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Chapter 1

Riemannian manifolds and
Laplace-Beltrami operator

08.04.24 Lecture 1

We introduce in this Chapter the notions of smooth and Riemannian manifolds, Rie-
mannian measure, and the Riemannian Laplace operator.

1.1 Topological spaces and manifolds

Topological spaces. Recall that a topological space is a couple (M,O) where M
is any set and O is a collection of subsets of M that are called open and satisfy the
following axioms:

• ∅ and M are open;

• union of any family of open sets is open;

• intersection of two open sets is open.

A subset F of M is called closed if its complement F c := M \ F is open. A subset K
of M is called compact if any open covering {Ωα} of K contains a finite subcover. It
is easy to prove that any closed subset of a compact set is also compact (Exercise 1).

Definition. A topological space M is called Hausdorff if, for any two disjoint points
x, y ∈ M , there exist two disjoint open sets U, V ⊂ M containing x and y, respectively.
One says in this case that the sets U and V separate the points x, y.

In a Hausdorff space M , any compact subset K of M is closed (see Exercise 2).

Definition. We say that M has a countable base if there exists a countable family
{Bj}

∞
j=1 of open sets in M such that any other open set is a union of some sets Bj .

The family {Bj} is called a base of the topology of M .

Let M be a topological space and S be any subset of M . Then S itself is a
topological space with the induced topology, that is, open sets in S are intersections of

1
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open sets in M with S. If M has a countable base, then S also has countable base; if
M is Hausdorff, the same is true also for S.

Let X and Y be two topological spaces. A mapping F : X → Y is called continuous
if for any open subset V of Y , the preimage F−1(Y ) is an open subset of X. It is known
that if F is continuous then, for any compact subset K of X, the image F (K) is a
compact subset of Y .

A mapping F : X → Y is called a homeomorphism if F is bijective, and both F
and its inverse mapping are continuous.

Any metric space (M,d) is a topological space with the following standard topology:
a subset Ω ⊂ M is called open if for any x ∈ Ω there is a metric ball

B (x, r) := {y ∈ M : d(x, y) < r}

with radius r > 0 that is a subset of Ω. It is easy to see that all metric balls are open
sets. The topology of a metric space is automatically Hausdorff because for any two
distinct points x, y ∈ M , the balls B(x, r/2) and B(y, r/2) with r = d(x, y) separate
the points x, y.

A metric space has a countable base if and only if it is separable, that is, if it
contains a countable dense subset D. Indeed, if such a set exists then all balls of
rational radii centered at the points of D form a countable base. Conversely, if {Bj}
is a countable base then choosing one point in each Bj , we obtain a countable dense
subset D of M.

For example, Rn as a metric space with the Euclidean distance is an example of a
Hausdorff topological space with a countable base.

C-manifolds. Let us define the notion of a manifold.

Definition. A n-dimensional chart on a topological space M is any couple (U,ϕ) where
U is an open subset of M and ϕ is a homeomorphism of U onto an open subset of Rn

(which is called the image of the chart).

Any chart (U,ϕ) on M gives rise to the local coordinate system x1, x2, ..., xn in U
by taking the ϕ-pullback of the Cartesian coordinate system in Rn. Hence, we can say
that a chart is an open set U ⊂ M with a local coordinate system. Normally, we will
identify U with its image ϕ(U) so that the coordinates x1, x2, ..., xn can be regarded as
the Cartesian coordinates in a region in Rn.

A chart on the surface of the earth
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Definition. A C-manifold of dimension n is a Hausdorff topological space M with
a countable base such that any point of M belongs to a n-dimensional chart. The
collection of all n-dimensional charts on M is called an atlas.

This terminology originates from geography and refers to a geographical atlas of
the Earth, where each sheet can be regarded as (the image of) a 2-dimensional chart
on the Earth’s surface.

For example, Rn is a C-manifold and U = Rn is a single n-dimensional chart that
covers Rn. Let us consider some subsets of Rn that are C-manifolds.

Example. Let V be an open subset of Rn and f : V → Rm be a continuous mapping.
Then its graph

Γ =
{
(x, f(x)) ∈ Rn+m : x ∈ V

}

is a C-manifold because it is covered by a single n-dimensional chart (Γ, ϕ) where

ϕ : Γ → V

ϕ (x, f(x)) = x

is a homeomorphism.

Example. A hypersurface M in Rn+1 is a subset of Rn+1 such that, for any point
x ∈ M , there exists an open set Ω ⊂ Rn+1 containing x such that Ω ∩ M is a graph
with respect to one of the coordinates x1, ..., xn+1 of a continuous function f : V → R
defined on an open subset V of Rn. Since Ω ∩ M is a chart and M can be covered by
such charts, we conclude that M is a C-manifold.

Example. Let F : Rn+1 → R be a C1-function. Consider the null set of F , that is,
the set

M =
{
x ∈ Rn+1 : F (x) = 0

}
,

and assume that ∇F (x) 6= 0 for any point x ∈ M . Then M is a hypersurface and,
hence, a C-manifold of dimension n (Exercise 7).

For example, the unit sphere

Sn :=
{
x ∈ Rn+1 : ‖x‖ = 1

}

is a C-manifold of dimension n because it is the null set of the function F (x) = ‖x‖2−1,
and ∇F = 2x 6= 0 for all x ∈ Sn.

12.04.24 Lecture 2

The hypothesis of a countable base will be mostly used via the next simple lemma.
Let us first fix some notations. For any set A ⊂ M , define the closure A of A as the
intersection of all closed sets containing A. In other words, A is the smallest closed set
containing A. We will use the relation A b B (compact inclusion) between two subsets
A and B of M , which means the following: the closure A of A is a compact set and
A ⊂ B. A set A whose closure of compact is called precompact (or relatively compact).
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Lemma 1.1 For any C-manifold M , there is a countable family {Ui}
∞
i=1 of charts

covering all M and such that Ui b Vi for some chart Vi.

Proof. Any point x ∈ M is contained in a chart, say Vx. Choose Ux b Vx to be a
small open ball around x so that Ux is also a chart. Hence, we obtain a covering of
M by charts {Ux}x∈M such that each of then is compactly included in another chart.
It remains to choose a countable subcover. By definition, manifold M has a countable
base. Choose from this base only those elements that are contained in one of the sets
Ux; let it be a sequence {Bj}

∞
j=1 . Since Ux is open, it is a union of some sets Bj . It

follows that {Bj} is a covering of M . Select for each Bj exactly one chart Ux containing
Bj , say Uxj

. Thus, we obtain a countable family of charts
{
Uxj

}
covering M , which

finishes the proof.

In particular, we see that a C-manifold M is a locally compact topological space.

If (U,ϕ) and (V, ψ) are two charts on a C-manifold M then in the intersection
U ∩ V two coordinate systems are defined, say x1, ..., xn and y1, ..., yn. The change
of the coordinates from x1, ..., xn to y1, ..., yn is given then by continuous functions
yi = yi(x1, ..., xn) because they are the components of the mapping ψ ◦ ϕ−1. Similarly,
the change from y1, ..., yn to x1, ..., xn are given by continuous functions xi (y1, ..., yn)
that are the components of the mapping ϕ ◦ ψ−1.

The mapping ψ ◦ ϕ−1

Smooth manifolds. Now we define the notion of a smooth manifold.

Definition. A family A of charts on a C-manifold is called a Ck-atlas (where k is a
positive integer or +∞) if the charts from A covers all M and the change of coordinates
in the intersection of any two charts from A is given by Ck-functions. Two Ck-atlases
are said to be compatible if their union is again a Ck-atlas. A family of all compatible
Ck-atlases determines a Ck-structure on M .

Definition. A Ck-manifold is a C-manifold endowed with a Ck-structure. A smooth
manifold is a C∞-manifold.

Alternatively, one can say that a Ck-manifold is a couple (M,A), where M is a
C-manifold and A is a Ck-atlas on M . However, if the two Ck-atlases A and A′ are
compatible then (M,A) and (M,A′) determine the same Ck-manifold.
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In this course we are going to consider mostly smooth manifolds. By default, the
term “manifold” will be used as a synonymous of “smooth manifold”. By a chart on a
smooth manifold we will always mean a chart from its C∞-structure, that is, any chart
compatible with the defining atlas A.

Here are some examples of smooth manifolds.

1. Rn with the atlas consisting of a single chart (Rn, id).

2. Any C∞-hypersurface that is locally a graph of a C∞-function, is a smooth man-
ifold.

3. If F : Rn+1 → R be a C∞-function whose null set M = {F = 0} is non-degenerate
then M is a smooth manifolds. For example, the unit sphere Sn is a smooth
manifold.

If Ω is an open subset of M then Ω naturally inherits all the above structures of
M and becomes a smooth manifold if M is so. Indeed, the open sets in Ω are defined
as the intersections of open sets in M with Ω, and in the same way one defines charts
and atlases in Ω.

If f is a (real valued) function on a smooth manifold M and k is a non-negative
integer or ∞ then we write f ∈ Ck(M) (or f ∈ Ck) if the restriction of f to any chart
is a Ck function of the local coordinates x1, ..., xn. The set Ck (M) is a linear space
over R with respect to the usual addition of functions and multiplication by constant.

1.2 Cutoff functions and partition of unity

For any function f ∈ C (M), its support is defined by

supp f = {x ∈ M : f (x) 6= 0},

where the bar stands for the closure. It follows from the definition of supp f that if
f ≡ 0 outside a closed set F ⊂ M then supp f ⊂ F .

Denote by Ck
0 (M) the subspace of Ck (M), which consists of functions with compact

supports. If Ω is an open subset of M then Ck
0 (Ω) denotes the set of all functions

f ∈ Ck
0 (M) such that supp f ⊂ Ω.

Definition. Let M be a smooth manifold, U be an open subset of M and K be a
compact subset of U . We say that a function function ϕ on M is a cutoff function of
K in U if

• ϕ ∈ C∞
0 (U)

• ϕ ≡ 1 in a neighborhood of K
• 0 ≤ ϕ ≤ 1 on M .

A cutoff function ϕ of K in U
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Lemma 1.2 For any open subset U of Rn and any compact set K ⊂ U , there exists a
cutoff function of K in U .

In the proof we use the notion of a mollifier. We say that a function ψ ∈ C∞
0 (Rn)

is a mollifier if supp ψ ⊂ B1 (0), ψ ≥ 0, and

∫

Rn

ψdμ = 1. (1.1)

For example, the following function

ψ (x) =





c exp

(

− 1

( 1
4
−|x|2)

2

)

, |x| < 1/2

0, |x| ≥ 1/2
(1.2)

is a mollifier, for a suitable normalizing constant c > 0.

The mollifier (1.2) in R.

If ψ is a mollifier then, for any 0 < ε < 1, the function

ψε := ε−nψ
(x

ε

)

is also a mollifier, and supp ψε ⊂ Bε (0).

Proof of Lemma 1.2. Let V be an open neighborhood of K such that V b U , and
set f = 1V . Fix a mollifier ψ, ε > 0 and consider the convolution

f ∗ ψε (x) =

∫

Rn

f (x − y) ψε (y) dy =

∫

Bε(x)

f (z) ψε (x − z) dz.

Since f ∈ L1 (Rn), we have f ∗ ψε ∈ C∞ (Rn) . Clearly,

0 ≤ f ∗ ψε (x) ≤ sup |f |
∫

Rn

ψε (y) dy = sup |f | = 1.

If ε is small enough then f ∗ ψε is supported in U so that f ∗ ψε ∈ C∞
0 (U).
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Construction of a cutoff function

Besides, for small enough ε and for any x ∈ K, we have Bε (x) ⊂ V , whence
f |Bε(x) = 1 and

f ∗ ψε (x) =

∫

Bε(x)

f (z) ψε (x − z) dz =

∫

Bε(x)

ψε (x − z) dz = 1.

Hence, the function ϕ = f ∗ ψε is a cutoff function of K in U , provided ε is small
enough.

The following statement provides a convenient vehicle for transporting the local
properties of Rn to manifolds.

Proposition 1.3 Let K be a compact subset of a smooth manifold M and {Uj}
k
j=1

be a finite family of charts covering K. Then there exist non-negative functions ϕj ∈
C∞

0 (Uj) such that
∑k

j=1 ϕj ≡ 1 in an open neighbourhood of K and
∑k

j=1 ϕj ≤ 1 in
M .

A sequence of functions
{
ϕj

}
as in Proposition 1.3 is called a partition of unity at

K subordinate to the cover {Uj}.
A particular case of Proposition 1.3 with k = 1 says that, for any compact K and

any chart U ⊃ K, there exists a non-negative function ϕ ∈ C∞
0 (U) such that ϕ ≡ 1 in

a neighborhood of K and ϕ ≤ 1 on M ; that is, ϕ is a cutoff function of K in U .

Corollary 1.4 Let {Uα} be an arbitrary family of charts covering M . Then, for any
function f ∈ C∞

0 (M), there exists a finite sequence {fj}
k
j=1 of functions from C∞

0 (M)
such that each fj is supported in one of the charts Uα and

f = f1 + ... + fk on M. (1.3)

Proof. Let K = supp f and let U1, ..., Uk be a finite subfamily of {Uα} that covers

K. By Proposition 1.3, there exists a partition of unity
{
ϕj

}k

j=1
at K subordinate to

{Uj}
k
j=1. Set fj = fϕj so that fj ∈ C∞

0 (Uj) . Then we have

k∑

j=1

fj = f on M,

because on K we have
∑

j ϕj = 1, while outside K all the functions f and fj vanish.
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Proof of Proposition 1.3. We claim that there exists open sets Vj b Uj such that

{Vj}
k
k=1 is a covering of K. Indeed, since any point x ∈ K belongs to a chart Uj , there

is a ball Bx in this chart centered at x and such that Bx b Uj . The family of balls
{Bx}x∈K obviously covers K. Since K is compact, there is a finite subfamily {Bi}

m
i=1

covering K. For any j = 1, ..., k, consider the set

Vj :=
⋃

{i:BibUj}
Bi.

By construction, the set Vj is open, Vj b Uj, and the union of all sets Vj covers K.

Function ψj is a cutoff function of Vj in Uj.

15.04.24 Lecture 3

By Lemma 1.2 there exists a cutoff function ψj ∈ C∞
0 (Uj) of Vj in Uj considering

Uj as a subset of Rn. Now we consider Uj as a subset of M and extend ψj to M by
setting ψj = 0 in M \ Ui, so that ψj ∈ C∞

0 (M).

Define now functions ϕj , j = 1, ..., k, by

ϕj = ψj (1 − ψ1) ...
(
1 − ψj−1

)
, (1.4)

that is,

ϕ1 = ψ1, ϕ2 = ψ2 (1 − ψ1) , ..., ϕk = ψk (1 − ψ1) ...
(
1 − ψk−1

)
.

Obviously, ϕj ∈ C∞
0 (Uj) and ϕj ≥ 0. It is easy to check by induction in l the following

identity

1 −
l∑

j=1

ϕj = (1 − ψ1) ... (1 − ψl) . (1.5)

Indeed, for l = 1 it is trivial. If it is true for some l, then

1 −
l+1∑

j=1

ϕj = (1 − ψ1) ... (1 − ψl) − ϕl+1

= (1 − ψ1) ... (1 − ψl) − ψl+1 (1 − ψ1) ... (1 − ψl)

= (1 − ψ1) ... (1 − ψl)
(
1 − ψl+1

)
,
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which proves the induction step.

It follows from (1.5) with l = k that

k∑

j=1

ϕj = 1 − (1 − ψ1) ... (1 − ψk) ≤ 1. (1.6)

Since 1−ψj = 0 on Vj , (1.6) implies that
∑k

j=1 ϕj ≡ 1 on the union
⋃k

j=1 Vj that is an
open neighborhood of K, which was to be proved.

1.3 Tangent space and tangent vectors

Let M be a smooth manifold and x0 be a point on M .

Definition. A mapping ξ : C∞ (M) → R is called an R-differentiation at x0 ∈ M if
• ξ is linear;
• ξ satisfies the product rule in the following form:

ξ (fg) = ξ (f) g (x0) + ξ (g) f (x0) ,

for all f, g ∈ C∞.

The set of all R-differentiations at x0 is denoted by Tx0M . For any ξ, η ∈ Tx0M one
defines the sum ξ + η as the sum of two functions on C∞, and similarly one defined λξ
for any λ ∈ R. It is easy to check that both ξ + η and λξ are again R-differentiations,
so that Tx0M is a linear space over R.

Definition. The linear space Tx0M is called the tangent space of M at x0, and its
elements (that is, R-differentiations) are also called tangent vectors at x0.

In Rn we have the following example of R-differentiation:

ξ (f) =
∂f

∂xi
(x0) ,

that is clearly linear and satisfies the product rule. In particular, Tx0R
n contains n

R-differentiations ∂
∂x1 , ...,

∂
∂xn that are clearly linearly independent.

Moreover, for any vector v ∈ Rn, the directional derivative ∂f
∂v

(x0) is also a R-
differentiation, which allows us to identify Rn as a subspace of Tx0R

n. Since

∂f

∂v
= vi ∂f

∂xi

(where we assume the convention about summation over repeated indices ; in this case,
summation over i), it follows that

∂

∂v
= vi ∂

∂xi
.

Theorem 1.5 If M is a smooth manifold of dimension n then the tangent space Tx0M
is a linear space of the same dimension n.
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Consequently, dim Tx0R
n = n, which implies that every R-differentiation in Rn has

the form ∂
∂v

for some v ∈ Rn. We will prove Theorem 1.5 after a series of claims.

Claim 1. Let U ⊂ M be a chart and V b U be an open subset of U . Then, for any
function f ∈ C∞ (U), there exists a function F ∈ C∞

0 (M) such that f ≡ F on V .

Proof. Indeed, let ψ be a cutoff function of V in U (see Lemma 1.2).

Functions f and ψ in Claim 1

Then define function F by {
F = ψf in U,
F = 0 in M \ U,

which clearly satisfies all the requirements.

Claim 2. Let f ∈ C∞ (M) and let f ≡ 0 in an open neighbourhood U of the point
x0 ∈ M . Then ξ (f) = 0 for any ξ ∈ Tx0M . Consequently, if f1 and f2 are smooth
functions on M such that f1 ≡ f2 in an open neighbourhood of a point x0 ∈ M then
ξ (f1) = ξ (f2) for any ξ ∈ Tx0M .

Proof. By reducing U we can assume that U is a chart. Let V be an open neighborhood
of x0 that is compactly included in U. Let ψ be a cutoff function of V in U so that
ψ(x0) = 1. Then we have fψ ≡ 0 on M , which implies ξ (fψ) = 0.

Functions f and ψ in Claim 2

On the other hand, we have by the product rule

ξ (fψ) = ξ (f) ψ(x0) + ξ (ψ) f(x0) = ξ (f) ,

because ψ (x0) = 1 and f(x0) = 0. Hence, ξ (f) = 0. The second part follows from the
first one applied to the function f = f1 − f2.

Remark. Originally a tangent vector ξ ∈ Tx0M is defined as a functional on C∞ (M).
The results of Claims 1 and 2 imply that ξ can be regarded as a functional on C∞ (U)
where U is any open neighbourhood of x0. Indeed, by Claim 1, for any f ∈ C∞ (U)
there exists a function F ∈ C∞ (M) such that f = F in a small open neighborhood V
of x0.
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Functions f ∈ C∞(U) and F ∈ C∞
0 (M)

Hence, define ξ(f) by ξ (f) := ξ (F ). By Claim 2, this definition of ξ (f) does not
depend on the choice of F .

Claim 3. Let f be a smooth function in a ball B = BR(o) in Rn where o is the origin
of Rn. Then there exist smooth functions h1, h2, ..., hn in B such that, for any x ∈ B,

f(x) = f(o) + xihi(x), (1.7)

where we assume summation over the repeated index i. Also, we have

hi(o) =
∂f

∂xi
(o). (1.8)

Proof. By the fundamental theorem of calculus applied to the function t 7→ f (tx) on
the interval t ∈ [0, 1], we have

f(x) = f(o) +

∫ 1

0

d

dt
f(tx) dt, (1.9)

whence it follows

f(x) = f(o) +

∫ 1

0

xi ∂f

∂xi
(tx)dt.

Setting

hi(x) =

∫ 1

0

∂f

∂xi
(tx)dt

we obtain (1.7). Clearly, hi ∈ C∞(B). The identity (1.8) follows from the line above
by substitution x = o.

Claim 4. Under the hypothesis of Claim 3, there exist smooth functions hij in B
(where i, j = 1, 2, ..., n) such that, for any x ∈ B,

f(x) = f(o) + xi ∂f

∂xi
(o) + xixjhij(x). (1.10)

Proof. Applying (1.7) to the function hi instead of f we obtain that there exist smooth
functions hij in B, such that

hi(x) = hi(o) + xjhij(x).
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Substituting this into the representation (1.7) for f and using hi(o) = ∂f
∂xi (o) we obtain

f(x) = f(o) + xihi(x) = f(o) + xi ∂f

∂xi
(o) + xixjhij(x).

Now we can prove Theorem 1.5.

Proof of Theorem 1.5. Let x1, x2, ..., xn be local coordinates in a chart U containing
x0. All the partial derivatives ∂

∂xi evaluated at x0 are R-differentiations at x0, and they
are clearly linearly independent. We will prove that any tangent vector ξ ∈ Tx0M can
be represented in the form

ξ = ξi ∂

∂xi
where ξi = ξ

(
xi
)
. (1.11)

Note that, by the above Remark, the R-differentiation ξ applies also to smooth func-
tions defined in a neighborhood of x0; in particular, ξ (xi) is well-defined. The iden-
tity (1.11) implies that

{
∂

∂xi

}n

i=1
is a basis in the linear space Tx0M and, hence,

dim Tx0M = n.
Without loss of generality, we can assume that x0 is the origin o of the chart U .

For any smooth function f on M , we have by (1.10) the following representation in a
ball B ⊂ U centred at o:

f(x) = f(o) + xi ∂f

∂xi
(o) + xixjhij(x) ,

where hij are some smooth functions in B. Using the linearity of ξ, we obtain

ξ (f) = ξ (1) f(o) + ξ
(
xi
) ∂f

∂xi
(o) + ξ

(
xixjhij

)
. (1.12)

By the product rule, we have

ξ (1) = ξ (1 ∙ 1) = ξ (1) 1 + ξ (1) 1 = 2ξ (1) ,

whence ξ (1) = 0. Set ui = xjhij . By the linearity and the product rule, we have

ξ
(
xiui

)
= ξ

(
xi
)
ui(o) + ξ (ui) xi(o) = 0,

because xi (o) = 0 and ui (o) = xj (o) hij (o) = 0. Hence, in the right hand side of
(1.12), the first and the third term vanish. Setting ξi := ξ (xi), we obtain

ξ (f) = ξi ∂f

∂xi
, (1.13)

which is equivalent to (1.11).
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22.04.24 Lecture 4

The numbers ξi are referred to as the components of the vector ξ in the coordinate
system x1, ..., xn. One often uses the following alternative notation for ξ (f):

ξ (f) ≡
∂f

∂ξ
.

Then the identity (1.13) takes the form

∂f

∂ξ
= ξi ∂f

∂xi
, (1.14)

which allows to think of ξ as a direction at x0 and to interpret ∂f
∂ξ

as a directional
derivative.

A vector field on a smooth manifold M is a family {ξ (x)}x∈M of tangent vectors
such that ξ (x) ∈ TxM for any x ∈ M . In the local coordinates x1, ..., xn, it can be
represented in the form

ξ (x) = ξi (x)
∂

∂xi
.

The vector field ξ (x) is called smooth if all the functions ξi (x) are smooth in any chart.

1.4 Cotangent space

As any other finite dimensional linear space, TxM possesses the dual space T ∗
xM that

consists of all linear functionals on TxM :

ω : TxM → R.

Then T ∗
xM is also a linear space over R; moreover, it is known from linear algebra that

dim T ∗
xM = dim TxM = n.

Definition. The linear space T ∗
xM is referred to as the cotangent space of M at x.

The elements of T ∗
xM are called tangent covectors.

For any ω ∈ T ∗
xM and ξ ∈ TxM , the value ω(ξ) will be also denoted by 〈ω, ξ〉 and

referred to as the pairing of ω and ξ. This notation reflects the fact that every vector
ξ ∈ TxM can be regarded as a linear functional on T ∗

xM given by ξ (ω) = 〈ω, ξ〉. Note
that all linear functionals on T ∗

xM have this form (that is, the second dual space T ∗∗
x M

is identified with TxM).

Fix a point x ∈ M and let f be a smooth function in a neighborhood of x.

Definition. Define the differential df at x as a tangent covector as follows:

〈df, ξ〉 := ξ (f) for any ξ ∈ TxM, (1.15)

where ξ(f) is the value of the R-differentiation ξ at the function f .

Given the local coordinates x1, ..., xn, we can consider each coordinate xi as a func-
tion in the chart. In particular, dxi is a tangent covector.
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Lemma 1.6 {dxi}n
i=1 is a basis in T ∗

xM .

Proof. Indeed, any basis {e1, ..., en} in a linear space has a dual basis {e1, ..., en} in
the dual space that is defined by

〈ei, ej〉 = δi
j :=

{
1, j = i,
0, j 6= i.

Since
{

∂
∂xi

}
is a basis in TxM , we obtain that {dxi} is the dual basis in T ∗

xM because

〈dxi,
∂

∂xj
〉 =

∂

∂xj
xi = δi

j .

Consequently, any tangent covector ω ∈ T ∗
xM has an expansion in this basis:

ω = ωidxi,

where the coefficients ωi ∈ R are referred to as the components of ω. Hence, for any
tangent vector ξ = ξi ∂

∂xi , we obtain

〈ω, ξ〉 = 〈ωidxi, ξj ∂

∂xj
〉 = ωiξ

jδi
j = ωiξ

i.

In particular, for ξ = ∂
∂xi we obtain

ωi = 〈ω,
∂

∂xi
〉.

For example, for the covector df we obtain from (1.15) that

(df)i = 〈df,
∂

∂xi
〉 =

∂f

∂xi

and, hence,

df =
∂f

∂xi
dxi. (1.16)

1.5 Riemannian metric

Let M be a smooth n-dimensional manifold.

Definition. A Riemannian metric (or a metric tensor ) on M is a family g = {g(x)}x∈M

such that, for any x ∈ M , g(x) is a symmetric, positive definite, bilinear form on the
tangent space TxM , smoothly depending on x ∈ M .

The metric tensor determines an inner product 〈∙, ∙〉g in any tangent space TxM by

〈ξ, η〉g := g (x) (ξ, η) for all ξ, η ∈ TxM

so that TxM becomes a Euclidean (=inner product) space.
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In the local coordinates x1, ..., xn, we have

〈ξ, η〉g =

〈

ξi ∂

∂xi
, ηj ∂

∂xj

〉

g

= gij (x) ξiηj

where

gij (x) = 〈
∂

∂xi
,

∂

∂xj
〉g . (1.17)

Clearly, (gij (x))n
i,j=1 is a symmetric positive definite n×n matrix. The functions gij (x)

are called the components of the metric tensor g in the coordinates x1, ..., xn.

Definition. The condition that g (x) smoothly depends on x means that all the com-
ponents gij (x) are C∞-functions in any chart.

The metric tensor can be represented in the local coordinates as follows:

g = gijdxidxj , (1.18)

where dxidxj stands for the tensor product of the covectors dxi and dxj (sometimes
also denoted by dxi ⊗ dxj), that is a bilinear functional on TxM defined by

dxidxj(ξ, η) = 〈dxi, ξ〉〈dxj , η〉 for all ξ, η ∈ TxM.

Indeed, since

〈dxi, ξ〉 = ξ
(
xi
)

= ξj ∂

∂xj
xi = ξi,

it follows that

gijdxidxj (ξ, η) = gijξ
iηj = 〈ξ, η〉g,

which proves (1.18).

Definition. A Riemannian manifold is a couple (M, g) where M is a smooth manifold
and g is a Riemannian metric on M .

A trivial example of a Riemannian manifold is Rn with the canonical Euclidean
metric gRn defined in the Cartesian coordinates x1, ..., xn by

gRn =
(
dx1
)2

+ ... + (dxn)2 .

For this metric, we have (gij) = id.

Let (M, g) be a Riemannian manifold. The metric tensor g can be regarded as a
linear mapping

g (x) : TxM → T ∗
xM (1.19)

as follows. For any vector ξ ∈ TxM , define g (x) ξ ∈ T ∗
xM by the identity

〈g (x) ξ, η〉 = 〈ξ, η〉g for all η ∈ TxM, (1.20)

Rewriting (1.20) in the local coordinates, we obtain

(g (x) ξ)j ηj = gijξ
iηj .
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which implies

(g (x) ξ)j = gijξ
i . (1.21)

In particular, the components of the linear operator g (x) are gij – the same as the
components of the metric tensor.

If the Riemannian metric g is fixed then it is customary to drop g from all the
notations. For example, the notation of the inner product of two tangent vectors ξ, η
becomes 〈ξ, η〉. Moreover, the notation for the covector g (x) ξ becomes just ξ; that
is, the same as for the vector. However, the notation ξi is still used to denote the
components of the vector ξ in the basis

{
∂

∂xi

}
, while ξj will be used to denote the

components of the covector ξ in the basis {dxj}. The relation between the vector
components ξi and the covector components ξj is given then by

ξj := (g (x) ξ)j = gijξ
i.

The operation of passing from ξi to ξj is called lowering the index.

26.04.24 Lecture 5

Lemma 1.7 The linear operator g(x) : TxM → T ∗
xM is invertible. The inverse map-

ping

g−1 (x) : T ∗
xM → TxM

has in the local coordinates the following form for any u ∈ T ∗
xM :

(g−1 (x) u)
i
= gijuj , (1.22)

where the matrix (gij) is the inverse of (gij), that is,

(
gij
)

= (gij)
−1 .

Proof. The operator g(x) is injective: indeed, if ξ 6= 0 then also g (x) ξ 6= 0 because

〈g (x) ξ, ξ〉 = {ξ, ξ}g > 0.

Since the spaces TxM and T ∗
xM have the same dimensions, it follows that g(x) is

bijective and, hence, invertible.
Fix u ∈ T ∗

xM and set ξ = g−1(x)u so that u = g(x)ξ. By (1.21) we have

uj = gkjξ
k.

Using the fact that (gij) is the inverse matrix of (gij), we obtain

gijuj = gijgkjξ
k = gijgjkξ

k = δi
kξ

k = ξi,

which is equivalent to (1.22).
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Denoting the vector g−1 (x) u also by u, we obtain the following relation between
the vector and covector components of u:

ui :=
(
g−1 (x) u

)i
= gijuj .

The operation of passing from uj to ui is called raising the index. Clearly, this is the
inverse operation to lowering the index.

Definition. The operator g−1 (x) determines an inner product in T ∗
xM as follows: for

all u, v ∈ T ∗
xM , set

〈u, v〉g−1 := 〈g−1 (x) u, g−1 (x) v〉g. (1.23)

In the local coordinates we have

〈u, v〉g−1 = gijuivj

because by (1.23), (1.20) and (1.22)

〈u, v〉g−1 = 〈g−1 (x) u, g−1 (x) v〉g = 〈u, g−1 (x) v〉 = ui

(
g−1 (x) v

)i
= gijuivj .

By elimination g from all the notations, we see that the expression 〈u, v〉 has the same
value in the following four possible cases:

• u and v are covectors, and 〈u, v〉 is their inner product in T ∗
xM ;

• u and v are vectors, and 〈u, v〉 is their inner product in TxM ;
• u is a covector, v is a vector, and 〈u, v〉 is their pairing;
• u is a vector, v is a covector, and 〈u, v〉 is their pairing.

Definition. For any f ∈ C∞(M) define its gradient ∇f (x) at any point x ∈ M by

∇f (x) = g−1 (x) df (x) , (1.24)

that is, ∇f (x) is a vector that is obtained from the covector df (x) by raising the index.

Applying (1.20) with ξ = ∇f (x), we obtain, for any η ∈ TxM ,

〈∇f, η〉g = 〈df, η〉 =
∂f

∂η
, (1.25)

which can be considered as an alternative definition of the gradient. In the local
coordinates x1, ..., xn, we obtain by (1.22) and (1.24)

(∇f)i = gij ∂f

∂xj
. (1.26)

If h is another smooth function on M then we obtain from (1.23)

〈∇f,∇h〉g = 〈df, dh〉g−1 = gij ∂f

∂xi

∂h

∂xj
. (1.27)
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1.6 Submanifolds

The notion of a submanifold. If M is a smooth manifold then any open subset
Ω ⊂ M trivially becomes a smooth manifold by restricting all charts to Ω. Also, if g
is a Riemannian metric on M then g|Ω is a Riemannian metric on Ω. Hence, any open
subset Ω of M can be considered as a (Riemannian) submanifold of a (Riemannian)
manifold M of the same dimension.

Consider a more interesting notion of a submanifold of smaller dimension. Any
subset S of a smooth manifold M can be regarded as a topological space with induced
topology. It is easy to see that S inherits from M the properties of being Hausdorff
and having a countable base.

Definition. A set S ⊂ M is called a (embedded) submanifold of dimension m if, for
any point x0 ∈ S, there is a chart U 3 x0 in M with local coordinates x1, ..., xn such
that S ∩ U is given in the local coordinates by the equations

xm+1 = xm+2 = ... = xn = 0. (1.28)

The condition (1.28) implies that S ∩ U is a chart on S with coordinates x1, ..., xm

and, consequently, S is a smooth manifold of dimension m.
More precisely this can be justified as follows. Let the coordinates in U be given

by a homeomorphism ϕ of U onto an open subset of Rn. Then the condition that S in
U is given by the equations (1.28) means that

ϕ (S ∩ U) =
{
x ∈ ϕ (U) : xm+1 = ... = xn = 0

}
= ϕ (U) ∩ Rm,

where we identify Rm with a subspace of Rn as follows: Rm = {x ∈ Rn : xm+1 = ... = xn = 0} .

Hence, ϕ|S∩U can be considered as a mapping from S ∩ U to Rm, and this mapping
is an homeomorphism of S ∩ U onto the open set ϕ (U) ∩ Rm. Hence, (S ∩ U,ϕ|S∩U )
is a m-dimensional chart on S, with the local coordinates x1, x2, ..., xm. With the
atlas consisting of all such charts, the submanifold S becomes a smooth m-dimensional
manifold.

Lemma 1.8 Let M be a smooth manifold of dimension n and F : M → R be a smooth
function on M . Consider the null set of F , that is

S = {x ∈ M : F (x) = 0} .
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If
dF 6= 0 on S (1.29)

then S is a submanifold of dimension n − 1.

Proof. Fix a point x0 ∈ S and a chart U containing x0. The condition dF (x0) 6= 0
means that one of the partial derivatives ∂F

∂xi does not vanish at x0. Without loss of
generality we can assume that ∂F

∂xn (x0) 6= 0.

By the implicit function theorem,

there exists an open subset V ⊂ U ,

containing x0, such that, for x ∈ V,

equation F (x) = 0 can be resolved

with respect to the coordinate xn;

that is, for all x ∈ V ,

F (x) = 0 ⇔ xn = f (x1, ..., xn−1) ,

where f is a smooth function on an

open domain in Rn−1.

After the change of coordinates in V

y1 = x1, y2 = x2, ..., yn−1 = xn−1,

yn = xn − f(x1, ..., xn−1)

the equation of S in V becomes yn = 0 and, hence, S is a (n − 1)-dimensional sub-
manifold.

Tangent space on a submanifold. Let S be a submanifold of M of dimension m
and ξ be an R-differentiation on S at a point x0 ∈ S. For any smooth function f on
M , its restriction f |S is a smooth function on S. Hence, by setting

ξ (f) := ξ (f |S) , (1.30)

we extend ξ to an R-differentiation on M at the same point x0. In other words, (1.30)
defines a linear mapping

Tx0S → Tx0M. (1.31)

Lemma 1.9 The mapping (1.31) is injective and, hence, provides a natural identifi-
cation of Tx0S as a subspace of Tx0M .

Proof. If ξ ∈ Tx0S is non-zero then there exists a smooth function h ∈ C∞ (S) such
that ξ (h) 6= 0. In the coordinate system x1, ..., xn that is used in the definition of a
submanifold, the function h depends on x1, ..., xm. Setting

f
(
x1, ..., xm, ..., xn

)
= h

(
x1, ..., xm

)
,
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we obtain a smooth function f in a neighborhood of x0 in M , such that f |S = h.
Therefore, for the extension of ξ to Tx0M we have

ξ (f) = ξ (f |S) = ξ (h) 6= 0,

that is, ξ is non-zero as element of Tx0M . Hence, the mapping (1.31) is injective.

Let us describe the mapping (1.31) in local coordinates. Let x1, ..., xn be local
coordinates in a chart U in M and y1, ..., ym be local coordinates in a chart V on S.
In the intersection U ∩ V we have the relations

xi = xi
(
y1, ..., ym

)
, i = 1, ..., n, (1.32)

that express the x-coordinates of any point of U ∩ V via its y-coordinates.

Local coordinates x1, ..., xn and y1, ..., ym

Let x0 be a point in U ∩ V . Any smooth function f = f(x1, ..., xn) in a neighborhood
of x0 in M can be regarded also as a smooth function of y1, ..., ym using (1.32). By the
chain rule, we obtain

∂f

∂yk
=

∂f

∂xi

∂xi

∂yk
=

∂xi

∂yk

∂f

∂xi
,

which can be rewritten in the operator form as follows:

∂

∂yk
=

∂xi

∂yk

∂

∂xi
. (1.33)

Note that
{

∂
∂xi

}
is a basis in Tx0M and

{
∂

∂yk

}
is a basis in Tx0S, so that (1.33) identifies

explicitly Tx0S as a subspace of Tx0M .

Tangent space Tx0S as a subspace of Tx0M
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Cotangent space on a submanifold. Any tangent covector ω ∈ T ∗
x0

M as a linear
functional on Tx0M can be restricted to the subspace Tx0S thus yielding an element
of T ∗

x0
S that will also be denoted by ω. Hence, we obtain a surjective linear mapping

T ∗
x0

M → T ∗
x0

S. Assuming that x1, ..., xn and y1, ..., ym are the local coordinate systems
as above, let us compute dxi|Tx0S in the basis dyj . Since by (1.33)

〈dxi,
∂

∂yj
〉 = 〈dxi,

∂xl

∂yj

∂

∂xl
〉 =

∂xl

∂yj
δi

l =
∂xi

∂yj
,

it follows that the restriction of dxi to Tx0S is given by

dxi =
∂xi

∂yj
dyj . (1.34)

Alternatively, (1.34) follows from (1.16) considering xi as a function in the chart
y1, ..., ym.

29.04.24 Lecture 6

Riemannian metric on a submanifold. Let g be a Riemannian metric on M .
For any x ∈ S, we can restrict g (x) to a bilinear functional on TxS thus obtaining a
Riemannian metric gS on S. The metric gS is called the induced metric of S.

Lemma 1.10 In the local coordinates x1, ..., xn on M and y1, ..., ym on S we have the
identity

(gS)ij = gkl
∂xk

∂yi

∂xl

∂yj
, (1.35)

where gkl are the components of g in the chart x1, ..., xn and (gS)ij are the components

of gS in the chart y1, ..., ym. In the matrix form, we have

gy
S = JT gxJ (1.36)

where gx = (gkl), gy
S = ((gS)ij) and J is the Jacobi matrix of the change x = x(y), that

is,

J = (Jki) =

(
∂xk

∂yi

)

. (1.37)

Note that, in the matrix J in (1.37), k = 1, ..., n is the row index and i = 1, ...,m is
the column index, so that J is an n × m matrix. Hence, the right hand side of (1.36)
is the product of the three matrices of the following dimensions: m× n, n× n, n×m,
which results in a matrix m × m.

Proof. Restricting g = gkldxkdxl to Tx0S, we obtain by (1.34)

gS = gkldxkdxl =

(
∂xk

∂yi
dyi

)(
∂xl

∂yj
dyj

)

= gkl
∂xk

∂yi

∂xl

∂yj
dyidyj .
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Comparing with
gS = (gS)ij dyidyj

we obtain (1.35). Next, we have by (1.35) and (1.37)

(gS)ij = JkigklJlj = JT
ikgklJlj =

(
JT gxJ

)
ij

whence (1.36) follows.

In a particular case m = n, S is an open subset of M and the induced metric gS

coincides with the original metric g, so that (1.36) provides the relation between the
matrices gx and gy of g in two coordinate systems x1, ..., xn and y1, ..., yn, respectively
(cf. Exercise 14).

Example. Consider in Rn+1 the following equation
(
x1
)2

+ ... +
(
xn+1

)2
= 1,

which defines the unit sphere Sn. Since Sn is the null set of the function

F (x) =
(
x1
)2

+ ... +
(
xn+1

)2
− 1,

whose differential dF = (2x1, ..., 2xn+1) does not vanish on Sn, we conclude that Sn is a
submanifold of Rn+1 of dimension n. Furthermore, considering Rn+1 as a Riemannian
manifold with the canonical Euclidean metric gRn+1 , we see that Sn can be regarded
as Riemannian manifold with the induced metric that is called the canonical spherical
metric and is denoted by gSn .

Let us compute gS1 using the following chart on S1 (see also Exercise 17). The
upper semi-circle

U := S1 ∩
{
x2 > 0

}

is the graph of a function f (x1) =
√

1 − (x1)2 on the interval (−1, 1) and, hence, is a

chart on S1 with the local coordinate y1 = x1.

The upper semi-circle

Clearly, the relations between the coordinates x1, x2 in R2 and y1 in S1 are

x1 = y1 and x2 =

√
1 − (y1)2.

It follows that

dx1 = dy1 and dx2 =
−y1

√
1 − (y1)2

dy1.
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Since
gR2 =

(
dx1
)2

+
(
dx2
)2

we obtain that

gS1 =
(
dy1
)2

+
(y1)

2

1 − (y1)2

(
dy1
)2

=
(dy1)

2

1 − (y1)2 .

Alternatively, the same follows from (1.35) as gS1 has only one component:

(gS1)11 = (gR2)kl

∂xk

∂y1

∂xl

∂y1
=

(
∂x1

∂y1

)2

+

(
∂x2

∂y1

)2

= 1 +
(y1)

2

1 − (y1)2 =
1

1 − (y1)2 .

1.7 Riemannian measure

Let us recall the definition of the notion of measure. Let X be an arbitrary set. A
σ-algebra A on X is a family of subsets of X such that A contains ∅, X and A is
closed under taking complement and countable unions (hence, also intersections). A
measure μ on a σ-algebra A is a mapping μ : A → [0,∞] such that μ (∅) = 0 and μ is
σ-additive, that is,

μ

(
∞⊔

i=1

Ai

)

=
∞∑

i=1

μ (Ai)

for all Ai ∈ A. Given a measure μ, one can define the notion of the integral
∫

X
fdμ

for a class of measurable functions.
The most famous example of a measure is the Lebesgue measure λ defined on the

σ-algebra L (Rn) of Lebesgue measurable subsets of Rn. Recall that the Borel σ-algebra
B (Rn) is defined as the minimal σ-algebra containing all open subsets of Rn, and the
elements of B (Rn) are called Borel sets. It is known that B (Rn) ⊂ L (Rn) and that
any Lebesgue measurable set is a union of a Borel set and a null set (=a set of measure
zero).

Let M be a smooth manifold of dimension n. Denote by B (M) the smallest σ-
algebra containing all open sets in M . The elements of B (M) are called Borel sets.
We say that a set E ⊂ M is measurable if, for any chart U , the intersection E ∩ U is
Lebesgue measurable in U . Obviously, the family of all measurable sets in M forms a
σ-algebra, that will be denoted by L (M). Since any open subset of M is measurable,
it follows that also all Borel sets are measurable, that is, B (M) ⊂ L (M).

The purpose of this section is to show that any Riemannian manifold (M, g) features
a canonical measure ν that is defined on L (M) and that is called the Riemannian
measure (or volume). This measure is defined by means of the following theorem.

For any chart U on M with the local coordinates x1, ..., xn, consider the matrix
gx = (gij) where gij are the components of the metric g in coordinates x1, ..., xn.

Theorem 1.11 For any Riemannian manifold (M, g) , there exists a unique measure
ν on L (M) such that, in any chart U on M with coordinates x1, ..., xn,

dν =
√

det gx dx, (1.38)
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where dx denotes the Lebesgue measure in U .
Furthermore, the measure ν has the following properties: ν (K) < ∞ for any com-

pact set K ⊂ M and ν (Ω) > 0 for any non-empty open set Ω ⊂ M .

Note that det gx > 0 by the positive definiteness of gx. The condition (1.38) means
that, for any measurable set A ⊂ U ,

ν (A) =

∫

A

√
det gx dx, (1.39)

where A in the right hand side is regarded as a subset of Rn. This identity implies
that, for any non-negative measurable function f on U ,

∫

U

fdν =

∫

U

f
√

det gxdx .

Proof. We need to construct measure ν with the domain L (M) that satisfies (1.39)
in any chart U . Let us use (1.39) as definition of ν on the σ-algebra L (U) of Lebesgue
measurable sets in U . We need to show that the measure ν defined by (1.39) in each
chart, can be extended to L (M) and, moreover, this extension is unique.

Step 1. Let us first prove that the measures that are defined by (1.39) in different
charts, are compatible. That is, if U and V are two charts on M and A is a measurable
set in W := U ∩ V then the integral in (1.39) has the same values in the both charts.

Let x1, ..., xn and y1, ..., yn be the local coordinate systems in U and V , respectively.
Denote by gx and gy the matrices of g in the coordinates x1, ..., xn and y1, ..., yn,
respectively. We need to show that, for any measurable set A ⊂ W ,

∫

Ax

√
det gxdx =

∫

Ay

√
det gydy,

where dx and dy stand for the Lebesgue measures in U and V , respectively, and the
notations Ax and Ay mean that A is considered as a subset of U with coordinates
x1, ..., xn, and that of V with coordinates y1, ..., yn, respectively.

A set A in the intersection of two charts (U,ϕ) and (V, ψ) .
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Let J be the Jacobi matrix of the change x = x (y), that is, J =
(

∂xk

∂yi

)
(cf. (1.37)).

By (1.36) we have
gy = JT gxJ,

which implies
det gy = det JT det gx det J = det gx (det J)2 . (1.40)

Next, let us use the following formula for change of variables in the Lebesgue integral
in Rn: if f is a non-negative measurable function in W then

∫

Wx

f (x) dx =

∫

Wy

f (x (y)) |det J | dy. (1.41)

Applying this for f = 1A

√
det gx and using (1.40), we obtain

∫

Ax

√
det gxdx =

∫

Ay

√
det gx |det J | dy =

∫

Ay

√
det gx (det J)2dy =

∫

Ay

√
det gydy,

which proves the claim.

Step 2. Let us prove that the measure ν on L (M) that satisfies (1.38) in all charts,
is unique.

By Lemma 1.1, there is a countable family {Ui}
∞
i=1 of relatively compact charts

covering M and such that each U i is contained in a chart. Consider the sets

V1 = U1,

V2 = U2 \ U1 = U2 ∩ U c
1

V3 = U3 \ U2 \ U1 = U3 ∩ U c
2 ∩ U c

1

...

Vi = Ui ∩ U c
i−1 ∩ ... ∩ U c

1

...

Clearly we have
M =

⊔

i

Vi

because for any point x ∈ M there is a (unique) minimal i such that x ∈ Ui and, hence,
x ∈ Ui ∩ U c

i−1... ∩ U c
1 .

For any measurable set A on M , define the sets

Ai = A ∩ Vi (1.42)

Then we have Ai ∈ L (Ui) and A =
⊔

i Ai.

Splitting A into disjoint sets Ai.
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Therefore, for any measure ν, we should have

ν (A) =
∑

i

ν (Ai) . (1.43)

However, the value ν (Ai) is uniquely determined by (1.38) because Ai is contained in
the chart Ui. Hence, ν (A) is also uniquely defined, which was to be proved.

03.05.24 Lecture 7

Step 3. Let us prove the existence of ν. For that fix some covering {Ui} as above,
and, for any measurable set A, define ν (A) by (1.39), using the fact that ν (Ai) is
already defined. Let us show that ν is a measure, that is, ν is σ-additive. Let {Bk}

∞
k=1

be a sequence of disjoint measurable sets in M such that

A =
⊔

k

Bk.

We need to prove that

ν(A) =
∑

k

ν(Bk). (1.44)

Defining the sets Bki similarly to (1.42), that is,

Bki = Bk ∩ Vi

we obtain that
Bk =

⊔

i

Bki

as well as
Ai = A ∩ Vi =

⊔

k

(Bk ∩ Vi) =
⊔

k

Bki.

Sets Ai and Bki

Since ν is σ-additive in each chart Ui, we obtain

ν (Ai) =
∑

k

ν(Bki)
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Adding up in i and interchanging the summation in i and k, we obtain

ν (A)
def
=
∑

i

ν (Ai) =
∑

i

∑

k

ν(Bki) =
∑

k

∑

i

ν(Bki)
def
=
∑

k

ν (Bk) ,

which proves (1.44).

Step 4. Any compact set K ⊂ M can covered by a finite number of charts Ui.
Applying (1.39) in a chart containing U i and noticing

√
det g is bounded on U i, we

obtain ν (Ui) < ∞, which implies ν (K) < ∞.
Any non-empty open set Ω ⊂ M contains some non-empty chart U , whence it

follows from (1.39) that

ν (Ω) ≥ ν (U) =

∫

U

√
det gdλ > 0.

* Remark The extension of measure ν from the charts to the whole manifold can also be done
using the Carathéodory extension of measures. Consider the following family of subsets of M :

S =
{
A ⊂ M : A is a relatively compact measurable set and A is contained in a chart

}
.

Observe that S is a semi-ring and, by the above Claim, ν is defined as a measure on S. Hence, the

Carathéodory extension of ν exists and is a complete measure on M . It is not difficult to check that

the domain of this measure is exactly L (M). Since the union of sets Ui from Lemma 1.1 is M and

ν (Ui) < ∞, the measure ν on S is σ-finite and, hence, its extension to L (M) is unique.

Since the Riemannian measure ν is finite on compact sets, any continuous function
with compact support is integrable against ν. Let us record the following simple
property of measure ν, which will be used in the next section.

Lemma 1.12 If f ∈ C (M) and
∫

M

fϕdν = 0 (1.45)

for all ϕ ∈ C∞
0 (M) then f ≡ 0.

Proof. See Exercise 21.

1.8 Divergence theorem

Recall that the divergence of a smooth vector field v (x) in Rn (or in a domain in Rn)
is a function defined by

div v (x) =
n∑

i=1

∂vi

∂xi
.

Divergence satisfies the following identity any smooth vector field v in Rn and a smooth
scalar function u with compact support in Rn:

∫

Rn

(div v) u dx = −
∫

Rn

v ∙ ∇u dx,
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which can be deduced from the divergence theorem of Gauss. Alternatively, this iden-
tity is a consequence of Fubini’s theorem and the integration by part formula: for all
w ∈ C∞(Rn) and u ∈ C∞

0 (Rn),

∫

Rn

∂w

∂xi
udx = −

∫

Rn

w
∂u

∂xi
dx (1.46)

applied with w = vi.
For any smooth vector field v (x) on a Riemannian manifold (M, g), its divergence

div v (x) is a smooth function on M , defined by means of the following statement.

Theorem 1.13 (The divergence theorem) For any smooth vector field v (x) on a Rie-
mannian manifold (M, g), there exists a unique smooth function on M , denoted by
div v, such that the following identity holds

∫

M

(div v) u dν = −
∫

M

〈v,∇u〉dν, (1.47)

for all u ∈ C∞
0 (M).

Both gradient ∇ and divergence div depend on the metric g. In the cases when this
dependence should be emphasized, we will use the extended notations ∇g and divg.

The expression 〈v,∇u〉 = 〈v,∇u〉g is the inner product of the tangent vectors v
and ∇u. By (1.25), we have

〈v,∇u〉g = 〈∇u, v〉g = 〈du, v〉 =
∂u

∂xi
vi,

where 〈du, v〉 is the pairing of the tangent covector du and vector v.

Proof. The uniqueness of div v is simple: if there are two candidates for div v, say
(div v)′ and (div v)′′ then, for all u ∈ C∞

0 (M),

∫

M

(div v)′ u dν =

∫

M

(div v)′′ u dν,

which implies (div v)′ = (div v)′′ by Lemma 1.12.
To prove the existence of div v, let us first show that div v exists in any chart.

Namely, if U is a chart on M with the coordinates x1, ..., xn then, using (1.25), (1.38),
and the integration-by-parts formula in U as a subset of Rn, we obtain, for any u ∈
C∞

0 (U),

∫

U

〈v,∇u〉dν =

∫

U

〈du, v〉dν

=

∫

U

∂u

∂xi
vi
√

det g dλ

= −
∫

U

∂

∂xi

(
vi
√

det g
)

u dλ

= −
∫

U

1
√

det g

∂

∂xi

(
vi
√

det g
)

u dν, (1.48)
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where g = (gij) is the matrix of the metric g in U . Comparing with (1.47) we see that
the divergence in U can be defined by

div v =
1

√
det g

∂

∂xi

(√
det gvi

)
. (1.49)

If U and V are two charts then (1.49) defines the divergences in U and in V , which
agree in U ∩ V by the uniqueness statement. Hence, (1.49) defines div v as a function
on the entire manifold M . Moreover, the divergence defined in this way satisfies the
identity (1.47) for all test functions u compactly supported in one of the charts.

We are left to extend the identity (1.47) to all functions u ∈ C∞
0 (M). Let {Ωα}

be any family of charts covering M . By Corollary 1.4, any function u ∈ C∞
0 (M) can

be represented as a finite sum u1 + ... + um, where each uj is smooth and compactly
supported in one of Ωα. Hence, (1.47) holds for each of the functions uj . By adding
up all such identities, we obtain (1.47) for the function u.

It follows from (1.49) that

div v =
∂vi

∂xi
+ vi ∂

∂xi
ln
√

det g.

In particular, if det g ≡ 1 then we obtain the same formula as in Rn: div v = ∂vi

∂xi .

Corollary 1.14 The identity (1.47) holds also if u (x) is any smooth function on M
and v (x) is a compactly supported smooth vector field on M .

Proof. Let K = supp v. By Theorem 1.3, there exists a cutoff function of K, that is, a
function ϕ ∈ C∞

0 (M) such that ϕ ≡ 1 in a neighbourhood of K. Then uϕ ∈ C∞
0 (M),

and we obtain by Theorem 1.13

∫

M

div v u dν =

∫

M

div v (uϕ) dν = −
∫

M

〈v,∇ (uϕ)〉dν = −
∫

M

〈v,∇u〉dν.

∗ Alternative definition of divergence. Let us define the divergence div v in any chart by

div v =
1

√
det g

∂

∂xi

(√
det gvi

)
, (1.50)

and show by a direct computation that, in the intersection of any two charts, (1.50) defines the same
function. This approach allows to avoid integration in the definition of divergence but it is more
technically involved (besides, we need integration and Theorem 1.13 anyway).

We will use the following formula: if a = (ai
j) is a non-singular n× n matrix smoothly depending

on a real parameter t and (bi
j) is its inverse (where i is the row index and j is the column index) then

∂

∂t
ln det a = bl

k

∂ak
l

∂t
. (1.51)

In the common domain of two coordinate systems x1, ..., xn and y1, ..., yn, set

Jk
i =

∂yk

∂xi
and Ii

k =
∂xi

∂yk
,
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so that the matrices I and J are mutually inverse. Let g be the matrix of the tensor g and vi be
the components of the vector v in coordinates x1, ..., xn, and let g̃ be the matrix of g and ṽk be the
components of the vector v in coordinates y1, ..., yn. Then we have

v = vi ∂

∂xi
= vi ∂yk

∂xi

∂

∂yk
= viJk

i

∂

∂yk

so that
ṽk = viJk

i .

Since by (1.40) √
det g̃ =

√
det g |det J |−1

,

the divergence of v in the coordinates y1, ..., yn is given by

div v =
1

√
det g̃

∂

∂yk

(√
det g̃ṽk

)
=

det J
√

det g
Ij
k

∂

∂xj

(√
det gvi (det J)−1

Jk
i

)

=
1

√
det g

∂

∂xj

(√
det gvi

)
Ij
kJk

i + viIj
kJk

i det J
∂

∂xj
(det J)−1 + viIj

k

∂Jk
i

∂xj

=
1

√
det g

∂

∂xi

(√
det gvi

)
− vi ∂

∂xi
ln det J + viIj

k

∂Jk
i

∂xj
,

where we have used the fact that the matrices J and I are mutually inverse and, hence, Ij
kJk

i = δj
i .

To finish the proof, it suffices to show that, for any index i,

−
∂

∂xi
ln det J + Ij

k

∂Jk
i

∂xj
= 0. (1.52)

By (1.51), we have
∂

∂xi
ln det J = Ij

k

∂Jk
j

∂xi
.

Noticing that
∂Jk

j

∂xi
=

∂2yk

∂xj∂xi
=

∂2yk

∂xi∂xj
=

∂Jk
i

∂xj
,

we obtain (1.52).

1.9 Laplace-Beltrami operator

Recall that the Laplace operator in Rn is given by

Δ =
n∑

i=1

∂2

(∂xi)2 . (1.53)

It is also easy to see that

Δf =
n∑

i=1

∂

∂xi

(
∂f

∂xi

)

= div (∇f) .

Having defined gradient and divergence, we can now define the Laplace-Beltrami
operator (frequently referred to simply as the Laplace operator) on any Riemannian
manifold (M, g) as follows:

Δ = div ◦∇ .
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Strictly speaking, one should use the notations Δg, divg and ∇g but the index g is
usually skipped when there is no danger of confusion.

Hence, for any smooth function f on M, we have

Δf = div (∇f) , (1.54)

so that Δf is also a smooth function on M . In local coordinates, we have

(∇f)i = gij ∂f

∂xj
,

where (gij) = (gij)
−1, which yields

Δf =
1

√
det g

∂

∂xi

(
√

det ggij ∂f

∂xj

)

, (1.55)

For example, if (gij) ≡ id then also (gij) ≡ id, and (1.55) takes the form (1.53).
Hence, the classical Laplace operator in Rn is a particular case of the Laplace-Beltrami
operator. Since the matrix (gij) is symmetric and positive definite, the operator Δ in
(1.55) is an elliptic second order operator in the divergence form.

Proposition 1.15 (The Green formula) If u and v are smooth functions on a Rie-
mannian manifold M and one of them has a compact support then

∫

M

uΔv dν = −
∫

M

〈∇u,∇v〉dν =

∫

M

vΔu dν. (1.56)

Proof. Consider the vector field ∇v. Clearly, supp∇v ⊂ supp v so that either supp u
or supp∇v is compact. By Theorem 1.13, Corollary 1.14, and (1.54), we obtain

∫

M

uΔv dν =

∫

M

u div (∇v) dν = −
∫

M

〈∇u,∇v〉dν.

The second identity in (1.56) is proved similarly.
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