simulation.

» Problems: Sampling often prohibitive.

» Appproach 2: Use probability density p = p(x, t). Requires
Fokker-Planck solution

0
Z 8 X /.L + _I’JZ_ 6X,aXJ QU(X /.L)p)

» Problems: High-dimensional PDE; not even £ = 0 is good!



Strategy - Generalization to SDEs
Step 1: Recall

dxe = g(xe; p) dt +eG(x; ) dW.

Step 2: Expand near (locally stable) deterministic equilibrium x*
dXt = A(X*,/,L)Xt dt + EF(X*,/.L) th
where A(x; p) = (Dxf)(x; u) € R™".
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Strategy - Generalization to SDEs
Step 1: Recall

dxe = g(xe; p) dt +eG(x; ) dW.

Step 2: Expand near (locally stable) deterministic equilibrium x*
dXe = A(x™; p)Xe dt + eF(x*; ) dWs
where A(x; p) = (Dxf)(x; u) € R™".

Step 3: The covariance matrix C; := Cov(X;) solves

Cl = AKX u)Ce+ GAK* )T +2G(x* 1) G(x*; )T
equil. =0 = A(x*;u)C+ CAKx*;u)" +e2G(x*; )G (x*; )™

Step 4: Define the covariance ellipsoid

B(h) == {x ER™: (x —x)TC 7 (x—x*) < hz}.



Covariance Ellipsoids via Continuation

Important observations:

» Continue the equilibrium x* = x*(11) as usual.

» For covariance ellipsoid one has to solve a Lyapunov equation
AC+CAT+B=0
» During continuation the matrix
Dig(x*;p) = A(x"; ) = A

is available as a submatrix of Dg(x*; ).



Covariance Ellipsoids via Continuation

Important observations:

» Continue the equilibrium x* = x*(11) as usual.

» For covariance ellipsoid one has to solve a Lyapunov equation
AC+CAT+B=0
» During continuation the matrix
Dig(x*;p) = A(x"; ) = A

is available as a submatrix of Dg(x*; ).
» Efficient iterative methods for Lyapunov equations exist.
» A simple initial guess for C(u2) at (x*(uz2), p2) is

C(x"(p1); pa)-
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Ellipsoids and Distance

Question: What is the distance between ellipsoids?
Let @ be positive semi-definite then

&= {X eR":vix<vix* +(vTQv)/? Vve ]R”} :
defines an ellipsoid centered at x*.

Fact: May solve an optimization problem

§ = 0(E(xT, ), 05, Q))

= ||m”a_x1 (vTxf — (T QY2 —vTx — (VTsz)l/z) .

Idea: Use iterative method (e.g. SQP) & initial guess from
continuation to compute 6.



Neural Competition

Consider two neural populations

x; = —x1+ Sl — Bx2 — gy),
Xy = —x2+S(lc — Bx1 — gy2),
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> X1, = averaged firing rates,
> y12 = fatigue/reset variables,
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Neural Competition

Consider two neural populations

x; = —x1+ Sl — Bx2 — gy),
Xy = —x2+S(lc — Bx1 — gy2),
}/]/_ = 6(Xl —}/1),
2 = €elx—y),

where
> X1, = averaged firing rates,
> y12 = fatigue/reset variables,

» S(u) =

S S
1+exp(—r(u—0)) -

Look at noisy fast subsystem € = 0

dxo —xo + S(lc — Bx1 — gy2)

< dxq > _ ( —x1 + S(lc — Bx2 — gy1) >dt+E2G(x) AW,



Numerical Continuation...

X2

12

0.8

0.4

0

For parameter values
yv1=07 y»=07, =11 g=05 r=10, 6=0.2.

and

E2G(x*)G(x") =¢ ( 01 04 ) for £ = 0.3.



Metastability and Noise-Induced Switching

Consider a gradient system
dx; = =V V,(x) dt + e dW, V,:R" =R (1)

Assume
> two stable equilibria x* and y*

» saddle z*, one unstable direction eigenvalue A(z*; ) > 0

Kramers' Law

o | det(A(z*; 1)) 21v,, (2)= Vi (x*))/e2
E x* * | = e e )
(7] Azl || det(AGe; ) ©

where A(x*; 1) = DU, (x*; ) € R,



Continuation and Kramers' Law

Kramers' Law

o | det(A(z*: i))] 2V, (z)~Viatxr)1 /&2

E[rcesy+] = Az )]\ det(A(x*; 1)

Observations:
» Just continue the equilibria x*, y*, z* as usual.
» Jacobian A(z*; i) is available.
» Compute det(A(x*; 1)) via LU decomposition.

» Leading eigenvalue A\(z*; 1) may use Rayleigh iteration.
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Extension to SPDEs

Starting point: (cubic-quintic) Allen-Cahn PDE

% = Au— 4(pu+ u® — u®) + g(u)é.

u=u(x,t), x € Q C R? given boundary conditions.

Main Steps:

. Compute bifurcation for PDE (e.g. — pde2path).

. Consider the SPDE version (e.g. — trace-class noise).
. Discretize in space (e.g. — FDM, FEM, Galerkin).

. Apply numerical continuation for SDEs.

A W NN =



PDE: Deterministic Numerical Continuation




SPDE: Stochastic Numerical Continuation

2
Il

15
1

0.5

1

» scaling law of the variance near bifurcation point

» link to early-warning signs
» Computation on standard desktop computer for SPDEs
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Overview

» Infinite-dimensional neural fields
» Numerical continuation methods for SODEs
» Numerics extends to SPDEs and SPIDEs

A general strategy:
1. Abstract stochastic analysis
2. Conversion into numerical deterministic problem

3. Continuation and iterative methods

> see also: www.asc.tuwien.ac.at/~ckuehn and arXiv

Remark: Multiscale Dynamics (almost) everywhere!
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